ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES. Ayudante: Rodrigo Torres Aguirre Ejercicios:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES. Ayudante: Rodrigo Torres Aguirre Ejercicios:"

Transcripción

1 Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación MÉTODOS ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo Torres Aguirre Ejercicios: ) Considere el siguiente sistema lineal: 3 3 a) Muestre que el algoritmo de Gauss- Jacobi es convergente. b) Muestre que el algoritmo de Gauss-Seidel es convergente. (indicación: Muestre que A es e.d.d. y que ). c) Considere () ( ) como vector de inicio. Calcule el vector () para el método de Gauss-Jacobi. d) Calcule el vector () para el método de Gauss-Seidel. Sol: a) Para que la matriz A sea estrictamente diagonal dominante (e.d.d.) se debe cumplir que: Entonces: 3 ; 3 3 ; 3 Por lo tanto A es e.d.d., entonces existe su inversa ; El sistema lineal se puede escribir de la forma A*b, siendo A (DEF), donde: D: Matriz Diagonal de A. E: Matriz Triangular Inferior de A, con su Diagonal Nula. F: Matriz Triangular Superior de A, con su Diagonal Nula. Entonces: (DEF)b D (EF)b /* () (EF) () () () con (EF) y. Para que el algoritmo de Jacobi sea convergente. (Norma inducida { ó }) Entonces se tiene que:

2 3 /3 3 ; /3 ; ; ; b= / /3 /3 / /3 /3 /3 / Las Normas son: Como, entonces el algoritmo de Jacobi es convergente. b El sistema lineal se puede escribir de la forma A*b, siendo A DEF, donde: Entonces: DEFb DE Fb /* F ; con y. Para que el algoritmo de Seidel sea convergente. Norma inducida { ó } Entonces se tiene que: 3 /3 3 ; /9 /3 ; ; b= /9 /6 / /3 /9 /3 * /9 /6 / /3 /3 /9 /9 /9 /9 Las Normas son: Como, entonces el algoritmo de Seidel es convergente.

3 c Para calcular la segunda iteración vector del método de Gauss-Jacobi con, se debe ocupar el algoritmo: EF b Sin Calcular la inversa de D ó EF Con el cálculo de la inversa de D Aplicaremos los casos. Para el Caso: () = (E+F) () + b, se tiene que: 3 3 (+) = + () (+) = () + Con k=; 3 3 () = () + ; Con () = 3 3 () = () = /3 () = Con k=; 3 3 () = () /3 + ; Con () = 3 3 () /3 = () =/3 () =/9 Vector buscado. Para el Caso: () = (E+F) () +, se tiene que: 3 3 () = 3 + () + 3 /3 /3 () = /3 () + /3 / /

4 Con k=; /3 /3 /3 =/3 ; Con = / /3 /3 /3 =/3 / /3 = Con k=; /3 /3 /3 /3 =/3 ; Con = / /3 /3 /3 /3 =/3 / =/9 Vector buscado. d Para calcular la segunda iteración vector del método de Gauss-Seidel con =, se debe ocupar el algoritmo: DE = Sin Calcular la inversa de DE ó = F Con el cálculo de la inversa de DE Aplicaremos los casos. Para el Caso: DE =, se tiene que: 3 3 = Con k=; 3 3 = ; Con = 3 3 = 3 3 = /3 =/9 /9

5 Con k=; 3 3 = () /3 + ; Con =/9 /9 3 3 /3 = /9+ /9 3 3 /9 = /7 =/8 Vector buscado. 8/8 Para el Caso: = F, se tiene que: 3 3 = 3 () = 3 () + 3 /3 /3 /3 = /9 /9 () +/9 /9 /9 /9 Con k=; /3 /3 /3 () = /9 /9 () +/9 ; Con () = /9 /9 /9 /3 /3 /3 () = /9 /9 +/9 /9 /9 /9 /3 () =/9 /9 Con k=; /3 /3 /3 /3 () = /9 /9 () +/9 ; Con () =/9 /9 /9 /9 /9 /3 /3 /3 /3 () = /9 /9 /9+/9 /9 /9 /9 /9 /7 () =/8 Vector buscado. 8/8

6 ) Obtener las factorizaciones de Doolittle, Crout y Cholesky para la matriz A=, en donde a es una constante,. Sol: La Factorización o descomposición L*U de A, es la multiplicación entre matriz, siendo L la matriz triangula inferior de A, y U la matriz superior de A. En la Factorización de Doolittle la diagonal de L es, es decir: = = (Descomposición de Doolittle) * = = = = * * = = + = = Entonces La descomposición LU según Doolittle es: A= =L*U En el Factorización de Crout la diagonal de U es, es decir: = Descomposición de Crout = = = = = = + = = Entonces La descomposición LU según Crout es: A= =L*U En el Factorización de Cholesky la matriz A debe ser simétrica A= y definida positiva, entonces A tendrá una única factorización de la forma A=L*, donde L es la matriz triangular inferior, es decir: = (Descomposición de Crout) Se debe comprobar que A es positiva definida (los sub-determinantes de al matriz son mayores a ): Det ( )= Det ()=, Que una matriz sea positiva definida (d.p.) o estrictamente diagonal dominante (e.d.d.), significa que existe la inversa de esa matriz. La matriz A no es simétrica pues A, por lo que la factorización de Cholesky no puede realizarse. Para comprobar que el método no se puede aplicar, se tendrá que:

7 += = ; ; ; Se tiene una contradicción, ya que el despeje arroja que,. Queda comprobado que la matriz A, al ser positiva definida y no ser simétrica, no se puede aplicar Cholesky. 3) Dada A,. a) Obtener los valores de a de modo que la matriz A sea definida positiva. b) Obtener las factorizaciones de Doolittle, Crout y Cholesky para la matriz A. Sol: a) Para que A sea positiva definida, los sub determinantes tienen que ser mayores a, entonces: Det (-) La matriz A no es positiva definida. b) Para obtener la factorización de Doolittle, la diagonal de L debe ser, entonces queda: ( ) La factorización Doolittle es: L U A

8 Para obtener la factorización de Crout, la diagonal de U debe ser, entonces queda: = + + = = = = = = =+ =+ = + += =+ (+ ) = La factorización Crout es: + = + L U A Para obtener la factorización de Cholesky, la matriz A debe ser simétrica y definida positiva, pero como el primer sub determinante es menor que cero, no se puede aplicar la descomposición de Cholesky en la matriz A, porque esta no es positiva definida.

9 4) Al aproximar una función,,,, por un polinomio de la forma, se obtiene un sistema de ecuaciones lineales cuya matriz de coeficientes está dada por: a Obtener la factorización de Cholesky de A, y usarla para calcular. b Para resolver el sistema Axb por el método de Cholesky y de Crout, imponiendo las restricciones que considere apropiadas. Sol: a Matriz A es simétrica, ya que A. Para obtener la factorización de Cholesky, se necesita que la matriz A sea simétrica y Positiva definida. Para que la matriz A sea positiva definida, los sub determinantes tienen que ser mayores a, entonces:, 4 3, 3 35, Con la condición de que a tiene que ser mayor a, se tendrá que:

10 L A b Para resolver el sistema Axb por el método de Cholesky, se tiene la descomposición ya realizada, por lo tanto solo se tiene que calcular por partes. Sea Entonces *XZ Z Luego se reemplaza en L*Zb Z Se tiene que calcular por sustitución hacia adelante *X La solución al sistema de ecuaciones es: X

11 Para resolver el sistema Axb por el método de Crout, se tiene la descomposición; 3 Entonces queda Reemplazando en el sistema AXb LU*Xb 3 Z Luego; Z

2. Sistemas de ecuaciones lineales

2. Sistemas de ecuaciones lineales 2 Sistemas de ecuaciones lineales 2 Ejercicios resueltos Ejercicio 2 Estudiar el número de condición de Frobenius de la matriz a b A a + ε b Solución: El determinante de A es A ab + ba + ε b ε Si b 0 y

Más detalles

Primero se triangulariza la matriz: Multiplicando la primera fila por (-1/3) y sumando a la segunda fila: ( ) ( )=( ) ( ) ( )

