Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales"

Transcripción

1 Mtemátics II TEMA 7 Repso del conjunto de los números reles y de funciones reles El conjunto de los números reles El conjunto de los números reles, R, es el más mplio de los números usules Puede considerrse como un sucesiv mplición de los demás conjuntos numéricos, cumpliéndose que: N Z Q R Esquemáticmente: Nturles Enteros Rcionles Reles Negtivos Frccionrios Irrcionles Cundo no se dvierte nd se trbj con números reles Esto es, el número de prtid o el buscdo es un número rel, no debiendo restringirlo nturl, entero o rcionl Est premis es muy importnte y necesri en Análisis Mtemático (en Cálculo) Así, los conceptos de función, de límite, de derivd tienen significdo en R, y pueden resultr no válidos pr los demás conjuntos numéricos Por eso, l definir el conjunto de los números reles hy que precisr los conceptos (Aunque quí se seguirá siendo generlist, l menos se concretrán lgunos conceptos) L rect rel Los números reles pueden representrse sobre un rect Así: A cd punto de l rect le corresponde un número rel; y l revés, cd número rel le corresponde un punto de l rect L rect rel es compct : no tiene ningún punto vcío, sin rellenr Entre cd dos números reles siempre hy otro número rel Así, entre 0,65 y 0,66 está, por ejemplo, 0,65 Entre 0,65 y 0,65 está 0,650 En consecuenci, entre cd dos números reles hy infinitos números reles Los números reles con infinits cifrs decimles suelen proimrse, pero hy que sber que se h hecho un proimción Cundo se oper debe hcerse con el número rel ecto, no con su proimción Y cundo se d un resultdo debe drse el número rel, unque puede convenir dr su proimción pr entender mejor el resultdo Así, por ejemplo si un resultdo es puede drse 5, 66, pero no dr como solución sólo 5,66 Definición iomátic de R El conjunto de los números reles se puede definir de mner iomátic como sigue: ) R tiene estructur lgebric de cuerpo: l tern (R, +, ) es un cuerpo Con esto se quiere decir que en R hy definids dos operciones + y, sum y producto, que cumplen ls siguientes propieddes: Respecto de l sum: Asocitiv: b c b c b c Conmuttiv: b b Eiste neutro, que es el 0, que cumple: 0 0 Todo elemento de R tiene opuesto El opuesto de se escribe y cumple: 0

2 Respecto del producto: Asocitiv: b c b c b c Conmuttiv: b b Eiste elemento unidd, que es el, que cumple: Todo elemento de R, distinto de 0, tiene inverso El inverso de se escribe o y cumple que: Además se verific l propiedd distributiv: b c b c ) R es un conjunto totlmente ordendo Esto quiere decir que ddos dos número reles, e y, se cumple lgun de ls desigulddes siguientes: < y, o bien, y < (El símbolo < puede sustituirse por ) < y signific que y > 0 y signific que y 0 Gráficmente, un número rel es myor que otro si está representdo su derech Los números situdos l izquierd del 0 se llmn negtivos; los situdos su derech, positivos Además se verificn: Si y z y z, pr culesquier, y, z R Si y z yz, pr culesquier, y R y z 0 Si y z yz, pr culesquier, y R y z 0 Observción: El conjunto de los números rcionles, Q, verific ls propieddes nteriores Lo que hce más potente R es el siguiente iom ) Aiom del etremo superior: "Todo conjunto de números reles no vcío y cotdo superiormente posee etremo superior" Esto es, si A es un conjunto de números reles, A, y está cotdo superiormente, entonces A tiene un cot superior mínim Cot: Un conjunto A R está cotdo superiormente si eiste un número k, tl que pr todo A se cumple que k A k se le llm cot de A Un conjunto A puede tener infinits cots (Análogo pr cot inferior) Etremo superior (m): es l menor de ls cots superiores de A; l cot superior mínim (tmbién se llm supremo) Si m A, se le llm máimo, pues coincide con el myor número de A (Análogo pr etremo inferior; mínimo) ) El conjunto de los números reles que son menores que, A R, está cotdo superiormente por 7, y por, y por, El etremo superior, l cot superior mínim es Este conjunto no tiene máimo: no puede concretrse; se sbe que es,999 b) El conjunto de los números reles B R, está cotdo superiormente por,, y por,, y por,0 L cot superior mínim de B es Este conjunto tiene un vlor máimo, que es c) El conjunto de los números reles C R, está cotdo inferiormente por 0, y por 0,9, y por, que es el etremo inferior, l cot inferior máim; coincide con el mínimo de C (Este conjunto tmbién está cotdo superiormente por )

3 Intervlos Los intervlos son subconjuntos de l rect rel Intervlo bierto (, b) = todos los números reles que son myores que y menores que b: (, b) = R b ) (, ) = R b) (, ) = R Intervlo cerrdo [, b] = todos los números reles que son myores o igules que y menores o igules que b: [, b] = R b Ejemplo: [0, ] = R 0 Los intervlos pueden definirse tmbién utilizndo el concepto de vlor bsoluto,, cuy, si 0 definición es:, si 0 Con esto, se tiene: ) k k < < k Por tnto, decir que k equivle decir que (k, k) Igulmente, k k k [k, k] ) De mner nálog: k k k k k ( k, k) k k k k k k k ) < < (, ) b) < [, ] c) < < < < 5 (, 5) d) [6, ] Observción: Al conjunto de números reles que cumple l desiguldd r se le llm tmbién entorno de, centro y rdio r, y se denot por E r () Así, E () = (, + ) = (, 5), es el entorno de centro y rdio ) Ls epresiones k o k definen los intervlos: k < k o > k (, k) (k, + ) k k o k, k k,

4 4 Funciones reles de vrible rel Un función f, de un vrible rel, es un regl que sign un único número rel y cd número de su dominio Puede indicrse sí: f: R R; y f () Por tnto, un función puede definirse como un conjunto de pres (, y) de mner que no hy pres con el mismo primer elemento Así, por ejemplo, los pres (, ) y (, ) no pueden pertenecer l mism función, pues eso indicrí que l número le corresponden dos números, el y el, en contr de que l correspondenci debe ser únic A se l llm vrible independiente Cundo se represent se hce en el eje horizontl, el eje de bsciss, el eje OX L y es l vrible dependiente Se represent en el eje verticl o de ordends, el eje OY Ambs vribles son números reles Ls funciones reles suelen drse medinte un fórmul o epresión lgebric Por ejemplo: f ( ) ; g( ) Tmbién se escribe: y ; y El domino de l función lo formn los números pr los cules eiste el vlor de f () Dom(f) = { R f () eiste} El vlor de f () no eiste cundo lgun de ls operciones que l definen no puede relizrse Por ejemplo: l división por cero, l ríz de un número negtivo, el logritmo de un número menor o igul que cero; (En esos csos, l operr con clculdor sldrá el mensje de ERROR) Otrs veces será l nturlez del problem lo que restring su dominio; por ejemplo, un tiempo o un longitud no pueden tomr vlores negtivos L imgen o recorrido de l función es el conjunto de vlores que tom f () cundo pertenece l dominio; es, por tnto, el conjunto de resultdos Im(f) = {y R y f (), Dom(f)} Gráfic de un función Ls funciones de vrible rel suelen representrse en el plno crtesino medinte un líne Ls coordends de esos puntos vienen dds por los pres (, y) = (, f () ), siendo del dominio de f ) L función f ( ) soci l número f() = = ; 0 Los pres de elementos relciondos pueden drse con yud de un tbl Así: 0 4 f() Representndo en el plno crtesino esos pres (puntos (0, 0), (, ), (, ), (, 0), (, 4), (4, 4) ) y uniéndolos medinte un líne continu se obtiene l gráfic de dich función El dominio de est función es Dom(f) = R, todos los números reles, pues pr culquier número rel tiene sentido (puede hcerse) l operción El recorrido de f ( ) es el conjunto de resultdos que tome l epresión pr culquier vlor de Por trtrse de un prábol, el vlor más pequeño del recorrido se d en el vértice, V(/, 9/4) Por tnto, su recorrido es el conjunto Im(f) = [ 9/4, + )

