ETSI de Topografía, Geodesia y Cartografía

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ETSI de Topografía, Geodesia y Cartografía"

Transcripción

1 SISTEMAS DE ECUACIONES LINEALES. INTERPOLACIÓN POLINÓMICA Evaluación continua 1-Noviembre-015 6x1 x + x = Dado el sistema de ecuaciones lineales S x1 + 4x = 14.5, se pide x1 + 5x = 8.7 a. Resolver con MATLAB con la instrucción x=a\b (método de Gauss). b. Estudiar si A es definida positiva. c. Estudiar si la matriz A de los coeficientes es estrictamente diagonal dominante, en caso negativo definir un sistema S cuya matriz B de coeficientes sea estrictamente diagonal dominante. d. Es B definida positiva? e. Hallar el número de condición de las matrices A y B y comentar el resultado. f. Hallar la descomposición LU de la matriz A y de la matriz B y explicar las diferencias entre ambas descomposiciones. g. Hallar la solución de los sistemas S y S, a partir de las matrices de descomposición LU y usando la instrucción del apartado a). Coinciden? h. Dar una explicación de los resultados del apartado g. i. Si queremos obtener, por el método de Jacobi, una solución aproximada del sistema formado por las ecuaciones dadas debemos usar las matrices asociadas a S o las asociadas a S? por qué? j. Teniendo en cuenta la respuesta en i), hallar una solución aproximada para una tolerancia de 0.001, y decir cuántas iteraciones son necesarias. k. Mismas cuestiones i. y j. utilizando Gauss-Seidel. l. Mismas cuestiones i. y j. utilizando Sobrerrelajación para dos valores diferentes de w. Solución: a. >> A=[6-1;1 0 4;- 5 0] A = >> b=[4.6;14.5;8.7] b = >> x=a\b U. D. de Matemáticas de la ETSITGC Inferencia Estadística y Cálculo Numérico aplicados a la Ingeniería 1

2 x = b. >> det(a) -99 No es definida positiva. Ni siquiera es simétrica y además det(a) < 0. c. Claramente la matriz A no es estrictamente diagonal dominante. Por ejemplo en su segunda fila, el elemento de la diagonal principal 0 no es mayor que la suma de los otros dos (1 + 4 = 5). Intercambiando el orden de las dos últimas filas, queda ya una matriz estrictamente diagonal dominante: >> B=[6-1;- 5 0;1 0 4] B = Hacemos lo mismo con la matriz de términos independientes: >> c=[4.6;8.7;14.5] c = El nuevo sistema S es equivalente a S y tiene, por tanto, las mismas soluciones: >> y=b\c y = d. B es simétrica y sus tres menores principales son positivos: 6, = Luego B es definida positiva. e. >> cond(a) y det(b) =.5774 >> cond(b).5774 El número de condición indica que son matrices bien condicionadas (número cerca de 1) y coinciden ambos números por ser matrices bien condicionadas que solo se diferencian en el orden de sus filas. U. D. de Matemáticas de la ETSITGC Inferencia Estadística y Cálculo Numérico aplicados a la Ingeniería

3 f. Descomposición LU de la matriz A: >> [L,U]=lu(A) L = U = Descomposición LU de la matriz B: >> [L,U]=lu(B) L = U = Como B es estrictamente diagonal dominante, admite descomposición LU sin pivotación y por eso L es triangular inferior. No ocurre así con A. g. Solución de ambos sistemas: >> [L,U]=lu(A);x=U\(L\b) x = >> [L,U]=lu(B);y=U\(L\c) y = Coinciden. Y es que eran sistemas equivalentes. h. Coinciden porque la instrucción \ ( x=u\(l\c)) pivota las ecuaciones por lo que las matrices LU usadas en el caso de la matriz A son pivotadas por el programa. i. Como B es estrictamente diagonal dominante, tenemos asegurada la convergencia de Jacobi en la resolución del sistema S. U. D. de Matemáticas de la ETSITGC Inferencia Estadística y Cálculo Numérico aplicados a la Ingeniería

4 j. >> x0=[0;0;0];tol=0.001; >> jacobi(b,c,x0,tol,9) No converge con las iteraciones dadas >> jacobi(b,c,x0,tol,10) Luego, son necesarias 10 iteraciones. ETSI de Topografía, Geodesia y Cartografía k. Como B es estrictamente diagonal dominante, tenemos asegurada la convergencia de Gausseidel en la resolución del sistema S. >> gausseidel(b,c,x0,tol,5) No converge con las iteraciones dadas >> gausseidel(b,c,x0,tol,6) Se necesitan, por tanto, 6 iteraciones frente a las 10 con Jacobi. l. >> sobrerrelajacion(b,c,x0,1.,0.01,5) U. D. de Matemáticas de la ETSITGC Inferencia Estadística y Cálculo Numérico aplicados a la Ingeniería 4

5 No converge con las iteraciones dadas >> sobrerrelajacion(b,c,x0,1.,0.01,6) Siguen siendo necesarias 6 iteraciones como en Gausseidel. >> sobrerrelajacion(b,c,x0,0.1,tol,5) No converge con las iteraciones dadas >> sobrerrelajacion(b,c,x0,0.1,tol,6) No converge con las iteraciones dadas No se consigue disminuir el número de iteraciones necesarias para la convergencia. U. D. de Matemáticas de la ETSITGC Inferencia Estadística y Cálculo Numérico aplicados a la Ingeniería 5

6 .- Dada la tabla de valores siguiente, correspondiente a la función f(x) = tg (x): x i π 0 π 4 4 y i a) Calcular el correspondiente polinomio de interpolación, aplicando la definición. b) Calcular a mano el polinomio de Newton con la fórmula de las diferencias divididas. c) Interpolar el valor de f en 8 π. Solución: a) Al tener nodos, el polinomio de interpolación será de grado y ha de pasar por los tres puntos: ( ) P x = a x + a x + a 1 0 π π π 1 0 P = a + a + a = P 0 = a = 0 ( ) 0 π π π 1 0 P = a + a + a = Por tanto, para hallar los coeficientes del polinomio, hay que resolver el sistema: π π a 1 a a = 1 a = P x = x 1.7x ( ) 1 1 π π π π a 0 1 a Comprobación con Matlab: >> x=[-pi/4 0 pi/4]; >> y=[-1 0 1]; >>p= polyfit(x,y,) b) Fórmula de las diferencias divididas de Newton: ( ) = [ ] + [, ]( ) + [,, ]( )( ) P x f x f x x x x f x x x x x x x U. D. de Matemáticas de la ETSITGC Inferencia Estadística y Cálculo Numérico aplicados a la Ingeniería 6

7 xi f(xi) Dif. Div. de orden1 Dif. Div. de orden x0 = π f [x0] = -1 4 f [ x, x ] 0 1 f [ x ] f [ x ] x x 1 0 = = π f [ x1, x] f [ x0, x1] x1 = 0 f [x1] = 0 f [ x0, x1, x] = = 0 x x f [ x, x ] 1 f [ x ] f [ x ] 4 x x π 1 = = 1 0 x = 4 π f [x] = 1 P x 4 π π π = = + + π x 4 x 4 x π x 4 Luego, ( ) -1 0 ( ) π 4 π 1 c) P = = 8 π 8 Con Matlab: >> p=polyfit(x,y,); >> polyval(p,pi/8) Para la misma función del problema anterior, f(x) = tg (x), se considera la tabla de valores: x i π π π 0 π π 4 π y i a) Hallar el polinomio de interpolación correspondiente a estos datos. b) Interpolar estos puntos mediante un spline cúbico cuya derivada primera en los extremos coincida con la derivada primera de la función. c) Hallar el spline que pasa por dichos puntos y tiene derivada tercera en los nodos π 4 y 4 π (es decir, las dos primeras piezas del spline son el mismo polinomio, al igual que las dos últimas). U. D. de Matemáticas de la ETSITGC Inferencia Estadística y Cálculo Numérico aplicados a la Ingeniería 7

8 Solución: a) Polinomio de interpolación de grado 6 (puesto que hay 7 nodos): >> x=[-pi/ -pi/4 -pi/6 0 pi/6 pi/4 pi/]; >> y=[-sqrt() -1 -(sqrt())/ 0 (sqrt())/ 1 (sqrt())]; >> p=polyfit(x,y,6) p = Luego, el polinomio de interpolación es: p (x)= x x x x x x b) Se trata de un spline completo: ( ) f '( x) tgx ' 1 π 1 1 f '( ) = = = 4 π cos ( ) 1 = = cos x π 1 1 f = = = π '( ) 4 cos ( ) 1 >> sc=spline(x,[4 y 4]) sc = form: 'pp' breaks: [ ] coefs: [6x4 double] pieces: 6 order: 4 dim: 1 >> sc.coefs Luego, el spline completo es: π π π π π S0 ( x) = x x x , x, 4 π π π π π S1 ( x) = x x x , x, U. D. de Matemáticas de la ETSITGC Inferencia Estadística y Cálculo Numérico aplicados a la Ingeniería 8

9 π π π π S ( x) = x x x , x, π ( ) , x 0, 6 S x = x x + x π π π π π S4 ( x) = x x x , x, π π π π π S5 ( x) = x x x , x, c) Se pide el spline no nodo: >> sn=spline(x,y) sn = form: 'pp' breaks: [ ] coefs: [6x4 double] pieces: 6 order: 4 dim: 1 >> sn.coefs Luego, el spline no nodo es: π π π π π S0 ( x) =.1084 x x x , x, 4 π π π π π S1 ( x) =.1084 x x x , x, π π π π S ( x) = 0.87 x x x , x, π ( ) , x 0, 6 S x = x x + x U. D. de Matemáticas de la ETSITGC Inferencia Estadística y Cálculo Numérico aplicados a la Ingeniería 9

10 π π π π π S4 ( x) =.1084 x x x , x, π π π π π S5 ( x) =.1084 x x x , x, Para la tabla de valores: x i y i a) Hallar el polinomio de interpolación. b) Hallar un spline no nodo para estos datos. c) Dibujar los dos polinomios en la misma ventana de dibujo. Comentar el resultado. Solución: a) Polinomio de interpolación de grado 9 (puesto que hay 10 nodos): >> x=[1:10]; >> y=[ ]; >> p=polyfit(x,y,9) Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT. > In polyfit at 75 p = 1.0e+04 * Luego, el polinomio de interpolación es: p (x)= x x x x x x x x x b) Spline no nodo: >> sn=spline(x,y) sn = form: 'pp' breaks: [ ] coefs: [9x4 double] pieces: 9 order: 4 U. D. de Matemáticas de la ETSITGC Inferencia Estadística y Cálculo Numérico aplicados a la Ingeniería 10

11 dim: 1 >> sn.coefs Los coeficientes anteriores de cada tramo del spline Si, son coeficientes de las potencias de (x-xi), i=0,, 8. Escribimos, por ejemplo, el primero de ellos: 0 ( ) =.5916 ( 1) ( 1) ( 1) , x [ 1, ] S x x x x c) Gráficas en la misma ventana: 150 >> xx=[1:0.1:10]; >> yy=polyval(p,xx); >> plot(xx,yy) >> hold on >> plot(x,y,'*') >> zz=ppval(sn,xx); >> plot(xx,zz,'--') Con el spline se han evitado las fluctuaciones del polinomio de interpolación que se producían debido al grado elevado del polinomio, sobre todo en los subintervalos de los extremos. U. D. de Matemáticas de la ETSITGC Inferencia Estadística y Cálculo Numérico aplicados a la Ingeniería 11

ETSI en Topografía, Geodesia y Cartografía

ETSI en Topografía, Geodesia y Cartografía INTERPOLACIÓN. Grupo A Curso 014-15 1.- Se considera el polinomio a trozos: S0 x x -1 x 1, 0 S(x) = S1 xx -1 x 0,1 S x x +8x-5 x 1, Deducir si S(x) es un spline cúbico o no sobre los puntos 1, 0,1, (1

Más detalles

2. Sistemas de ecuaciones lineales

2. Sistemas de ecuaciones lineales 2 Sistemas de ecuaciones lineales 2 Ejercicios resueltos Ejercicio 2 Estudiar el número de condición de Frobenius de la matriz a b A a + ε b Solución: El determinante de A es A ab + ba + ε b ε Si b 0 y

Más detalles

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices:

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: 5 2 1 1 0 3 1 0 3 3 1 6. 3 1 6 5 2 1 2.- Dada la matriz A = 10 7 8 7 5 6, 8 6 10 hallar

Más detalles

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares Clase 1. Resolución de sistemas de ecuaciones lineales: preliminares 2. Método directo y exacto: Gauss 3. Método directo y exacto (II): descomposición LU 4. Métodos indirectos: Jacobi, Gauss-Seidel 2 Sistemas

Más detalles

Auxiliar 6: Interpolación Mediante Spline Cúbicos

Auxiliar 6: Interpolación Mediante Spline Cúbicos Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre Otoño 27 Cálculo Numérico MAA-2 Profesor: Gonzalo Hernández Auxiliar: Gonzalo Ríos Fecha:

Más detalles

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: + 1

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: + 1 MAT 5 B Sistemas de ecuaciones no lineales EJERCICIOS RESUELTOS. Resuelva el siguiente sistema de ecuaciones no lineales, utilizando el método de punto fijo multivariable: x cos x x SOLUCIÓN x 8 x +. +

Más detalles

TEMA 5: INTERPOLACION NUMERICA

TEMA 5: INTERPOLACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una

Más detalles

EJERCICIOS PROPUESTOS: Interpolación

EJERCICIOS PROPUESTOS: Interpolación EJERCICIOS PROPUESTOS: Interpolación 1º. Determínese el polinomio de primer grado que en x = 1 toma el valor y en x 1 = toma el valor. Para ello: a) Escríbase el sistema de ecuaciones lineales que proporciona

Más detalles

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL Contenido Preliminares 1 Preliminares Teorema 2 Contenido Preliminares Teorema 1 Preliminares Teorema 2 Teorema Preliminares Teorema Teorema: Serie de Taylor Supongamos

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Primero se triangulariza la matriz: Multiplicando la primera fila por (-1/3) y sumando a la segunda fila: ( ) ( )=( ) ( ) ( )

Primero se triangulariza la matriz: Multiplicando la primera fila por (-1/3) y sumando a la segunda fila: ( ) ( )=( ) ( ) ( ) MAT 115 B EJERCICIOS RESUELTOS Resolver el siguiente sistema de ecuaciones: a) Por el método de eliminación de Gauss La matriz aumentada del sistema es: 3 2 6 1 5 Primero se triangulariza la matriz: Multiplicando

Más detalles

1. Algunos comandos de Estadística

1. Algunos comandos de Estadística Departamento de Matemática Aplicada MÉTODOS ESTADÍSTICOS. Ingeniería Química (Curso 2008-09) Estadística Descriptiva. Práctica. Algunos comandos de Estadística Describimos a continuacion algunos de los

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

Resolución de sistemas de ecuaciones lineales

Resolución de sistemas de ecuaciones lineales Tema 2 Resolución de sistemas de ecuaciones lineales 21 Métodos directos de resolución de sistemas de ecuaciones lineales 211 Resolución de sistemas triangulares Definición 211 Una matriz A se dice triangular

Más detalles

Examen final de Cálculo Numérico. Escuela Técnica Superior de Ingenieros Navales

Examen final de Cálculo Numérico. Escuela Técnica Superior de Ingenieros Navales Examen final de Cálculo Numérico. Escuela Técnica Superior de Ingenieros Navales Curso 22-23. 15 de abril de 24. Número... Apellidos... Nombre... Problema 1. Tiempo para esta parte : 55 minutos Puntuación:

Más detalles

INSTITUTO TECNOLOGICO SUPERIOR DE TEPOSCOLULA CARRERA: INGIENERIA SISTEMAS COMPUTACIONALES CATEDRATICO: ING. MARCO ANTONIO RUIZ VICENTE

INSTITUTO TECNOLOGICO SUPERIOR DE TEPOSCOLULA CARRERA: INGIENERIA SISTEMAS COMPUTACIONALES CATEDRATICO: ING. MARCO ANTONIO RUIZ VICENTE INSTITUTO TECNOLOGICO SUPERIOR DE TEPOSCOLULA CARRERA: INGIENERIA SISTEMAS COMPUTACIONALES 2 SEMESTRE MATERIA: ALGEBRA LINEAL CATEDRATICO: ING. MARCO ANTONIO RUIZ VICENTE NOMBRE DEL ALUMNO: FERNANDO LUZ

Más detalles

Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1

Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1 Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1 Tema 2: Interpolación. Ejercicios y Problemas 1. Ejercicios Ejercicio 1. 1. Dar, sin desarrollar, los polinomios

Más detalles

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x)

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x) Introducción al método de los elementos finitos Métodos Numéricos 2 Laboratori de Càlcul Numèric (LaCàN) Dep. de Matemàtica Aplicada III Universitat Politècnica de Catalunya www-lacan.upc.es Ventajas del

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 29 CONTENIDO

Más detalles

Métodos Numéricos: Ejercicios resueltos

Métodos Numéricos: Ejercicios resueltos Métodos Numéricos: Ejercicios resueltos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica

Más detalles

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. - FACULTAD DE INGENIERIA MECANICA // EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) DURACION: MINUTOS SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO ESCRIBA CLARAMENTE

Más detalles

Métodos iterativos para sistemas de ecuaciones lineales

Métodos iterativos para sistemas de ecuaciones lineales Métodos iterativos para sistemas de ecuaciones lineales Natalia Boal - Manuel Palacios - Sergio Serrano Departamento de Matemática Aplicada Obetivos Trabaar con los métodos iterativos habituales (Jacobi,

Más detalles

TRABAJOS PRACTICOS COMPLEMENTARIOS PARA RESOLVER CON MATLAB

TRABAJOS PRACTICOS COMPLEMENTARIOS PARA RESOLVER CON MATLAB UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE AGRONOMIA Y AGROINDUSTRIAS DEPARTAMENTO FISICO- MATEMATICO CATEDRA DE CALCULO NUMERICO TRABAJOS PRACTICOS COMPLEMENTARIOS PARA RESOLVER CON MATLAB

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

Separar en intervalos de la forma [m, m + 1], con m Z, las raíces de la ecuación: F (x) = x 3 + 3x 2 1 = 0

Separar en intervalos de la forma [m, m + 1], con m Z, las raíces de la ecuación: F (x) = x 3 + 3x 2 1 = 0 METODOS NUMERICOS. E.T.S.I. Minas. Boletín de problemas propuestos. 1. Localizar las raíces de la ecuación F (x) = : (a) F (x) = x tg(x). (b) F (x) = sen(x) x +. (c) F (x) = x + e x. (d) F (x) =.5 x +.

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

I. Métodos directos para resolución de SEL. Se dice que una matriz A admite una factorización LU indirecta A = LU

I. Métodos directos para resolución de SEL. Se dice que una matriz A admite una factorización LU indirecta A = LU I. Métodos directos para resolución de SEL 1. Factorización LU Se dice que una matriz A admite una factorización LU si dicha matriz puede escribirse como el producto de una matriz triangular inferior,

Más detalles

Al considerar varios polígonos regulares inscritos resulta: perímetro del cuadrado < π. perímetro del 96 gono < π

Al considerar varios polígonos regulares inscritos resulta: perímetro del cuadrado < π. perímetro del 96 gono < π AMPLIACIÓN DE MATEMÁTICAS INTRODUCCIÓN Método Constructivo: Conjunto de instrucciones que permiten calcular la solución de un problema, bien en un número finito de pasos, bien en un proceso de paso al

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

Capítulo 3. Polinomios

Capítulo 3. Polinomios Capítulo 3 Polinomios 29 30 Polinomios de variable real 31 Polinomios de variable real 311 Evaluación de polinomios Para el cálculo eficiente de los valores de un polinomio se utiliza el algoritmo de Horner,

Más detalles

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,,

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,, Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

Splines Cúbicos. t 0 < t 1 < < t n (1)

Splines Cúbicos. t 0 < t 1 < < t n (1) Splines Cúbicos Roberto J León Vásquez rleon@alumnosinfutfsmcl Jorge Constanzo jconstan@alumnosinfutfsmcl Valparaíso, 24 de octubre de 2006 1 Interpolación con Splines Una función spline está formada por

Más detalles

ESCUELA: Ingeniería Eléctrica. TEORÍA PRÁCTICA TRAB. SUPERV. LABORATORIO SEMINARIO TOTALES DE ESTUDIO 3 1 8

ESCUELA: Ingeniería Eléctrica. TEORÍA PRÁCTICA TRAB. SUPERV. LABORATORIO SEMINARIO TOTALES DE ESTUDIO 3 1 8 PAG.: 1 PROPÓSITO El desarrollo y abaratamiento habido en los últimos años en los sistemas de computación de tipo personal y comercial producen en la actualidad que cualquier empresa dedicada al área de

Más detalles

RESOLUCIÓN DE SISTEMAS LINEALES

RESOLUCIÓN DE SISTEMAS LINEALES Contenido 1 Métodos de Solución Contenido Métodos de Solución 1 Métodos de Solución Desarrollamos el algoritmo de sustitución regresiva, con el que podremos resolver un sistema de ecuaciones lineales cuya

Más detalles

INFERENCIA ESTADÍSTICA Y CÁLCULO NUMÉRICO APLICADOS A LA INGENIERÍA. Guía de Aprendizaje Información al estudiante

INFERENCIA ESTADÍSTICA Y CÁLCULO NUMÉRICO APLICADOS A LA INGENIERÍA. Guía de Aprendizaje Información al estudiante INFERENCIA ESTADÍSTICA Y CÁLCULO NUMÉRICO APLICADOS A LA INGENIERÍA 1. Datos Descriptivos Guía de Aprendizaje Información al estudiante ASIGNATURA MATERIA INFERENCIA ESTADÍSTICA Y CÁLCULO NUMÉRICO APLICADOS

Más detalles

Cuadratura de Newton-Cotes

Cuadratura de Newton-Cotes Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION

Más detalles

Ecuaciones No-Lineales y raices polinomiales

Ecuaciones No-Lineales y raices polinomiales Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Ecuaciones No-Lineales y raices polinomiales Prof: J. Solano 2012-I Introduccion En Física a menudo nos encontramos con

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas ITESM Métodos Iterativos para Resolver Sistemas Lineales Álgebra Lineal - p. 1/30 En esta lectura veremos

Más detalles

Carrera: Ingeniería Civil CIE 0529

Carrera: Ingeniería Civil CIE 0529 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Métodos Numéricos Ingeniería Civil CIE 0529 2 2 6 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas. Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía ETSI de Topografía, Geodesia Cartografía LÍMITES, CONTINUIDAD Y DIFERENCIABILIDAD DE FUNCIONES DE VARIAS VARIABLES REALES Prueba de Evaluación Continua Grupo ºA 3-Octubre-04.- Sea la función 5 si (,) 4

Más detalles

MATRICES 1. Averiguar Si son iguales las siguientes matrices: Dada la matriz A = 131, se pide: 122. , siendo I la matriz unidad de orden 3.

MATRICES 1. Averiguar Si son iguales las siguientes matrices: Dada la matriz A = 131, se pide: 122. , siendo I la matriz unidad de orden 3. MATRICES Averiguar Si son iguales las siguientes matrices: 5 4 4+ 9+ A = 6 ( )( + ) 3 ( )( ) 5 4 5 4 5 B = + Sea A la matriz de una sola fila ( 5 ) y B la de una sola columna (34 t Escribir los productos

Más detalles

Splines (funciones polinomiales por trozos)

Splines (funciones polinomiales por trozos) Splines (funciones polinomiales por trozos) Problemas para examen Interpolación lineal y cúbica 1. Fórmulas para la interpolación lineal. Dados t 1,..., t n, x 1,..., x n R tales que t 1

Más detalles

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Algebra Lineal Prof: J. Solano 2012-I Introduccion Aqui trabjaremos con operaciones basicas con matrices, tales como solucion

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Modelo para Curso 2008-2009 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará

Más detalles

Curvas de Bézier. Leonardo Fernández Jambrina. Matemática Aplicada E.T.S.I. Navales Universidad Politécnica de Madrid

Curvas de Bézier. Leonardo Fernández Jambrina. Matemática Aplicada E.T.S.I. Navales Universidad Politécnica de Madrid Curvas de Bézier Leonardo Fernández Jambrina Matemática Aplicada E.T.S.I. Navales Universidad Politécnica de Madrid L. Fernández (U.P.M.) Modelado geométrico: Curvas de Bézier 1 / 30 Plano de formas de

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. MATRICES

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. MATRICES FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. MATRICES 1.- Introducción de vectores y matrices. Con Derive los vectores se pueden introducir de dos formas distintas: a) Mediante

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 010 011). Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí. Demostrar

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN

POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN Interpolación POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN Presentación del problema: Para una función dada f(x) se desea determinar un polinomio P(x) de grado m, lo más bajo posible, el cual en los puntos

Más detalles

02. Resolver sistemas de ecuaciones lineales por el método de Gauss.

02. Resolver sistemas de ecuaciones lineales por el método de Gauss. 3.6 Criterios específicos de evaluación. 01. Conocer lo que significa que un sistema sea incompatible o compatible, determinado o indeterminado, y aplicar este conocimiento para formar un sistema de un

Más detalles

Integración numérica

Integración numérica Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Índice Motivación y objetivos Cuadratura

Más detalles

Métodos Numéricos para Sistemas de Ecuaciones Lineales

Métodos Numéricos para Sistemas de Ecuaciones Lineales Universidad de Chile Departamento de Ingeniería Matemática Cálculo Numérico MA-33A Métodos Numéricos para Sistemas de Ecuaciones Lineales Gonzalo Hernández Oliva GHO SEL - MA33A 1 MN para SEL: Temario

Más detalles

Series de potencias y de Fourier

Series de potencias y de Fourier Capítulo 2. Series de potencias y de Fourier En este capítulo estudiaremos dos casos particulares, pero muy importantes, de series de funciones: las series de potencias y las series de Fourier. Ambas series

Más detalles

Solución de sistemas lineales

Solución de sistemas lineales Solución de sistemas lineales Felipe Osorio http://www.ies.ucv.cl/fosorio Instituto de Estadística Pontificia Universidad Católica de Valparaíso Marzo 31, 2015 1 / 12 Solución de sistemas lineales El problema

Más detalles

Proyectos de trabajos para Matemáticas

Proyectos de trabajos para Matemáticas Proyectos de trabajos para Matemáticas 14 de julio de 2011 Resumen En cada uno de los Proyectos elegidos, los estudiantes deberán completar las etapas siguientes: Comprender el problema. Tomarse el tiempo

Más detalles

Resolución de ecuaciones no lineales y Método de Bisección

Resolución de ecuaciones no lineales y Método de Bisección Resolución de ecuaciones no lineales y Método de Bisección Recordemos algunas ecuaciones 1) Resolver [ ] [ ] Sol: 2) Resolver la siguiente ecuación literal para la variable ; Sol: 3) Resolver Solución:

Más detalles

Guía de uso de DERIVE. 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función

Guía de uso de DERIVE. 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función Sobre la pantalla principal de DERIVE distinguimos: 1) La barra del menú 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función UNIDAD DOCENTE DE MATEMÁTICAS

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Órdenes y funciones básicas (segunda parte) Práctica 2.

Órdenes y funciones básicas (segunda parte) Práctica 2. Práctica 2. Órdenes y funciones básicas (segunda parte) Operaremos con matrices, resolveremos ecuaciones y Objetivos: sistemas y calcularemos límites, derivadas e integrales 2 3 7 Una matriz es una lista

Más detalles

I. Operaciones con matrices usando Mathematica

I. Operaciones con matrices usando Mathematica PRÁCTICA 9: RESOLUCIÓN DE SISTEMAS LINEALES II I. Operaciones con matrices usando Mathematica Introducir matrices en Mathematica: listas y escritura de cuadro. Matrices identidad y diagonales. El programa

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Matrices 3. Matrices. Verónica Briceño V. agosto 2012

Matrices 3. Matrices. Verónica Briceño V. agosto 2012 3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación

Más detalles

Ejercicio 1 Dada la matriz A = 1. Calcula los valores propios. 2. Determina una base de vectores propios. 3. Diagonaliza la matriz.

Ejercicio 1 Dada la matriz A = 1. Calcula los valores propios. 2. Determina una base de vectores propios. 3. Diagonaliza la matriz. Métodos Numéricos: soluciones Tema 7: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Mayo 8 Versión. Ejercicio Dada

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

1. El Teorema de Rolle Generalizado.

1. El Teorema de Rolle Generalizado. Proyecto III: Los Teoremas de Rolle y del valor Medio Objetivos: Profundizar el estudio de algunos teoremas del cálculo diferencial 1 El Teorema de Rolle Generalizado La formulación más común del Teorema

Más detalles

FUNCIONES REALES 1º DE BACHILLERATO CURSO

FUNCIONES REALES 1º DE BACHILLERATO CURSO FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría

Más detalles

Algoritmo de factorización LU

Algoritmo de factorización LU Algoritmo de factorización LU Objetivos. Estudiar el algoritmo de la factorización LU de una matriz cuadrada invertible. Requisitos. Matrices elementales y su relación con operaciones elementales, matriz

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange Arturo Hidalgo LópezL Alfredo López L Benito Carlos Conde LázaroL Marzo, 007 Departamento de Matemática Aplicada y Métodos Informáticos

Más detalles

Operaciones con matrices

Operaciones con matrices Lección B Operaciones con matrices B.1. Introducción y operaciones de matrices numéricas Comenzamos limpiando nuestra área de trabajo clear, clc, echo off, A=[1 2 3;4 0 3;9 3 2] A = 1 2 3 4 0 3 9 3 2 es

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUMÉRICO (58) Tema 5. Diferenciación e Integración Numérica Enero 5. Utilice la fórmula para calcular la derivada de f(x) = cos(x) en utilizar la fórmula. f(x + ) f(x) f'(x) x = y con =.. Estime

Más detalles

PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL PLANO

PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL PLANO PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL PLANO 1. Estudiar si la siguiente ecuación matricial corresponde a una homotecia del plano y, en su caso, calcular el centro y la razón: 1 1 1 ' = 3 y' 3 y. Estudiar

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Matemáticas. Matías Puello Chamorro. Algebra Operativa. 9 de agosto de 2016

Matemáticas. Matías Puello Chamorro. Algebra Operativa.  9 de agosto de 2016 Matemáticas Algebra Operativa Matías Puello Chamorro http://www.unilibrebaq.edu.co 9 de agosto de 2016 Índice 1. Introducción 3 2. Definiciones básicas del Algebra 4 2.1. Definición de igualdad............................

Más detalles

Práctica 6 INTERPOLACIÓN

Práctica 6 INTERPOLACIÓN Práctica 6 INTERPOLACIÓN 6.1. Interpolación Polinómica Datos de interpolación: 8Hx k, f k L< k=0,1,...,n Conocemos los valores de una función, f k = f Hx k L, en n + 1 puntos distintos, x k, de un intervalo

Más detalles

CURSO DE METODOS NUMERICOS INDICE

CURSO DE METODOS NUMERICOS INDICE CURSO DE METODOS NUMERICOS INDICE PRIMERA PART E: INTRODUCCION AL ANALISIS NUMERICO Y A LA COMPUTACION Capítulo I. Introducción al Análisis Numérico. 1. Algoritmos y diagramas de flujo. pg. 1 2. Origen

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo.

2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2. Formas cuadráticas. Expresiones diagonales. Clasificación respecto a su signo. 2.1 Formas cuadráticas. Expresión matricial y analítica. Expresiones diagonales. Definición 2.1 (Expresión matricial) Una

Más detalles

Ejercicios de Matrices y Determinantes.

Ejercicios de Matrices y Determinantes. Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 1/12 Ejercicios de Matrices y Determinantes. 1. Dadas las matrices: Calcular: A + B; A B; A x B; B x A; A t. 2. Demostrar que: A 2 A

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

Francisco Cabo García Bonifacio Llamazares Rodríguez

Francisco Cabo García Bonifacio Llamazares Rodríguez ÁLGEBRA LINEAL CON DERIVE 5 Francisco Cabo García Bonifacio Llamazares Rodríguez María Teresa Peña García Dpto. de Economía Aplicada (Matemáticas) Universidad de Valladolid Página 1 de 34 Ventana de Álgebra

Más detalles

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan). Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico

Ecuaciones en Derivadas Parciales y Análisis Numérico Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 4. Series de Fourier. 4.1 Serie de Fourier Vamos a intentar representar algunas funciones por su serie de Fourier de senos. Tomamos

Más detalles

Métodos Numéricos Hoja 1 de 5

Métodos Numéricos Hoja 1 de 5 Métodos Numéricos Hoja 1 de 5 Programa de: Métodos Numéricos UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Código: 4011 Carrera: Ingeniería Biomédica

Más detalles

Ejercicios de optimización sin restricciones

Ejercicios de optimización sin restricciones Ejercicios de optimización sin restricciones Programación Matemática Licenciatura en Ciencias y Técnicas Estadísticas Curso 5/6 Indica la dirección que el método de Newton (sin modificaciones calcularía

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

MÉTODOS NÚMERICOS SÍLABO

MÉTODOS NÚMERICOS SÍLABO MÉTODOS NÚMERICOS SÍLABO I. DATOS GENERALES CARRERA PROFESIONAL ASIGNATURA CÓDIGO DE ASIGNATURA PRE- REQUISITO N DE HORAS TOTALES N DE HORAS TEORÍA N DE HORAS PRÁCTICA N DE CRÉDITOS CICLO TIPO DE CURSO

Más detalles

Matemáticas II PRUEBA DE ACCESO A LA UNIVERSIDAD 2014 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR.

Matemáticas II PRUEBA DE ACCESO A LA UNIVERSIDAD 2014 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. PRUEBA DE ACCESO A LA UNIVERSIDAD 014 Matemáticas II BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR Examen Criterios de Corrección y Calificación UNIBERTSITATERA SARTZEKO PROBAK

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

Resolución numérica de sistemas de ecuaciones. Introducción

Resolución numérica de sistemas de ecuaciones. Introducción Resolución numérica de sistemas de ecuaciones. Introducción Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) http://www-lacan.upc.es

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos. Opción A. Ejercicio 1. Valor: 3 puntos. Dado el sistema de ecuaciones lineales: { x ay = 2 se pide: ax y = a + 1 a) (2 puntos) Discutir el sistema según los valores del parámetro a. Resolverlo cuando la

Más detalles