Primero se triangulariza la matriz: Multiplicando la primera fila por (-1/3) y sumando a la segunda fila: ( ) ( )=( ) ( ) ( ) MAT 115 B EJERCICIOS RESUELTOS Resolver el siguiente sistema de ecuaciones: a) Por el método de eliminación de Gauss La matriz aumentada del sistema es: 3 2 6 1 5 Primero se triangulariza la matriz: Multiplicando

Más detalles

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices:

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: 5 2 1 1 0 3 1 0 3 3 1 6. 3 1 6 5 2 1 2.- Dada la matriz A = 10 7 8 7 5 6, 8 6 10 hallar

Más detalles

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares Clase 1. Resolución de sistemas de ecuaciones lineales: preliminares 2. Método directo y exacto: Gauss 3. Método directo y exacto (II): descomposición LU 4. Métodos indirectos: Jacobi, Gauss-Seidel 2 Sistemas

Más detalles

Resolución de sistemas de ecuaciones lineales

Resolución de sistemas de ecuaciones lineales Tema 2 Resolución de sistemas de ecuaciones lineales 21 Métodos directos de resolución de sistemas de ecuaciones lineales 211 Resolución de sistemas triangulares Definición 211 Una matriz A se dice triangular

Más detalles

UNIVERSIDAD AUTÓNOMA DE ENTRE RÍOS

UNIVERSIDAD AUTÓNOMA DE ENTRE RÍOS UNIVERSIDAD AUTÓNOMA DE ENTRE RÍOS FACULTAD DE CIENCIA Y TECNOLOGÍA CÁLCULO NUMÉRICO T.P.Nº3 EJERCICIO N 1 En los ejercicios 1 a 12 resolver el sistema dado. 1) a) Por el método de Gauss sin pivoteo con

Más detalles

Métodos iterativos de solución de SEL

Métodos iterativos de solución de SEL Métodos iterativos de solución de SEL Método de Gauss-Seidel MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Salvador Botello Rionda CIMAT A.C. Descomposición

Más detalles

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Algebra Lineal Prof: J. Solano 2012-I Introduccion Aqui trabjaremos con operaciones basicas con matrices, tales como solucion

Más detalles

Matrices triangulares y descomposición LU

Matrices triangulares y descomposición LU Matrices triangulares y descomposición LU Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el examen será suficiente

Más detalles

Cálculo Numérico - CO3211. Ejercicios. d ) Sabiendo que la inversa de la matriz A = es A c d

Cálculo Numérico - CO3211. Ejercicios. d ) Sabiendo que la inversa de la matriz A = es A c d Cálculo Numérico - CO32 Ejercicios Decida cuáles de las siguientes proposiciones son verdaderas y cuáles son falsas Si una proposición es verdadera, demuéstrela, y si es falsa dé un contraejemplo: a Sea

Más detalles

Práctica: Métodos de resolución de ecuaciones lineales.

Práctica: Métodos de resolución de ecuaciones lineales. Práctica: Métodos de resolución de ecuaciones lineales. Objetivo: Aplicar dos técnicas de resolución de sistemas de ecuaciones lineales: Un método finito basado en la descomposición LU de la matriz de

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 29 CONTENIDO

Más detalles

I. Métodos directos para resolución de SEL. Se dice que una matriz A admite una factorización LU indirecta A = LU

I. Métodos directos para resolución de SEL. Se dice que una matriz A admite una factorización LU indirecta A = LU I. Métodos directos para resolución de SEL 1. Factorización LU Se dice que una matriz A admite una factorización LU si dicha matriz puede escribirse como el producto de una matriz triangular inferior,

Más detalles

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. - FACULTAD DE INGENIERIA MECANICA // EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) DURACION: MINUTOS SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO ESCRIBA CLARAMENTE

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE ECUACIONES NO LINEALES Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

Cuadratura de Newton-Cotes

Cuadratura de Newton-Cotes Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION

Más detalles

Tema 3 Resolución de Sistemas de Ecuaciones Lineales

Tema 3 Resolución de Sistemas de Ecuaciones Lineales Tema Resolución de Sistemas de Ecuaciones Lineales Índice Introducción 2 Método de Gauss 2 Resolución de sistemas triangulares 22 Triangulación por el método de Gauss 2 Variante Gauss-Jordan 24 Comentarios

Más detalles

Para resolver un sistema lineal estan permitidas tres operaciones en las ecuaciones.

Para resolver un sistema lineal estan permitidas tres operaciones en las ecuaciones. Para resolver un sistema lineal estan permitidas tres operaciones en las ecuaciones. 1. La ecuación E i puede multiplicarse por cualquier costante diferente de cero y se puede usar la ecuación resultante

Más detalles

Matrices y sistemas de ecuaciones lineales

Matrices y sistemas de ecuaciones lineales Matrices y sistemas de ecuaciones lineales Problemas para examen Antes de resolver un problema en el caso general, se recomienda considerar casos particulares (por ejemplo, n = 4 y n = 50). En el caso

Más detalles

Resolución numérica de sistemas de ecuaciones. Introducción

Resolución numérica de sistemas de ecuaciones. Introducción Resolución numérica de sistemas de ecuaciones. Introducción Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) http://www-lacan.upc.es

Más detalles

Solución de sistemas de ecuaciones lineales: Descomposición LU

Solución de sistemas de ecuaciones lineales: Descomposición LU Solución de sistemas de ecuaciones lineales: Descomposición LU Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán Facultad de Ingeniería, UNAM * 2006

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Métodos para matrices especiales. Descomposición de Cholesky

Métodos para matrices especiales. Descomposición de Cholesky Métodos para matrices especiales. Descomposición de Cholesky MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT A.C. e-mail: joaquin@cimat.mx

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

CURSO DE METODOS NUMERICOS INDICE

CURSO DE METODOS NUMERICOS INDICE CURSO DE METODOS NUMERICOS INDICE PRIMERA PART E: INTRODUCCION AL ANALISIS NUMERICO Y A LA COMPUTACION Capítulo I. Introducción al Análisis Numérico. 1. Algoritmos y diagramas de flujo. pg. 1 2. Origen

Más detalles

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011 Factorización LU Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 26.1. Introducción............................................... 1 26.2. Factorización LU............................................

Más detalles

Resolución numérica de sistemas de ecuaciones. Introducción

Resolución numérica de sistemas de ecuaciones. Introducción Motivación La cercha de la figura se carga con una fuerza uniforme repartida sobre el cordón superior Resolución numérica de sistemas de ecuaciones. Introducción El planteamiento del problema conduce a

Más detalles

Cálculo de autovalores

Cálculo de autovalores Cálculo de autovalores Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia Curso 2011-2012 (UPV) Cálculo de autovalores Curso 2011-2012 1 / 28 Índice 1 Preliminares

Más detalles

Gustavo Rodríguez Gómez. Agosto Dicembre 2011

Gustavo Rodríguez Gómez. Agosto Dicembre 2011 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 46 Capítulo II 2 / 46 1 Introducción Métodos Directos Sistemas Triangulares Sustitución Hacia Atrás Invertibilidad de una Matriz

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Solución de sistemas lineales

Solución de sistemas lineales Solución de sistemas lineales Felipe Osorio http://www.ies.ucv.cl/fosorio Instituto de Estadística Pontificia Universidad Católica de Valparaíso Marzo 31, 2015 1 / 12 Solución de sistemas lineales El problema

Más detalles

Métodos Numéricos para Sistemas de Ecuaciones Lineales

Métodos Numéricos para Sistemas de Ecuaciones Lineales Universidad de Chile Departamento de Ingeniería Matemática Cálculo Numérico MA-33A Métodos Numéricos para Sistemas de Ecuaciones Lineales Gonzalo Hernández Oliva GHO SEL - MA33A 1 MN para SEL: Temario

Más detalles

Métodos Numéricos: Ejercicios resueltos

Métodos Numéricos: Ejercicios resueltos Métodos Numéricos: Ejercicios resueltos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica

Más detalles

a a a Sesión 13 Unidad VI Matrices y determinantes. A. Conceptos sobre las matrices. 1.- La matriz de orden 2 es aquella que:

a a a Sesión 13 Unidad VI Matrices y determinantes. A. Conceptos sobre las matrices. 1.- La matriz de orden 2 es aquella que: Sesión Unidad VI Matrices y determinantes. A. Conceptos sobre las matrices..- La matriz de orden es aquella que: Tiene variables B) Tiene elementos Tiene columnas y n renglones Tiene renglones y columnas

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 5

Análisis Numérico para Ingeniería. Clase Nro. 5 Análisis Numérico para Ingeniería Clase Nro. 5 Sistemas de Ecuaciones Lineales Temas a tratar: Tipos de Matrices Método de Triangulación de Gauss Método de Diagonalización de Gauss-Jordan Tácticas de Pivoteo

Más detalles

Instituto Tecnológico Autónomo de México. 1. At =..

Instituto Tecnológico Autónomo de México. 1. At =.. Instituto Tecnológico Autónomo de México TRANSPUESTA DE UNA MATRIZ DEFINICION : Transpuesta Sea A = (a ij ) una matriz de mxn Entonces la transpuesta de A, que se escribe A t, es la matriz de nxm obtenida

Más detalles

Curso cero Matemáticas en informática : Sistemas de ecuaciones lineales

Curso cero Matemáticas en informática : Sistemas de ecuaciones lineales lineales -Jordan Curso cero Matemáticas en informática : de ecuaciones lineales Septiembre 2005 lineales -Jordan lineales -Jordan Se llama ecuación lineal con n incógnitas a a x + a 2 x 2 + a 3 x 3 + +

Más detalles

MÓDULO SE: SISTEMAS DE ECUACIONES

MÓDULO SE: SISTEMAS DE ECUACIONES LABORATORIO DE COMPUTACIÓN CIENTÍFICA (Prácticas) Curso 2009-10 1 MÓDULO SE: SISTEMAS DE ECUACIONES Alumno: Lee detenidamente los enunciados. Copia las funciones y scripts que crees a lo largo de la practica,

Más detalles

Factorización de rango completo y aplicaciones

Factorización de rango completo y aplicaciones XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 21-25 septiembre 2009 (pp. 1 8) Factorización de rango completo y aplicaciones R. Cantó 1, B. Ricarte

Más detalles

Tema 2: Determinantes

Tema 2: Determinantes Tema : Determinantes.- a) Encontrar los valores de λ para los que la matriz λ A = 0 λ λ 0 es invertible b) Para λ = hallar la inversa de A comprobar el resultado c) Resolver el sistema x 0 A = 0 z 0 para

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

PRÁCTICA N 5 SISTEMAS DE ECUACIONES LINEALES

PRÁCTICA N 5 SISTEMAS DE ECUACIONES LINEALES PRÁCTICA N 5 SISTEMAS DE ECUACIONES LINEALES 1.- Usa el método de Eliminación de Gauss para resolver en EXCEL los siguientes sistemas lineales, si es posible. Realizando, si es necesario, intercambio de

Más detalles

Parte 3. Vectores y valores propios

Parte 3. Vectores y valores propios Parte 3. Vectores y valores propios Gustavo Montero Escuela Universitaria Politécnica Universidad de Las Palmas de Gran Canaria Curso 2006-2007 Valores y vectores propios Valor propio Se dice que el número

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

Clase No. 13: Factorización QR MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 16

Clase No. 13: Factorización QR MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 16 Clase No 13: Factorización QR MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 03102011 1 / 16 Factorización QR Sea A R m n con m n La factorización QR de A es A = QR = [Q 1 Q 2 ] R1 = Q 0 1 R

Más detalles

Al considerar varios polígonos regulares inscritos resulta: perímetro del cuadrado < π. perímetro del 96 gono < π

Al considerar varios polígonos regulares inscritos resulta: perímetro del cuadrado < π. perímetro del 96 gono < π AMPLIACIÓN DE MATEMÁTICAS INTRODUCCIÓN Método Constructivo: Conjunto de instrucciones que permiten calcular la solución de un problema, bien en un número finito de pasos, bien en un proceso de paso al

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

MÉTODOS NÚMERICOS SÍLABO

MÉTODOS NÚMERICOS SÍLABO MÉTODOS NÚMERICOS SÍLABO I. DATOS GENERALES CARRERA PROFESIONAL ASIGNATURA CÓDIGO DE ASIGNATURA PRE- REQUISITO N DE HORAS TOTALES N DE HORAS TEORÍA N DE HORAS PRÁCTICA N DE CRÉDITOS CICLO TIPO DE CURSO

Más detalles

Tema 3 Resolución de Sistemas deecuaciones Lineales

Tema 3 Resolución de Sistemas deecuaciones Lineales Tema 3 Resolución de Sistemas de Ecuaciones Lineales E.T.S.I. Informática Indice 1 Introducción 2 Resolución de Sistemas Triangulares Triangulación por el Método de Gauss Variante de Gauss-Jordan Comentarios

Más detalles

Factorización de matrices

Factorización de matrices CAPÍTULO Factorización de matrices En este capítulo se estudian algunas de las técnicas más utilizadas para factorizar matrices, es decir, técnicas que permiten escribir una matriz como producto de dos

Más detalles

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración CAPÍTULO 5 EJERCICIOS RESUELTOS: MÉTODOS ITERATIVOS PARA ECUACIONES LINEALES Ejercicios resueltos 1 1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n cuya inversa existe

Más detalles

Resolución numérica de sistemas de ecuaciones lineales

Resolución numérica de sistemas de ecuaciones lineales Resolución numérica de sistemas de ecuaciones lineales María González Taboada Departamento de Matemáticas Febrero de 2008 Esquema: 1 Descripción del problema 2 Algunas definiciones y propiedades 3 Condicionamiento

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Matrices y Sistemas de Ecuaciones lineales

Matrices y Sistemas de Ecuaciones lineales Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,

Más detalles

ESCUELA: Ingeniería Eléctrica. TEORÍA PRÁCTICA TRAB. SUPERV. LABORATORIO SEMINARIO TOTALES DE ESTUDIO 3 1 8

ESCUELA: Ingeniería Eléctrica. TEORÍA PRÁCTICA TRAB. SUPERV. LABORATORIO SEMINARIO TOTALES DE ESTUDIO 3 1 8 PAG.: 1 PROPÓSITO El desarrollo y abaratamiento habido en los últimos años en los sistemas de computación de tipo personal y comercial producen en la actualidad que cualquier empresa dedicada al área de

Más detalles

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante

Más detalles

Métodos directos de resolución de sistemas lineales

Métodos directos de resolución de sistemas lineales Tema 4 Métodos directos de resolución de sistemas lineales 1 Introducción En este tema se estudian algunos métodos de resolución de sistemas de ecuaciones lineales con el mismo número de ecuaciones que

Más detalles

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5 Matemáticas II Prácticas: Matrices y Determinantes. Sean las matrices cuadradas siguientes: 4 5 6 B = 9 8 7 6 5 4 C = 5 7 9 0 7 8 9 Se pide calcular: a A B + C. b A AB + AC. c A B AB + ACB.. Sean las matrices:

Más detalles

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan). Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: + 1

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: + 1 MAT 5 B Sistemas de ecuaciones no lineales EJERCICIOS RESUELTOS. Resuelva el siguiente sistema de ecuaciones no lineales, utilizando el método de punto fijo multivariable: x cos x x SOLUCIÓN x 8 x +. +

Más detalles

NOTAS DE ESTUDIO DE ÁLGEBRA LINEAL M.C. MARCOS CAMPOS NAVA TEC DE ATITALAQUIA

NOTAS DE ESTUDIO DE ÁLGEBRA LINEAL M.C. MARCOS CAMPOS NAVA TEC DE ATITALAQUIA Hasta ahora se han discutido algunas de las propiedades de objetos matemáticos llamados matrices. Un caso de especial interés son las matrices cuadradas, por ejemplo: Se sabe que esta matriz es invertible

Más detalles

Tareas de matrices especiales

Tareas de matrices especiales Tareas de matrices especiales Objetivos. Estudiar una clase especial de matrices. Para matrices de esta clase realizar un algoritmo rápido de multiplicación por vectores. Aplicar este algoritmo para resolver

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS. Denominación:

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS. Denominación: 2005-2006 Hoja 1 de CENTRO: TITULACIÓN: ASIGNATURA: ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS LICENCIATURA MÁQUINAS NAVALES Código: 631311102 Curso: 1º Denominación: Grupo: 01 MÉTODOS NUMÉRICOS CRÉDITOS:

Más detalles

Unidad 5 Problemas de álgebra lineal numérica.

Unidad 5 Problemas de álgebra lineal numérica. Unidad 5 Problemas de álgebra lineal numérica. Eliminación gaussiana. Factorización LU. Sea Ax = b un sistema de n ecuaciones lineales con n incógnitas, donde A es una matriz cuadrada de orden n no singular

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,,

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,, Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

MAT web:

MAT web: Clase No. 7: MAT 251 Matrices definidas positivas Matrices simétricas Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

TEMA 4: Sistemas de ecuaciones lineales II

TEMA 4: Sistemas de ecuaciones lineales II TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos

Más detalles

Parte 3. Vectores y valores propios

Parte 3. Vectores y valores propios Parte 3. Vectores y valores propios Gustavo Montero Escuela Universitaria Politécnica Universidad de Las Palmas de Gran Canaria Curso 2004-2005 1 Introducción a los valores y vectores propios 2 3 4 5 Valores

Más detalles

Carrera: Ingeniería Civil CIE 0529

Carrera: Ingeniería Civil CIE 0529 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Métodos Numéricos Ingeniería Civil CIE 0529 2 2 6 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 6 de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clase ) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela . Producto de matrices. Aplicaciones

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

INSTITUTO TECNOLOGICO SUPERIOR DE TEPOSCOLULA CARRERA: INGIENERIA SISTEMAS COMPUTACIONALES CATEDRATICO: ING. MARCO ANTONIO RUIZ VICENTE

INSTITUTO TECNOLOGICO SUPERIOR DE TEPOSCOLULA CARRERA: INGIENERIA SISTEMAS COMPUTACIONALES CATEDRATICO: ING. MARCO ANTONIO RUIZ VICENTE INSTITUTO TECNOLOGICO SUPERIOR DE TEPOSCOLULA CARRERA: INGIENERIA SISTEMAS COMPUTACIONALES 2 SEMESTRE MATERIA: ALGEBRA LINEAL CATEDRATICO: ING. MARCO ANTONIO RUIZ VICENTE NOMBRE DEL ALUMNO: FERNANDO LUZ

Más detalles

Contenido. Agradecimientos... Prólogo...

Contenido. Agradecimientos... Prólogo... Contenido Agradecimientos... Prólogo...... XIII XV PARTE I MATRICES, SISTEMAS Y DETERMINANTES CAPÍTULO 1 Matrices y sistemas lineales... 3 1 1.1 Matrices... 3 1 1.1 1.1.1 Definicionesyejemplos... 3 1 1.1

Más detalles

Separar en intervalos de la forma [m, m + 1], con m Z, las raíces de la ecuación: F (x) = x 3 + 3x 2 1 = 0

Separar en intervalos de la forma [m, m + 1], con m Z, las raíces de la ecuación: F (x) = x 3 + 3x 2 1 = 0 METODOS NUMERICOS. E.T.S.I. Minas. Boletín de problemas propuestos. 1. Localizar las raíces de la ecuación F (x) = : (a) F (x) = x tg(x). (b) F (x) = sen(x) x +. (c) F (x) = x + e x. (d) F (x) =.5 x +.

Más detalles

Rancagua, Agosto 2009

Rancagua, Agosto 2009 cvalle@inf.utfsm.cl Departamento de Informática - Universidad Técnica Federico Santa María Rancagua, Agosto 2009 1 / 28 Temario 1 2 3 4 2 / 28 Temario 1 2 3 4 3 / 28 Los nombre y arreglos son equivalentes.

Más detalles

2. Obtener, por ensayo y error, una aproximación del entero más grande. Sugerencia: leer n y escribir n y n+1. (Puede ser muy largo el ensayo).

2. Obtener, por ensayo y error, una aproximación del entero más grande. Sugerencia: leer n y escribir n y n+1. (Puede ser muy largo el ensayo). En los ejercicios, cuando se hable de un entero (un número entero), se trata de un entero del lenguaje C. Por ejemplo, 10 20 es un número entero en el sentido matemático, pero muy posiblemente este entero

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES 1.- Usa el método de Eliminación de Gauss para resolver en EXCEL los siguientes sistemas lineales, si es posible. Realizando, si es necesario, intercambio de filas. 2.-

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones

Más detalles

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?

Más detalles

Métodos iterativos para sistemas de ecuaciones lineales

Métodos iterativos para sistemas de ecuaciones lineales Métodos iterativos para sistemas de ecuaciones lineales Natalia Boal - Manuel Palacios - Sergio Serrano Departamento de Matemática Aplicada Obetivos Trabaar con los métodos iterativos habituales (Jacobi,

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas ITESM Métodos Iterativos para Resolver Sistemas Lineales Álgebra Lineal - p. 1/30 En esta lectura veremos

Más detalles

Ejercicios finales. Álgebra. 1. Escribir la matriz A de dimensiones 5 x 4 y elementos: Sol:

Ejercicios finales. Álgebra. 1. Escribir la matriz A de dimensiones 5 x 4 y elementos: Sol: Álgebra Ejercicios finales 1. Escribir la matriz A de dimensiones 5 x 4 y elementos:. Una fábrica de embutidos comercializa tres tipos de productos: salchichón, chorizo y morcilla. Para su fabricación

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ). 1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

Matrices y sistemas lineales

Matrices y sistemas lineales Matrices y sistemas lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices elementales En esta sección vamos a crear funciones en MATLAB que nos permitan construir matrices elementales.

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2015 2016) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0)

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0) 54 EJERCICIOS de DETERMINANTES º BACH. Cálculo de determinantes por Sarrus 1. Calcular los siguientes determinantes de orden : a) 7 1 b) 4 11 4 6 0 c) 0 0 3 1 d) 3 7 3 7 e) 7 1 4 1 f) 33 55 3 5 g) 13 6

Más detalles

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES En esta sección se estudiaran los sistemas de ecuaciones diferenciales lineales de primer orden, así como los de orden superior, con dos o más funciones desconocidas,

Más detalles

RESOLUCIÓN DE SISTEMAS LINEALES

RESOLUCIÓN DE SISTEMAS LINEALES Contenido 1 Métodos de Solución Contenido Métodos de Solución 1 Métodos de Solución Desarrollamos el algoritmo de sustitución regresiva, con el que podremos resolver un sistema de ecuaciones lineales cuya

Más detalles

Sistemas lineales de ecuaciones

Sistemas lineales de ecuaciones Sistemas lineales de ecuaciones Conceptos previos a) Sistemas de ecuaciones lineales. b) Solución de un sistema. c) Sistemas triangulares. Resolución de sistemas Métodos directos a) Método de eliminación

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

1.2 Valores y vectores propios. Método de las potencias y Rayleigh.

1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 20 Prelininares. 1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 1.2.1 Cálculo del Polinomio Caracterstico: ALGORITMO DE SOURIAU. ENTRADA: la matriz A 1 = A, p 1 = traza(a 1 ), n =

Más detalles

Lo rojo sería la diagonal principal.

Lo rojo sería la diagonal principal. MATRICES. Son listas o tablas de elementos y que tienen m filas y n columnas. La dimensión de la matriz es el número se filas y de columnas y se escribe así: mxn (siendo m el nº de filas y n el de columnas).

Más detalles

Ejercicio 1 Dada la matriz A = 1. Calcula los valores propios. 2. Determina una base de vectores propios. 3. Diagonaliza la matriz.

Ejercicio 1 Dada la matriz A = 1. Calcula los valores propios. 2. Determina una base de vectores propios. 3. Diagonaliza la matriz. Métodos Numéricos: soluciones Tema 7: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Mayo 8 Versión. Ejercicio Dada

Más detalles