5 5 b) L función g( ) soci l número g ( ) ; 0 En cmbio, 4 no puede socirle ningún número rel, pues g ( 4) 4 El dominio de g () está formdo por los números reles menores o igules que : Dom(g) = { R } = (, ] El recorrido de g( ) son los resultdos que se obtienen l clculr l ríz cundo : son los números reles myores o igules que 0 Esto es, Im(g) = [0, + ) c) L función h ( ) no está definid cundo = ; su dominio es: Dom(h) = R {} d) L función e( t) 80t, que determin el espcio recorrido por un vehículo que se mueve 80 km/h durnte un tiempo t, sólo tiene sentido pr t 0 Si lo que se conoce es l gráfic de l función y f (), entonces: El dominio viene ddo por los vlores del eje horizontl (eje OX) que tienen correspondiente Si l verticl por cort l gráfic de f entonces es del dominio de f L imgen, f( 0 ), de un número 0, es el vlor de l distnci, medid verticlmente, desde 0 hst l gráfic de f Si l gráfic trnscurre por debjo del eje, l imgen es negtiv El recorrido viene ddo por los vlores del eje verticl (eje OY) que son correspondiente de lgún del dominio Si l horizontl por y 0 cort l gráfic de f entonces y 0 pertenece l recorrido de f Pr l función dd en l figur djunt: Dom(f) = [0, 6); Im(f) = [, 5] Observción: Si lgun rect verticl cort l gráfic de f en más de un punto, entonces es líne no define un función Funciones definids trozos Un función puede venir definid medinte vris epresiones lgebrics L mner de drls suele ser: f( ), si f ( ) f ( ), si Se indic sí que l función que ctú pr los vlores de es f (), y pr los vlores de es f () Ejemplo: si L función f ( ), soci los números menores o igules que, el vlor si ; y los myores que, el resultdo de Algunos pres de vlores son: Pr : (, 0), (, 4), (0, 0), (, ), (, ), (, 0), Pr > : (4, ), (5, ), (6, ), (7, ), Su gráfic serí l djunt

6 6 Funciones usules Funciones polinómics n Son de l form f ( ) n 0, con n un número nturl El dominio de definición de ests funciones es todo R: están definids siempre El grdo de un función polinómic es el del polinomio correspondiente L función polinómic de de grdo n cort l eje OX en un máimo de n puntos Ls bsciss n de los puntos de corte son ls soluciones de l ecución n 0 0 Ejemplo: L función f ( ), cort l eje OX en ls soluciones de l ecución 0 Ests soluciones son =, doble, y = Como puede observrse, f ( ) ( ) ( ) El punto de corte con el eje OY se obtiene dndo el vlor 0 L gráfic de est función es l djunt Funciones rcionles P( ) Ls funciones rcionles son de l form f ( ), donde P () y Q () son polinomios Q( ) Ests funciones están definids pr todo vlor de que no nule el denomindor Ests funciones pueden tener síntots: verticles, en los ceros del denomindor; horizontles si el grdo del numerdor es menor o igul que el grdo del denomindor, oblicus si el grdo del numerdor es un unidd myor que el grdo del denomindor ) El dominio de f ( ) es R {0, }; su denomindor se nul pr = 0 y = Tiene dos síntots verticles, que son ls rects = 0 y = L rect y = 0 es síntot horizontl b) L función f ( ) está definid pr todo R; su denomindor no se nul nunc Funciones con rdicles Son de l form y n f ( ), siendo n nturl y f () culquier otr función Ests funciones están definids cundo está definid f () y, demás, puede hcerse l ríz Por tnto: ) Ls funciones rdicles de índice pr están definids sólo si f ( ) 0 ) Ls funciones rdicles de índice impr están definids siempre que lo esté f () ) f ( ) está definid pr Dom(f) = [, + ) b) f ( ) está definid pr todo R c) f ( ) está definid pr todo R {}

7 7 d) f ( ) 4 está definid pr todo R, pues el rdicndo nunc es negtivo e) ( ) f 4 está definid cundo 4 0 (, ] [, + ) Observción: Pr determinr el dominio de ests funciones conviene recordr l resolución de inecuciones con rdicles L función eponencil Es de l form f ( ) y, > 0 y Crcterístics fundmentles: Su domino es R Siempre tom vlores positivos Esto es: f ( ) 0, pr todo Si l bse >, l función siempre es creciente Si l bse 0 < <, l función siempre es decreciente Cort l eje OY en y =, pues 0, pr culquier vlor de El eje OX, l rect y = 0, es un síntot horizontl de l función; hci si >, y hci + si 0 < < Observción: L función Así, por ejemplo: siempre f f ( ) es idéntic f ) ( ) En consecuenci, (, y l mism que f f ( ) ( ) con > es decreciente Dos csos comunes de l función eponencil son f ( ) 0 y f ( ) e Tmbién son frecuentes f ( ) 0 y f ( ) e Ests últims funciones pueden escribirse como f ( ) y f ( ) 0 e g( ) L función generl f ( ) está definid siempre que lo esté g() Ejemplo: f ( ) está definid pr todo número rel distinto de : Dom = R {} L función logrítmic L más sencill es f ( ) log y log ( > 0; ) Pr ls bses usules, = 0 y = e: f ( ) log y f ( ) ln Crcterístics fundmentles: Su dominio es R +, los reles positivos: > 0 Tom vlores que vn desde + : Recorrido = (, + ) El eje OY, l rect = 0, es síntot verticl de su curv Si > (que es lo usul), l función es creciente (Si 0 < <, l función será decreciente) L función generl f ( ) log g( ) está definid siempre que g() > 0

8 8 ) f ( ) log está definid siempre que 0 ; esto es, cundo > Por tnto, su dominio es el intervlo (, + ) b) ( ) log f está definid siempre, pues 0 pr todo c) ( f ) log está definid siempre que 0,, f () Observción: Como f ( ) log, se deduce que ls funciones eponencil y logrítmic son inverss; esto es, si plicmos sucesivmente el logritmo y l eponencil en l mism bse, volvemos l punto de prtid O se: log log y Funciones trigonométrics: seno, coseno y tngente Ls epresiones más sencills de ests funciones son: f ( ) sen f ( ) cos f ( ) tg Crcterístics fundmentles de seno y coseno: Su dominio de definición es R Por tnto, es un número rel; no es un ángulo propimente dicho: si se quiere, es un ángulo en rdines, no en grdos Los vlores que tomn vrín entre y : el recorrido de mbs es el intervlo [, ] Son periódics de periodo p = Esto es: sen sen( ) ; cos cos( ) L función seno es simétric respecto del origen f ( ) sen ( ) sen f ( ) L función coseno es simétric respecto del eje OY f ( ) cos ( ) cos f ( ) Sus gráfics son ls siguientes: Crcterístics fundmentles de l tngente: Su dominio de definición es R k, pues pr k se nul el denomindor: cos k 0 Tom vlores que vrín entre y + : su recorrido es todo R Es periódic de periodo p = Esto es: tg tg, pr culquier vlor de su dominio Tiene por síntots verticles ls rects k Observción: Ls clculdors trbjn ests funciones en el modo rdines: MODE RAD Suelen designrse con ls letrs sin, cos y tn, que quí se emplern tmbién

Tema 7.0. Repaso de números reales y de funciones

Tema 7.0. Repaso de números reales y de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

Funciones trascendentes

Funciones trascendentes Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

Tema 7 (I). FUNCIONES DE UNA VARIABLE. LÍMITES Y CONTINUIDAD.

Tema 7 (I). FUNCIONES DE UNA VARIABLE. LÍMITES Y CONTINUIDAD. Tem 7 I FUNCIONES DE UNA VARIABLE LÍMITES Y CONTINUIDAD Concepto de función Un función entre dos conjuntos X e Y es un relción definid de tl mner que cd elemento X le corresponde ectmente otro elemento

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS. FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. CONCEPTO DE FUNCIÓN. Llmmos correspondenci entre dos conjuntos A B culquier form de signr lgunos o todos los elementos de A otros elementos de

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

FICHA 1 3/2008. Propiedades Adición (+) Multiplicación (. ) Conmutativa A1 a + b = b + a M1 a.b =b.a

FICHA 1 3/2008. Propiedades Adición (+) Multiplicación (. ) Conmutativa A1 a + b = b + a M1 a.b =b.a FICHA 1 3/2008 Existe un conjunto de números llmdos reles en el que están definids 2 operciones: Adición (+) y multiplicción (.). Est estructur se indic sí: (R, +,. ) (Axiom de Cuerpo) Sen, b y c reles

Más detalles

NÚMEROS COMPLEJOS. Números reales Intervalos El conjunto R 2 Discos Números complejos Teorema fundamental del Álgebra

NÚMEROS COMPLEJOS. Números reales Intervalos El conjunto R 2 Discos Números complejos Teorema fundamental del Álgebra NÚMEROS COMPLEJOS Números reles Intervlos El conjunto R 2 Discos Números complejos Teorem fundmentl del Álgebr NÚMEROS REALES Números nturles, enteros rcionles e irrcionles En mtemátics son importntes

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Función Cuadrática. 1. Si f ( x) x x 2, determine su forma canónica

Función Cuadrática. 1. Si f ( x) x x 2, determine su forma canónica Función Cudrátic. Si f ( ), determine su form cnónic. Determine el ámbito de l función ( 4). Hlle l ecución de l prábol que tiene vértice V (,) y cort l eje y en el punto (0,5). 4. Grfique l función f

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Límite de funciones. Continuidad MATEMÁTICAS II 1

Límite de funciones. Continuidad MATEMÁTICAS II 1 Límite de funciones. Continuidd MATEMÁTICAS II LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor 0? En generl, pr tener un ide de l respuest

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

17532 = Hemos usado el 10 como base, pero podíamos haber usado cualquiera. Por ejemplo el 9, entonces.

17532 = Hemos usado el 10 como base, pero podíamos haber usado cualquiera. Por ejemplo el 9, entonces. Tem 1.- V de números 1.1.- Números pr contr. Un de ls primers ctividdes intelectules que reliz el ser humno es l de contr: el número de flechs, el número de ovejs, el número de enemigos, etc. En Mtemátics

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2 FUNDAMENTACIÓN TEÓRICA ESCENARIO Dominio I: Conocimientos de Mtemátics Tem: Funciones reles de un vrible rel. L función eponencil. L función logrítmic. Asignturs involucrds en l formción universitri: Análisis

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales.

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales. Fich Técnic Conjuntos numéricos Intervlos Operciones en el conjunto de números reles Índice de tems: Conjuntos numéricos Intervlos Operciones y propieddes Módulo o vlor bsoluto de un número rel Conjuntos

Más detalles

Matemáticas Bachillerato

Matemáticas Bachillerato Mtemátics Bchillerto Continuidd CONTINUIDAD DE FUNCIONES. Definición de continuidd en un punto Definición: Un función f se dice continu en un punto de bscis (o se, en = ) si lím f ( ) f ( ). Esto es equivlente

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales.

NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales. NÚMEROS REALES, R CPR. JORGE JUAN Xuvi-Nrón Es el conjunto de números que se obtiene l unir el conjunto de los números rcionles con el conjunto de los números irrcionles. R= QI Los números reles poseen

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

FUNCIONES. f(x)=y. Notación: f(2)=4, si x=2, entonces y=4 Ejemplos: f(x)=x+2 g(x)=x 2-3 h(x)=-3x a) f(-2) = -2+2=0

FUNCIONES. f(x)=y. Notación: f(2)=4, si x=2, entonces y=4 Ejemplos: f(x)=x+2 g(x)=x 2-3 h(x)=-3x a) f(-2) = -2+2=0 FUNCIONES FUNCIÓN: RELACIÓN ENTRE DOS MAGNITUDES X E Y TAL QUE A CADA VALOR DE X LE CORRESPONDE UN ÚNICO VALOR DE Y X: vrible independiente Y: vrible dependiente f()= Notción: f(2)=4, si =2, entonces =4

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}

Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8} NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico del que

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e Selectividd CCNN 5. [ANDA] [JUN-A] Se sbe que ls dos gráfics del dibujo corresponden l función f: definid por f() = e y su función derivd f'. ) Indic, rzonndo l respuest, cuál es l gráfic de f y cuál l

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tem 5 Límites de funciones, continuidd y síntots Mtemátics CCSSII º Bch 1 TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 5.1 LÍMITE DE UNA FUNCIÓN 5.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números:

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números: I.E.S. Tierr de Ciudd Rodrigo Deprtmento de Mtemátics Conjuntos numéricos. Relción entre ellos.. Complet: TEMA : NÚMEROS REALES Números reles. Indic el menor conjunto numérico l que pertenecen los siguientes

Más detalles

Formalización de los Números Reales. M. en I. Gerardo Avilés Rosas

Formalización de los Números Reales. M. en I. Gerardo Avilés Rosas Formlizción de los Números Reles M. en I. Gerrdo Avilés Ross Agosto de 016 Tem Formlizción de los Números Reles Objetivo: El lumno plicrá ls propieddes de los números reles y sus subconjuntos, pr demostrr

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5 UNIDAD 5: LÍMITES Y CONTINUIDAD. 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Fíjte en el comportmiento de l unción ( x ) x 1 tom vlores cercnos. cundo x Si x se proxim, l unción tom vlores cercnos 5. Se escribe:

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

Diremos que lim f(x) b si podemos lograr que los valores de f( x) como queramos, con tal de tomar valores de x tan próximos a a como sea preciso.

Diremos que lim f(x) b si podemos lograr que los valores de f( x) como queramos, con tal de tomar valores de x tan próximos a a como sea preciso. Límite de un unción en un punto Diremos que () b si podemos logrr que los vlores de ( ) sen tn próimos b como quermos, con tl de tomr vlores de tn próimos como se preciso. Podemos dr un deinición más orml

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros.

Donde a los elementos de E y R se les llama vectores y escalares respectivamente, los segundos como coeficientes de los primeros. 4. Espcios vectoriles, definición propieddes Viguers En l Físic, con frecuenci se us el término vector pr descriir mgnitudes como l fuer, l velocidd, l celerción, otros fenómenos de l nturle, sin emrgo

Más detalles

el blog de mate de aida. CSII. Funciones elementales.

el blog de mate de aida. CSII. Funciones elementales. el blog de mte de id. CSII. Funciones elementles. pág.1 CONCEPTO DE FUNCIÓN: DEFINICIÓN. Dds dos mgnitudes, un función es un relción entre mbs, de tl mner que cd vlor de l primer le corresponde un único

Más detalles

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN:

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los números rcionles: Se crcterizn porque pueden epresrse: En form de frcción, es decir, como cociente de dos números enteros: Q,

Más detalles

Estudio de funciones exponenciales y logarítmicas

Estudio de funciones exponenciales y logarítmicas FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

TEMA 4.- FUNCIONES ELEMENTALES

TEMA 4.- FUNCIONES ELEMENTALES TEMA 4.- FUNCIONES ELEMENTALES 1.- FUNCIONES: CLASIFICACIÓN Y DOMINIOS Un unción rel de vrible rel es un regl que sign cd número rel perteneciente un cierto conjunto D, un único número rel. Formlmente

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21 TEMA. NÚMEROS REALES SOLUCIONES DE LAS ACTIVIDADES Págs. Págin. Actividd personl, por ejemplo:,...,...,...,9...,8.... ) No, pues un deciml puede tener un número limitdo de cifrs o ser periódico. Por ejemplo,,

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1

LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bch 1 LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de un función en un punto f () l Se lee: El

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: .- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

Hasta el momento solo hemos trabajado con funciones reales de la forma

Hasta el momento solo hemos trabajado con funciones reales de la forma Función eponencil: Hst el momento solo hemos trbjdo con funciones reles de l form f( ) = P( ) donde P ( ) es un polinomio f ( ) = donde y es un vrible, entre otros pero hor vmos trbjr con funciones donde

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción. MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números

Más detalles

TEMA 2: LÍMITES Y CONTINUIDAD

TEMA 2: LÍMITES Y CONTINUIDAD MATEMATICAS TEMA CURSO 4/5 CONCEPTO DE LÍMITE: Límite de un función en un punto: TEMA : LÍMITES Y CONTINUIDAD El símbolo ( y se lee tiende hci ) y signific que elegimos vlores muy próimos l vlor, (tn próimos

Más detalles

SECCIÓN 3 DESCRIPCIÓN DE LOS NÚMEROS REALES

SECCIÓN 3 DESCRIPCIÓN DE LOS NÚMEROS REALES SEMANA I I I Números Positivos y Negtivos Representción gráfic: SECCIÓN DESCRIPCIÓN DE LOS NÚMEROS REALES -5-4 - - - 0 4 5 Sentido izquierdo Sentido derecho El cero represent l usenci de l cntidd, y es

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas: EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles

Definición de la función logaritmo natural.

Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se sbe que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD Introducción Ide de ite Propieddes de los ites Operciones con. Indeterminciones Regls práctics pr l obtención del ite Asíntots horizontles y verticles Continuidd

Más detalles

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1. 1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens

Más detalles

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m.

Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m. Álgebr 1 de Secundri: I Trimestre I: EXPRESIONES ALGEBRAICAS R Sen 1 Son epresiones lgebrics T 1 log R',, z 3 z A 1 TÉRMINO ALGEBRAICO TÉRMINOS SEMEJANTES ) 3z ; - 3z ; 6z Son términos semejntes b) b;

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

0 PRELIMINARES. NÚMEROS REALES

0 PRELIMINARES. NÚMEROS REALES ACCESO A LA UNIVERSIDAD MATEMÁTICAS VOLUMEN II PRELIMINARES. NÚMEROS REALES. El conjunto de los número reles L representción más común de hce ver l conjunto como un líne rect del plno.,, 4, 8,.7,... 3

Más detalles

Vectores en el espacio. Producto escalar

Vectores en el espacio. Producto escalar Geometrí del espcio: Vectores; producto esclr Vectores en el espcio Producto esclr Espcios vectoriles Definición de espcio vectoril Un conjunto E es un espcio vectoril si en él se definen dos operciones,

Más detalles

ECUACIONES (4º ESO Op B)

ECUACIONES (4º ESO Op B) ECUACIONES ( ESO Op B) IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Un iguldd lgebric está formd por dos epresiones lgebrics (un de ells puede ser un número), seprds por el signo. Ejemplos.- + + 1 ( +

Más detalles

Módulo 12 La División

Módulo 12 La División Módulo L División OBJETIVO: Epresrá lguns propieddes de l división usndo propieddes de l división los inversos; epresr un numero rcionl de l form deciml frcción común vicevers. L división es un operción

Más detalles

Descomposición elemental (ajustes por constantes)

Descomposición elemental (ajustes por constantes) Descomposición elementl (justes por constntes) OBSERVACIONES. Ls primers integrles que precen se hn obtenido del libro de Mtemátics I (º de Bchillerto) McGrw-Hill, Mdrid 007.. Otros problems se hn obtenido

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles