Ecuaciones diferenciales elementales de 1 o orden

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ecuaciones diferenciales elementales de 1 o orden"

Transcripción

1 Grado en Matemáticas Departamento de Análisis Matemático Universidad de Sevilla

2 Qué es la modelización? v (cm/s) Cómo explicar y predecir los fenómenos naturales? -1 0 π/2 π 3π/2 2π φ Movimiento de gotas de ĺıquido sobre una placa en movimiento

3 No debemos olvidar que... Riqueza de la Matemática = Problemas puros aplicados

4 No debemos olvidar que... Riqueza de la Matemática = Problemas puros aplicados

5 No debemos olvidar que... Riqueza de la Matemática = Problemas puros aplicados Las Matemáticas, y en particular el análisis, son el verdadero lenguaje de la naturaleza

6 EDOs con Maxima La ecuación d y(x) dx + a(x)y(x) = b(x), a(x), b(x) C I. se denomina EDO lineal de primer orden. Si b(x) 0 se denomina ecuación homogénea y si b(x) 0, ecuación no homogénea. Su solución general se expresa por y(x) = Ce a(x) dx + e a(x) dx a(x) dx e b(x) dx Para probarlo basta sustituir la función y(x) anterior en la EDO y usar el Teorema fundamental del Cálculo. El PVI correspondiente a la ecuación (4) es el problema d y(x) dx + a(x)y(x) = b(x), a(x), b(x) C I, y(x 0 ) = y 0.

7 EDOs con Maxima Ejemplo: Encontrar la solución de la ecuación lineal d y d x + x y = 2x. Tenemos y = Ce x2 2 + e x2 2 e x2 2 2x dx = Ce x e x2 2 e x 2 2 = Ce x Resolver la EDO anterior con la condición inicial y(0) = 1. Como la solución general es y(x) = Ce x , tenemos y(0) = 1 = C + 2, de donde C = 1 y y(x) = 2 e x2 2.

8 EDOs con Maxima Para resolver EDOS anaĺıticamente con Maxima usamos el comando ode2 cuya sintaxis es ode2(eqn, variable dependiente, variable independiente) y que resuelve EDOs de primer y segundo orden. Por ejemplo, resolvamos la EDO z = z + x: ode2( diff(z,x)=x-z,z,x)$ Para resolver el PVI z = z + x, y(0) = 1 hay que usar el comando ic1 cuya sintaxis es ic1(solución, valor de x, valor de y) donde solución es la solución general que da el comando ode2 y el valor de x y el valor de y, son los valores que toma la y cuando x = x 0, i.e., los valores iniciales. Así tenemos expand(ic1(%,x=1,z=2));

9 EDOs con Maxima Supongamos que la función f (x, y) en la EDO y = f (x, y) admite la factorización f (x, y) = a(x)b(y). Cuando esto ocurre se dice que la EDO es separable. En general tenemos dy dx = a(x)b(y) dy = a(x)dx b(y) Luego la solución de la ecuación separable es G[y(x)] = A(x) + C, dy b(y) dy = a(x)dx. donde G(y) es una primitiva de 1/b(y) y A(x) es una primitiva de a(x).

10 EDOs con Maxima Ejemplo: Resolver la ecuación y = x/y. Usando lo anterior tenemos ydy = xdx y 2 = x 2 + C. La expresión anterior define una familia de curvas en R 2 que son solución de la ecuación diferencial propuesta. En general la solución es y(x) = ± C + x 2, donde el signo + o dependerá de las condiciones iniciales. Por ejemplo, si nos interesa el PVI con la condición y(0) = 3, entonces C = 9 y la solución será y(x) = 9 + x 2.

11 EDOs con Maxima Esta orden ode2 no siempre funciona como es el caso de la EDO z = x senz, en cuyo caso la salida es false En ese caso hay que usar algún método numérico. Por ejemplo Maxima tiene dos comandos: el comando runge1 y el rk. Para usar el primero hay que cargar el paquete numérico diffeq. La sintaxis de runge1 es la siguiente runge1(f, x0, x1, h, y0) donde f es la función f (x, y) de la ecuación y = f (x, y), x0 y x1 los valores inicial, x 0, y final, x 1, de la variable independiente, respectivamente, h es la la longitud (o paso) de los subintervalos e y0 es el valor inicial y 0 que toma y en x 0. El resultado es una lista que a su vez contiene tres listas: la primera contiene las abscisas x, la segunda las ordenadas y y tercera las derivadas y.

12 EDOs con Maxima kill(all); load(diffeq); A continuación definimos la función f, y el paso h, para, a continuación, invocar la orden runge1 f(x,y):=1+y; h:1/20; solnum:runge1(f,0,1,h,1); wxplot2d([discrete,solnum[1],solnum[2]])$ Como esta ecuación es exactamente resoluble podemos comparar sus gráficas. Usamos ode2 e ice1 para resolver el PVI: sol: expand(ode2( diff(w,x)=1+w,w,x)); expand(ic1(sol,x=0,w=1)); define(solw(x),second(%)); Y ahora dibujamos ambas gráficas plot2d([[discrete,solnum[1],solnum[2]],solw(x)],[x,0,1])$

13 EDOs con Maxima Para usar el comando rk cargamos el paquete dynamics. Su sintaxis para el PVI y = f (x, y), y(x 0 ) = y 0 es rk(f,y,y0,[x,x0,x1,h]) donde f es la función f (x, y), x0 y x1 los valores inicial, x 0, y final, x 1, de la variable independiente, respectivamente, h es la la longitud de los subintervalos e y0 es el valor inicial y(x 0 ) = y 0. El resultado es una lista con los pares [x, y] de las abscisas x y las ordenadas y. Ejemplo: Resolver la EDO z = x senz (intentar con ode2) load(dynamics)$ h:1/20;kill(x,y); numsolrk:rk(x-sin(y),y,1,[x,0,1,h]); wxplot2d([discrete,numsolrk],[color,blue])$

14 Aplicaciones

15 Aplicaciones geométricas Encontrar una familia de curvas y(x) tal que el segmento de la tangente t a la curva y en un punto cualquiera P(x, y) dibujado entre P y el eje 0y quede bisecado por el eje Ox. y y(x) t P(x,y) 0 (x/2,0) x Q

16 Aplicaciones geométricas Encontrar una familia de curvas y(x) tal que el segmento de la tangente t a la curva y en un punto cualquiera P(x, y) dibujado entre P y el eje 0y quede bisecado por el eje Ox. y = 2y/x y y(x) t P(x,y) 0 (x/2,0) x Q

17 Aplicaciones geométricas Ejemplo Encontrar una familia de curvas y(x) tal que la pendiente de la tangente t a la curva y en cada punto sea la suma de las coordenadas del punto. Encuentra además la curva que pasa por el origen. y = y + x

18 Aplicaciones EDOs de 1 o orden Se sabe que la intensidad i de circuito está gobernada por la EDO L di + Ri = U, dt donde L es la impedancia, R la resistencia y U el voltaje. Supongamos que el voltaje U es constante y que i(0) = i 0. Encontrar la dependencia de i respecto al tiempo t. R U L Dibujar si L = 1H (henrio), R = 1Ω (ohmio), V = 3V (voltios).

19 Aplicaciones EDOs de 1 o orden Se sabe que la intensidad i de circuito está gobernada por la EDO L di + Ri = U, dt donde L es la impedancia, R la resistencia y U el voltaje. Supongamos que el voltaje U es constante y que i(0) = i 0. Encontrar la dependencia de i respecto al tiempo t. R U L Dibujar si L = 1H (henrio), R = 1Ω (ohmio), V = 3V (voltios). Realizar el mismo estudio si U = U 0 sen(ωt). Dibujar si L = 1H (henrio), R = 1Ω (ohmio), V = 3V (voltios) y ω = 50Hz (hercios)

20 Aplicaciones EDOs de 1 o orden Ejemplo La ecuación barométrica de Pascal es la EDO p (h) = λp(h), λ > 0, donde p es la presión en función de la altura h. Si h = 0, la presión es la presión al nivel del mar (usualmente 1 atm o 760 mm de mercurio). Cómo varía la presión con la altura? La solución: p(h) = p 0 e h/h 0 Usemos el valor de h 0 = 8000m.

21 Aplicaciones EDOs de 1 o orden Pico San Cristóbal Torre Cerredo Grazalema (Cádiz) Picos de Europa (Cantabria) 1654m, 0.81atm 2648m, 0.71atm

22 Aplicaciones EDOs de 1o orden Mulhace n Sierra Nevada (Granada) 3478m, 0.64atm Departamento de Ana lisis Matema tico Universidad de Sevilla Everest Himalaya (Nepal / China) 8848m, 0.32atm Ecuaciones diferenciales elementales de 1o orden

23 Aplicaciones EDOs de 1 o orden. EDOs separables. Ejemplo Sea una esfera hueca homogénea de radio interior r 1 y radio exterior r 2. Supongamos que la temperatura de la cara interior es T 1 y la exterior es T 2. Encontrar la temperatura en la esfera en función del radio. Sea Q es la cantidad de calor que pasa entre la esfera interior (en blanco) y la exterior (sombreada). Asumiendo que Q es constante tenemos T r r T2 1 Q = κr 2 dt dr, κ > 0 dr r 2 = κ Q dt 1 r + C = κ Q T (r),

24 Aplicaciones EDOs de 1 o orden dr r 2 = κ Q dt 1 r + C = κ Q T (r), pero T (r 1 ) = T 1, luego C = κ Q T 1 r 1, de donde deducimos 1 r 1 r 1 = κ Q (T (r) T 1). Ahora bien, como ha de ser T (r 2 ) = T 2, podemos eliminar Q en la ecuación (el cual en general no es conocido) para obtener Q = κ(t 2 T 1 )r 1 r 2 r 2 r 1 ( 1 T (r) = T 1 + (T 2 T 1 )r 1 r 2 r 2 r 1 r 1 r 1 ).

25 Aplicaciones EDOs de 1 o orden Ejemplo Supongamos que tenemos una reacción química A + B C y que en t = 0 la concentración de A es a y la de B es b. Se sabe que la velocidad la velocidad de formación de C es proporcional a la concentración de A y B. Lo anterior nos conduce a la EDO x = κ(a x)(b x), x(0) = 0. Asumamos que a b. Cómo varía x con el tiempo?

26 Aplicaciones EDOs de 1 o orden dx a x = κdt log (a x)(b x) b x = (a b)κt + C, como x(0) = 0, C = a/b, luego x(t) = ab 1 e(a b)κt b a e (a b)κt. Si b > a entonces lim t x(t) = a y si b < a, lim t x(t) = b. Lo anterior es evidente pues la reacción acabará cuando se acabe uno de los dos reactivos A o B.

27 La velocidad de escape v E de la Tierra Ejemplo Queremos encontrar v E al espacio exterior de un cuerpo que se encuentre en la superficie de la Tierra. Usando la ley de Newton dv dt = GM T r 2 = gr2 r 2 G es la constante universal gravitatoria, M T es la masa de la tierra y g la aceleración de la gravedad. Como r varía con el tiempo la ecuación anterior es, en general, complicada de resolver. Usando la regla de la cadena dv/dt = (dr/dt)(dv/dr) = v dv/dr, luego v dv dr = gr2 r 2.

28 Aplicaciones EDOs de 1 o orden La solución de esta EDO usando el método de separación de variables es v 2 = 2gR 2 /R + C. Llamando v 0 la velocidad inicial del cuerpo sobre la superficie terrestre obtenemos v 2 (r) = 2gR r + v 2 0 2gR. Si queremos enviar una nave y que ésta escape de la gravedad terrestre necesitamos que r > R, v 2 0. De hecho para que escape definitivamente de la tierra es suficiente que v 0 cuando r, i.e., lim v(r) 0 v 2 r 0 2gR 0 Sustituyendo los datos R = metros y g = 9.8m/s 2 obtenemos v 0 = 11200m/s = 11.2Km/s.

29 Aplicaciones EDOs de 1 o orden Ejemplo Resolvamos la ecuación dv g κv r = dt t t 0 = La velocidad v(t) de caída de un cuerpo en un medio viscoso se puede modelizar mediante la ecuación v = g κv r, v(0) = v 0, donde g y κ son ciertas constantes (la gravedad y la viscosidad). v Escojamos r = 2, por ejemplo. Entonces v 0 dv g κv r = 1 v g v 0 dv 1 ω 2 v r, ω2 = κ g.

30 Aplicaciones EDOs de 1 o orden v v 0 dv 1 ω 2 v r = 1 2ω Despejando v tenemos la solución v(t) = 1 ω ( 1+ωv0 (1 + ωv) (1 ωv 0 ) log (1 ωv) (1 + ωv 0 ) = g(t t 0). ) 1 ωv 0 e 2gω(t t0) 1 ( ), ω = 1+ωv0 1 ωv 0 e 2gω(t t0) + 1 κ g > 0. Como ω > 0, entonces si t el cuerpo sólo podrá alcanzar la velocidad ĺımite v max = 1/ω independiente del valor v 0 inicial. Ejercicio Resolver el caso r = 3.

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Un segundo ohmímetro mide la misma resistencia y obtiene los siguientes resultados: R B1 = ( 98 ± 7 ) Ω R B2 = ( 100 ± 7 ) Ω R B3 = ( 103 ± 7 ) Ω

Un segundo ohmímetro mide la misma resistencia y obtiene los siguientes resultados: R B1 = ( 98 ± 7 ) Ω R B2 = ( 100 ± 7 ) Ω R B3 = ( 103 ± 7 ) Ω Relación de problemas: MEDIDAS Y ERRORES. 1) En la medida de 1 m se ha cometido un error de 1 mm, y en 300 Km, 300 m. Qué error relativo es mayor?. ) Como medida de un radio de 7 dm hemos obtenido 70.7

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada Ya estudiamos una interpretación geométrica de la razón de cambio instantánea. Ahora vamos a profundizar un poco más en este concepto recordando que la derivada

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales de primer orden Práctica Ecuaciones diferenciales de primer orden.. Introducción Para resolver una ecuación diferencial en la forma F (x, y, y ) = 0, o bien y = f(x, y) (.) el Mathematica dispone del comando DSolve, cuya

Más detalles

Terceras Jornadas Investigaciones en la Facultad de Ciencias Económicas y Estadística, octubre de 1998

Terceras Jornadas Investigaciones en la Facultad de Ciencias Económicas y Estadística, octubre de 1998 ECUACIONES DIFERENCIALES DE 1ER. ORDEN. APLICACIÓN DE DERIVE A LA RESOLUCIÓN DE UN PROBLEMA MICROECONÓMICO QUE RELACIONA EL VOLUMEN DE VENTAS DE UN BIEN Y EL PRECIO. Furno, Graciela Koegel, Liliana Sagristá,

Más detalles

Proyecto Ecuaciones Diferenciales

Proyecto Ecuaciones Diferenciales Proyecto Ecuaciones Diferenciales Ing. Roigo Alejano Gutiérrez Arenas Semestre 2010-II Instrucciones El proyecto consiste de dos problemas con varios incisos. Se debe de entregar un reporte detallado de

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa Derivada de una función en un punto Las tres expresiones son equivalentes. En definitiva, la derivada de una función en un punto se obtiene como el límite del cociente incremental: el incremento del valor

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente

Más detalles

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Diferenciación numérica: Método de Euler explícito

Diferenciación numérica: Método de Euler explícito Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS.

LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS. 160 LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS. JUSTIFICACIÓN En esta lección centraremos nuestro estudio en aquellas ecuaciones diferenciales homogéneas mediante

Más detalles

2.3 Ecuaciones diferenciales lineales

2.3 Ecuaciones diferenciales lineales .3 Ecuaciones diferenciales lineales 45.3 Ecuaciones diferenciales lineales Las ecuaciones diferenciales ordinarias de primer orden pueden ser lineales o no lineales. En esta sección centraremos la atención

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

Análisis Dinámico: Ecuaciones diferenciales

Análisis Dinámico: Ecuaciones diferenciales Análisis Dinámico: Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: 1 / 51 Introducción Solución genérica Solución de

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2.

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2. LA INTEGRAL DEFINIDA En los dos temas anteriores se ha hecho el estudio de las primitivas de una función, descubriendo distintos procedimientos para el cálculo de primitivas, es decir, se han encontrado

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.9 Ecuaciones diferenciales reducibles a primer orden.9.1 Introducción En el siguiente ejemplo aparece una ecuación diferencial de orden mayor que uno.

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

m=0 La ecuación de una recta se puede obtener a partir de dos puntos por los que pase la recta: y y1 = m(x x1)

m=0 La ecuación de una recta se puede obtener a partir de dos puntos por los que pase la recta: y y1 = m(x x1) Recta Una propiedad importante de la recta es su pendiente. Para determinar este coeficiente m en una recta que no sea vertical, basta tener dos puntos (, y) & (, y) que estén sobre la recta, la pendiente

Más detalles

Práctica 5 Cálculo integral y sus aplicaciones

Práctica 5 Cálculo integral y sus aplicaciones Práctica 5 Cálculo integral y sus aplicaciones 5.1.- Integración con Mathematica o Integrales indefinidas e integrales definidas Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante

Más detalles

Ing ROBERTO MOLINA CUEVA FÍSICA 1

Ing ROBERTO MOLINA CUEVA FÍSICA 1 Ing ROBERTO MOLINA CUEVA FÍSICA 1 1 CINEMÁTICA Describe el movimiento ignorando los agentes que causan dicho fenómeno. Por ahora consideraremos el movimiento en una dimensión. (A lo largo de una línea

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

UNIDAD 6 F U E R Z A Y M O V I M I E N T O

UNIDAD 6 F U E R Z A Y M O V I M I E N T O UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos 1 Introducción 2 3 4 5

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

FUNCIONES Y GRÁFICAS

FUNCIONES Y GRÁFICAS FUNCIONES Y GRÁFICAS Material de clase INTRODUCCIÓN: EJEMPLOS Una función es una correspondencia (relación) entre dos conjuntos (magnitudes ), de forma que a cada elemento (objeto) del primer conjunto

Más detalles

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL

FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL ) a) Determine pendiente, ordenada al origen y abscisa al origen, si es posible. b) Grafique. -) a) y = ( x ) aplicando propiedad distributiva y= x se

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 APLICACIONES DE LAS MATEMATICAS A LOS CIRCUITOS ELECTRICOS (RC, RL, RLC) Profesor: Cristian Castillo

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento

Más detalles

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales 5 Ecuaciones diferenciales 5.1. Qué es una ecuación diferencial Una ecuación diferencial es una ecuación en la que la incógnita a despejar no es un número sino una función. Las operaciones que intervienen

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

siendo: donde: quedando

siendo: donde: quedando 1- CINEMATICA Preliminar de matemáticas. Derivadas. E.1 Halla la velocidad instantánea cuando la ecuación horaria viene dada por: a) x(t) = t 2 Siendo: 2t 2 + 4t t + 2 t 2 2t 2 2t 2 + 4t t + 2 t 2 2t 2

Más detalles

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II. Grado en Ingeniería de Tecnologías de Telecomunicación Universidad de Sevilla Matemáticas I. Departamento de Matemática Aplicada II. Tema 1. Curvas Paramétricas. Nota Informativa: Para explicar en clase

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

Tema 13 La integral definida. Aplicaciones

Tema 13 La integral definida. Aplicaciones Tema La integral definida. Aplicaciones. Integral definida. Calcula la integral. ( ) d 4 Calculamos una primitiva de la función f ( ) : G( ) ( ) d Según la regla de Barrow: 4 4 ( ) d G(4) G() 4 8 4 Ahora

Más detalles

Tema 8. Geometría de la Circunferencia

Tema 8. Geometría de la Circunferencia Tema 8. Geometría de la Circunferencia 1. Definición la circunferencia. Ecuación de la circunferencia 1.1 Ecuación de la circunferencia centrada en el origen 1. Ecuación de la circunferencia con centro

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

La transformada de Laplace como aplicación en la resistencia de materiales

La transformada de Laplace como aplicación en la resistencia de materiales Docencia La transformada de Laplace como aplicación en la resistencia de materiales Agustín Pacheco Cárdenas y Javier Alejandro Gómez Sánchez Facultad de Ingeniería, UAQ; Depto. Ciencias Básicas, ITQ Facultad

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION

MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION Resumen razón de cambio promedio La pendiente de la recta secante que conecta dos puntos en la gráfica de una función representa la razón

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

RESOLUCIÓN DE ECUACIONES E INECUACIONES. RESOLUCIÓN NUMÉRICA DE ECUACIONES.

RESOLUCIÓN DE ECUACIONES E INECUACIONES. RESOLUCIÓN NUMÉRICA DE ECUACIONES. Tema 5. RESOLUCIÓN DE ECUACIONES E INECUACIONES. RESOLUCIÓN NUMÉRICA DE ECUACIONES. Introducción Resolución de ecuaciones Resolución de sistemas Resolución de inecuaciones y de sistema de inecuaciones

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

* e e Propiedades de la potenciación.

* e e Propiedades de la potenciación. ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

2.2 Rectas en el plano

2.2 Rectas en el plano 2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto

Más detalles

Ecuaciones, ecuación de la recta y sistemas

Ecuaciones, ecuación de la recta y sistemas Ecuaciones, ecuación de la recta y sistemas Ecuaciones Una ecuación es una igualdad condicionada en la que aplicando operaciones adecuadas se logra despejar (aislar) la incógnita. Cuando una ecuación contiene

Más detalles

Repaso de Geometría. Ahora formulamos el teorema:

Repaso de Geometría. Ahora formulamos el teorema: Repaso de Geometría Preliminares: En esta sección trabajaremos con los siguientes temas: I. El Teorema de Pitágoras. II. Fórmulas básicas de geometría: perímetro, área y volumen. I. El Teorema de Pitágoras.

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles