Proceso estocástico (PE) Tema 5: PROCESOS ESTOCÁSTICOS. Concepto de VA. Concepto de Proceso Estocástico. a = a2

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Proceso estocástico (PE) Tema 5: PROCESOS ESTOCÁSTICOS. Concepto de VA. Concepto de Proceso Estocástico. a = a2"

Transcripción

1 Tma 5: POCESOS ESTOCÁSTICOS Carlos Albrola Lóz Lab. Procsado d Imagn, ETSI Tlcomunicación Dsacho D4 caralb@l.uva.s, casasc@l.uva.s, h:// Procso socásico (PE Término sinónimo d sñal alaoria En s ma concarmos los concos d Toría d la Probabilidad con concos d Traamino d Sñal (mdian Sismas Linals. Las sñals úils n Tlcomunicación rcisan d hrraminas d modlado robabilísico: A Toda sñal u ransora información in algún grado d alaoridad. B Sobr oda sñal dsada s suron d forma naural algún io d sñal rurbadora S rnd disonr d alguna hrramina u caracric las sñals dl mismo io con indndncia d su connido concro. Y nr hrraminas u rmian minimizar l fco dl ruido. Conco d VA Conco d Procso Esocásico (,a Y (, Y a a a a Ensión a comosición d N rimnos ε i (,,, L N

2 INTEPETACIÓN Colcción d funcions drminísicas dl imo (cada una d llas s dnomina ralización dl rocso INTEPETACIÓN (,a Colcción d VAs indadas or índic Conco d Procso Esocásico ~ U( -π,π Sa l rocso socásico:, a Acos ω + con Como hicimos n mas anriors, darmos or suusa la dndncia con l rsulado dl rimno alaorio. Escribirmos Acos ω + Si π / 4 nmos ( Acos ω + drminísica dl imo 4 : función Si nmos ( Acos( ω + u s una variabl alaoria, la cual odmos dnoar or Y, Z, Si π / 4 y π nmos: Acos ω + u s un númro ral. 4 π Una osibl clasificación En función dl índic moral Procso socásico (PE: Scuncia alaoria (SA: [ n] En función d u cada VA sa coninua o discra PE coninuo ~ N(, PE discro ~ B( N, SA coninua [] n ~ N(, [ n] SA discra [] n ~ B( N[ n], [ n] Prdcibl/no rdcibl Prdcibl: ( Acos( ω + No rdcibl: sin rsión analíica asociada Caracrización d PEs Funcions d rimr ordn: caracrización d las VAs dl rocso or sarado. S ruir un único índic moral. Función d disribución: Función d dnsidad: Funcions d sgundo ordn: caracrización d ars d VAs dl rocso. Hacn fala dos índics ara indicar sobr ué dos VAs s dfinn las funcions: I

3 Caracrización d PEs Eliminación d dndncias: s llva a cabo siguindo las rglas visas n los mas anriors. Por mlo: (,a Funcions d ordn N: caracrización d VAs N-dimnsionals raídas dl rocso. Hacn fala N índics ara indicar sobr ué N VAs s dfinn las funcions: (,a (,a 3 Aroimación musral al cálculo d: F ( ; P( ( 3 (,a 3 ( Caracrización d PEs Si uviésmos dos rocsos socásicos, su caracrización vndría dada or la función d dnsidad conuna d órdns N y M, s dcir: (,a (,a Aroimación musral al cálculo d: F (, ; P( ( I (, 3 En la rácica, salvo ara rocsos gaussianos, s imnsabl odr disonr d sa información. Por llo, lo normal s rabaar con arámros d caracrización arcial d los PEs. 3

4 Mdia Caracrización arcial d PEs Caracrización arcial d PEs Corrlación (Auocorrlación VCM Covarianza (Auocovarianza Varianza Coficin d corrlación Caracrización arcial d PEs Procsos comlos: Caracrización arcial d PEs Procso d ruido blanco (dfinición: uido blanco n snido amlio: rocso consiuido or VAs incorrladas: Si fus una scuncia alaoria: Scuncias alaorias: rmlazar or n Procsos d variabls discras: oradors discros uido blanco n snido srico: rocso consiuido or VAs indndins N 4

5 Caracrización arcial d dos PEs Corrlación cruzada Caracrización arcial d dos PEs Procsos incorrlados Procsos orogonals Covarianza cruzada Procsos indndins Conco d sacionaridad Esacionaridad n sn. srico La sacionaridad hac rfrncia al mannimino d las roidads dl rocso a lo largo dl imo. SSS: uidisribución d los dos gruos d VAs. S disingun dos snidos: Snido srico (SSS, d sric sns saionary: las roidads d las u hablarmos s dfinn sobr la función d dnsidad dl rocso. Snido amlio (WSS, d wid sns saionary: n s caso las roidads s dfinn sobr momnos d la función d dnsidad. Emzarmos or SSS. 3 4 L N + c 3 + c L N + c + c + c 4 5

6 6 Por ano un rocso s SSS si s vrifica u y ara odo valor d la consan c. Si sa roidad s vrifica sólo hasa un ciro valor d N (y no s vrifica ara valors d N mayors l rocso s dnominaría sacionario d ordn N. Dos casos ariculars d la rsión anrior son N Esacionaridad n sn. srico Un rocso socásico s WSS si s vrifica u Evidnmn si un rocso s SSS (o sacionario al mnos d ordn ambién s WSS. Eso s db a u El rcíroco, n gnral, no s ciro. Esacionaridad n sn. amlio Un rocso socásico s gaussiano si la función d dnsidad conuna d ordn N s conunamn gaussiana. En aricular, un rocso gaussiano in una función d dnsidad d ordn dl io: Caso d rocsos gaussianos +,,,, ;, f π Si un rocso gaussiano s WSS s vrifica u: Sucd igual ara la función d ordn N: or llo s SSS +, ;, f π +,,,, ;, f π Caso d rocsos gaussianos ;, f

7 7 Dos rocsos son conunamn sacionarios si lo son cada uno d llos or sarado y, admás, s vrifica u: Si s raa d snido amlio, cada rocso db sr WSS y db cumlirs, adicionalmn, u Acmos como convnio u: Esacionaridad conuna Proidads d rocsos WSS Proidads d rocsos WSS Solución: rcordando la linalidad dl orador sranza: (mdia consan indndncia incorrlación Proidads d rocsos WSS sco d la auocorrlación: { } * E, + + E A A ω ω + + E A A ω ω { } E A A ω ω { } { } E E A A ω ω incorrlación

8 Si Si Proidads d rocsos WSS { } * (, E ( ω ω E AA E E Por llo, nmos { } { } { } E{ } E{ } { } E{ } E ω ( ω τ (, E{ A } E{ A } ( τ Proidads d rocsos WSS La auocorrlación rsna un máimo n l cro: ( τ ( La auocorrlación s una función con simría conugada: ω τ ω τ ( τ E{ A } E{ A } E{ A } ( ( τ ( τ ( τ { } ω τ E ( τ A Si l rocso s riódico, su auocorrlación ambién lo s (y dl mismo riodo ( ( ω+ A ( τ E{ A } ωτ Proidads d rocsos WSS El ruido blanco WSS in una función d covarianza dl io: ( τ δ ( τ C (,a 3 Ergodicidad d un PE Nós u la covarianza d un rocso WSS s C ( Lugo la covarianza n l cro s C τ (,a (,a C ( τ C ( Por llo, un ruido blanco in varianza infinia Aroimación musral al cálculo d: f ( ; d lim N N N i (,a i 8

9 (,a 3 Ergodicidad d un PE ( Ergodicidad d un PE M T T T [ ( ] ( T d (,a (,a Si l rocso fus (al mnos WSS ( En la rácica s obsrva una única ralización. La rguna s: s ud hallar l valor mdio d un rocso WSS únicamn obsrvando una ralización y alicando un orador moral? Ergodicidad d un PE S dic u un rocso WSS s rgódico con rsco a la mdia si s vrifica u: lim M T [ ( ] lim ( T T T T T d Algunas conscuncias d la rgodicidad Si un rocso s rgódico d mdia cro, una ralización íica flucuará con rsco a s valor d forma más o mnos simérica alrddor dl mismo. Si dic u un rocso WSS s rgódico rsco d la auocorrlación si s vrifica u: T [ ] lim ( + τ ( τ lim M ( + τ T lim A T T T [ ( ] T T T d 9

10 Algunas conscuncias d la rgodicidad Jusificación dl máimo d la corrlación n cro: ( T ( τ lim ( + τ T T T d Algunas conscuncias d la rgodicidad Jusificación dl riodicidad n auocorrlación ara PE riódico T ( τ lim ( + τ T T T d τ τ Algunas conscuncias d la rgodicidad Dnsidad scral d oncia d un PE La osición rlaiva d las curvas s manin consan τ + T ( Vamos a dfinir una función u caracric a un rocso socásico n l dominio d la frcuncia. Bin s ciro u, dado u un rocso socásico s una colcción d funcions dl imo, nos odríamos limiar a calcular una colcción d Transformadas d Fourir. Eso sría oco rácico. S raa d dfinir una única función u caracric a odas las ralizacions dl rocso d forma conuna. A al función s l dnomina dnsidad scral d oncia.

11 Dnsidad scral d oncia d un PE Dnsidad scral d oncia d un PE Con l obivo d garanizar convrgncia d la ingral d Fourir arimos dl rocso nvnanado: Por sr una sñal d duración finia, s d cuadrado ingrabl: T y rsula n nrgía disiada finia sobr una rsisncia d Ω. El Torma d Parsval rmi scribir d forma alrnaiva T ( Dnsidad scral d oncia d un PE Dnsidad scral d oncia d un PE D nrgía asamos a oncia dividindo or l imo d ingración: Por llo, s dfin la dnsidad scral d oncia d la forma : Calculamos la oncia mdia mdian l orador sranza y ramos l lími ara considrar odo l rocso: s dcir, la función u ingrada n odo l d frcuncias da lugar a la oncia mdia dsarrollada or l rocso.

12 Dnsidad scral ara rocsos WSS Dnsidad scral ara rocsos WSS sco d la dnsidad scral: Para l caso n l u los rocsos san (al mnos WSS las rsions anriors aricularizan a rsulados mucho más sncillos (y rcordabls. En fco: El cambio naural d variabls s: Dnsidad scral ara rocsos WSS El rsulado anrior: Dnsidad scral ara rocsos WSS Calculando ahora l lími nmos: rsado n las nuvas variabls: Por ano Ersions conocidas como rlacions d Winr-hinchin.

13 Proidads d la dns. scral Es una función ral y no ngaiva: Dnsidad scral cruzada S dfin, or convnincia, como la ransformada d Fourir d la corrlación cruzada nr dos rocsos WSS: Para un rocso ral y WSS, la dnsidad scral s una función ar: Surg d forma naural n l caso d suma d rocsos. Por mlo, si Z + Y, noncs El ára bao lla coincid con l VCM ara un rocso WSS Sismas linals con nradas socásicas SLs con nradas socásicas Emcmos con l valor mdio: ( Y h( Y ( ( τ h( τ dτ S raa d obnr los arámros d caracrización (arcial dl rocso d salida como función d sos arámros dl rocso d nrada y d la rsusa al imulso dl sisma linal invarian. Si l rocso d nrada s (al mnos WSS DC 3

14 VCM: SLs con nradas socásicas SLs con nradas socásicas Caso aricular d inrés: ruido blanco d mdia nula y función d auocorrlación N ( τ δ ( τ Si l rocso d nrada s WSS SLs con nradas socásicas Corrlación cruzada: SLs con nradas socásicas Auocorrlación d salida: WSS τ ( τ + α h ( α h ( α ( α Qu con l rsulado anrior da lugar a τ α τ α 4

15 SLs con nradas socásicas Dnsidad cruzada Dnsidad scral d oncia d salida: A arir d obnmos S 97, núm. 3 5

16 S 97, núm. 6

17 7

Tema 5: PROCESOS ESTOCÁSTICOS

Tema 5: PROCESOS ESTOCÁSTICOS Tema 5: PROCESOS ESTOCÁSTICOS Carlos Alberola Lóez Lab. Procesado de Imagen, ETSI Telecomunicación Desacho D04 caralb@el.uva.es, jcasasec@el.uva.es, h://www.li.el.uva.es/sar Proceso esocásico (PE) Término

Más detalles

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI

Análisis de Fourier en TC. Teorema de Fourier Serie de Fourier Transformada de Fourier Fórmulas de análisis y síntesis Respuesta en f de sistemas LTI Análisis d Fourir n C orma d Fourir Sri d Fourir ransformada d Fourir Fórmulas d análisis y sínsis Rspusa n f d sismas LI Modología Dominio d Frcuncia -Sñals lmnals a parir d las cuals s pud consruir por

Más detalles

2. Definición de Cadena de Markov Propiedad Markoviana y estacionariedad. 3. Matriz de Probabilidades de transición y Diagrama de estados.

2. Definición de Cadena de Markov Propiedad Markoviana y estacionariedad. 3. Matriz de Probabilidades de transición y Diagrama de estados. SESIÓN a CAENAS E ARKOV INTROUCCIÓN Noción d rocso Esocásico finición E asociados a un sisma finición d Cadna d arov roidad aroviana y sacionaridad 3 ariz d robabilidads d ransición y iagrama d sados 4

Más detalles

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias Mamáicas II Ingrals Impropias Mamáicas II IMPORTANTE: Es ipo d ingrals s llaman ipo P (EN ESTE CASO TIPO ALFA) Mamáicas II Mamáicas II Ejmplo 7.5. (Problma 5.f) Dcida si la siguin ingral convrg d ln( )

Más detalles

Análisis de Señales. Descripción matemática de señales

Análisis de Señales. Descripción matemática de señales Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación

Más detalles

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas

MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas MUESREO Y RECONSRUCCIÓN DE SEÑALES oría d circuios y sismas Inroducción Sabmos modlar sismas coninuos Laplac o sismas discros Z. Pro n muchos casos los sismas coninn ano bloqus coninuos como bloqus discros.

Más detalles

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido.

Se plantea para el sistema térmico un circuito eléctrico equivalente en donde Tc es la temperatura del calefactor y Th es la temperatura del líquido. La figura musra n forma squmáica un sisma d calnamino d líquidos conocido como pava lécrica. Un rsisor d masa dsprciabl calfacciona una placa málica cuya capacidad érmica la suponmos concnrada n C1 y su

Más detalles

n n ... = + : : : : : : : [ ]

n n ... = + : : : : : : : [ ] Considérs l siguin sisma d cuacions difrncials linals d rimr ordn d coficins consans, n dond las incógnias son las funcions x x ( ), x x ( ),, x ( ) n xn / d a x ( ) a x ( ) a x ( ) f ( ) n n / d a x (

Más detalles

Sistemas Suavemente Variantes

Sistemas Suavemente Variantes Sismas Suavmn Varians Adriana Lópz, Alfrdo Rsrpo Laboraorio d Sñals, Dparamno d Elécrica y Elcrónica, Univrsidad d Los Ands, adriana_lopz5@homail.com, arsrp@uniands.du.co, Bogoa. Rsumn Normalmn, los sismas

Más detalles

Soluciones del capítulo 11 Teoría de control

Soluciones del capítulo 11 Teoría de control Solucions dl capíulo Toría d conrol Hécor Lomlí y Bariz Rumbos d marzo d a x = y u = S raa d un máximo b x = + y u = S raa d un mínimo c x = 5 + y u = 5 S raa d un mínimo d x = 4 + y u = + S raa d un máximo

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS TEMA: INTERÉS COMPUESTO CONTINUO. Inrés Compuso Coninuo 2. Mono Compuso a Capialización Coninua 3. Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 4. Equivalncia nr Tasa d

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

Ing. Mario R. Modesti

Ing. Mario R. Modesti UNIVERSIDAD ECNOLOGICA NACIONAL FACULAD REGIONAL CORDOBA DEPARAMENO ELECRONICA Carrra Asignaura : Ingniría Elcrónica : Análisis d Sñals y Sismas.P.N : Sris y ransformada d Fourir, ransformada invrsa d

Más detalles

a. Aleatorias (estocásticas) y Determinísticas: Si existe o no incertidumbre sobre el valor de la señal en todo tiempo.

a. Aleatorias (estocásticas) y Determinísticas: Si existe o no incertidumbre sobre el valor de la señal en todo tiempo. NÁLII EN RECUENCI DE EÑLE Y ITEM El análisis d la sñal n l dominio d la rcuncia a ravés d su spcro, nos prmi dinir l concpo d ancho d banda d la sñal. Las sñals s ransmin a ravés d sismas d comunicacions

Más detalles

Sistemas de Ecuaciones Diferenciales

Sistemas de Ecuaciones Diferenciales ismas d Ecuacions Difrncials Un sisma d dos cuacions difrncials d primr ordn s pud rprsnar n forma gnral como g g, x,, x, Dond x, son las variabls dpndins s la variabl indpndin dl sisma. i cada una d las

Más detalles

7 L ímites de funciones. Continuidad

7 L ímites de funciones. Continuidad 7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =

Más detalles

MATEMÁTICAS II 2011 OPCIÓN A

MATEMÁTICAS II 2011 OPCIÓN A MTEMÁTICS II OPCIÓN Ejrcicio : Una vnana normanda consis n un rcángulo coronado con un smicírculo. D nr odas las vnanas normandas d prímro m, halla las dimnsions dl marco d la d ára máima. Solución: El

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Probabilidads y Estadística Comutación Facultad d Cincias Eactas y Naturals. Univrsidad d Bunos Airs Ana M. Bianco y Elna J. Martín 4 Variabls alatorias continuas Distribución Uniorm: Rcordmos qu tin distribución

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D 6.3 Exincia d TL 355 p Ejmplo 6..8 Calcular L. p L L n o C C p p : Podmo aplicar, nonc, la fórmula para lo xponn r ngaivo qu cumplan < r

Más detalles

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones

Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones Raccions Rrsibls Raccions Parallas o Compiias Raccions Conscuias Raccions n Cadna Ramificada. Explosions Mcanismos d Racción Raccions Rrsibls Para la racción A _ B dond ano la racción dirca como la inrsa

Más detalles

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial

Las Expectativas CAPÍTULO 7. Profesor: Carlos R. Pitta. Macroeconomía General. Universidad Austral de Chile Escuela de Ingeniería Comercial Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 7 Las Expcaivas Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo 7: Las

Más detalles

FUNCIONES EULERIANAS

FUNCIONES EULERIANAS NOTAS PARA LOS ALUMNOS DEL CURSO DE ANALISIS MATEMATICO III FUNCIONES EULERIANAS Ing. Juan Sacrdoi Dparamno d Ingniría Univrsidad d Bunos Airs V. INDICE.- FUNCIÓN GAMMA: EULERIANA DE SEGUNDA ESPECIE..-

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS Ingrals Indfinidas@JEMP INTEGRALES INDEFINIDAS MÉTODOS DE INTEGRACIÓN. Ingración inmdiaa.- Tnindo n cuna qu l procso d ingración s l invrso d la drivación, podmos scribir fácilmn las ingrals indfinidas

Más detalles

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda .- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES. x y = 1. π 2 3. sen x cos xdx (Septiembre Ex. Or.)

EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES. x y = 1. π 2 3. sen x cos xdx (Septiembre Ex. Or.) TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mail: imozas@l.und.s hp://lfonica.n/wb/imm EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES.- Razon y obnga qu la ingral ulriana (p) (gamma d p) para p

Más detalles

EJERCICIOS RESUELTOS TEMA 1: PARTE 3

EJERCICIOS RESUELTOS TEMA 1: PARTE 3 Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas

= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas Ecacions difrncials Ejrcicios d Ecacions Difrncials Homogénas Rdcibls a Homogénas. arsolvr: ' r b Drminar para q valors d r in solcions d la forma la cación ''' '' ' 0 Solción a Hacmos l cambio: ' ' Rmplaando

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A

Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A Eámns d Mamáicas d Slcividad rsulos hp://qui-mi.com/ Eamn d Slcividad Mamáicas II - SEPTIEMBRE - ndalucía OPIÓN.- Sa la función coninua f : R R dfinida por f si si > a [' punos] alcula l valor d. b ['

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de:

Procesos Estocásticos. Procesos Estocásticos. Procesos Estocásticos. 1 Introducción y conceptos básicos. Al final del tema el alumno será capaz de: Procesos socásicos Procesos socásicos I Inroducción y concepos básicos sadísicos de un proceso esocásico Referencias: Capíulo 8 de Inroducción a los Sisemas de Comunicación. Sremler, C.G. 993 Apunes de

Más detalles

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia:

La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia: .4 ECUACIÓN E TRANSMISIÓN E FRIIS La cuación d rasmicion d FRIIS rlaciona la poncia rcibida a la poncia rasmiida nr dos annas sparadas por una disancia: R dond s la dimnsión más grand d cualquir anna.

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Espacios vectoriales euclídeos.

Espacios vectoriales euclídeos. Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 4/5 PRÁCTICA Nº 6 Espacios vctorials uclídos. En sta práctica vamos a vr cómo introducir un producto scalar y trabajar con él n Mathmatica

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL Enro d 008 APELLIDOS: NOMBRE: D.N.I. GRUPO (A/B/C): CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada rspusta

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

Ondas acústicas en dominios no acotados

Ondas acústicas en dominios no acotados Capítulo 3 Ondas acústicas n dominios no acotados 3.1. Introducción Las ondas acústicas qu s propagan librmnt por un dominio no acotado dbn cumplir la cuación d ondas homogéna para l potncial acústico:

Más detalles

Curso: 2º Bachillerato Examen VIII. donde m representa un número real.

Curso: 2º Bachillerato Examen VIII. donde m representa un número real. Nombr: Nota Curso: º Bachillrato Eamn VIII Fcha: d Fbrro d 06 La mala o nula plicación d cada jrcicio implica una pnalización d hasta l % d la nota..- Dada la matriz m dond m rprsnta un númro ral. m a)

Más detalles

Sesión 3 Análisis de series de tiempo multiecuacional

Sesión 3 Análisis de series de tiempo multiecuacional Banco Cnral d Rsrva dl Prú 55º Curso d Exnsión Univrsiaria Ssión 3 Análisis d sris d impo mulicuacional 7. La modología d los vcors auorrgrsivos (VAR) 7.1. Nusro sing: forma srucural vs. forma rducida

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Univrsidad d Puro Rico Rcino Univrsiario d Maagüz Dparamno d incias Mamáicas Eamn II - Ma álculo II d marzo d 9 Nombr Númro d sudian Scción Profsor Db mosrar odo su rabajo. Rsulva odos los problmas, scriba

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla

Más detalles

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION

Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION Inroducción a la ingración d funcions compusas INTREGRACION POR SUSTITUCION Cuando s raa d funcions compusas, s aplica un méodo qu s llama ingración por susiución, s méodo srá nndido sin dificulad n la

Más detalles

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09

Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09 Dparamno d Economía, Faculad d incias ocials, UDEL Masría n Economía Inrnacional, Macroconomía, lvaro Forza, 5/06/09 Trcr jugo d jrcicios. onsidr un modlo d gnracions solapadas con inrcambio puro. En la

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d

Más detalles

105 EJERCICIOS de DERIVABILIDAD 2º BACH.

105 EJERCICIOS de DERIVABILIDAD 2º BACH. 105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de

a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de Hoja d Problmas Álgbra VII 55. Supongamos qu la función g stá dfinida y s drivabl n [0,]. Supongamos qu g(0)

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Microeconomía I. Doctorado en Economía, y Maestría en T. y P. Económica Avanzada FACES, UCV. Prof. Angel García Banchs

Microeconomía I. Doctorado en Economía, y Maestría en T. y P. Económica Avanzada FACES, UCV. Prof. Angel García Banchs Doctorado n Economía y Mastría n T. y P. Económica Avanzada FACES UCV Microconomía I Prof. Angl García Banchs contact@anglgarciabanchs.com Clas/Smana Toría dl uilibrio dl mrcado d bins Balancar l ingrso

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

ρ = γ = Z Y Problema PTC

ρ = γ = Z Y Problema PTC Probla PTC-18 Dibujar l spctro d aplitud d un cabl con pérdidas n circuito abirto, dtrinando los valors y frcuncias d los valors áxios y ínios. Solución PTC-18 Sabos qu la función d transfrncia d un cabl

Más detalles

Considere la antena Yagi de la figura, formada por un dipolo doblado y un dipolo parásito, ambos de longitud λ/2, y separados una distancia d = λ/4.

Considere la antena Yagi de la figura, formada por un dipolo doblado y un dipolo parásito, ambos de longitud λ/2, y separados una distancia d = λ/4. Problmas capitulo 5 Antna Yagi Considr la antna Yagi d la figura, formada por un dipolo doblado un dipolo parásito, ambos d longitud λ/, sparados una distancia d = λ/4. a) Calcul la impdancia d ntrada

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES EALES DE UNA VAIABLE EAL.- Estudiar la continuidad, n los puntos y d la función: f ( ) L( ) si / si Solución: f continua n y El dominio d la

Más detalles

EXAMEN DE MACROECONOMÍA AVANZADA ITINERARIO DE ANÁLISIS ECONÓMICO 9 DE JUNIO DE 2014 Prof: Luis Puch y Jesús Ruiz

EXAMEN DE MACROECONOMÍA AVANZADA ITINERARIO DE ANÁLISIS ECONÓMICO 9 DE JUNIO DE 2014 Prof: Luis Puch y Jesús Ruiz EXAMEN DE MACROECONOMÍA AVANZADA ITINERARIO DE ANÁLISIS ECONÓMICO 9 DE JUNIO DE 14 Prof: Luis Puh y Jsús Ruiz El xamn onsa d rs ars. La rimra s un s d 5 rgunas. Cada rguna in sólo una rsusa orra. Una rsusa

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017 Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular

Más detalles

= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño.

= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño. F F a) La lnt s convrgnt l objto stá situado ants dl foco objto: β = = = 4 ; = 4 s ; s + = 6 ; -s -4 s = 6 ; s= -, m s, 4,8 ; ; = = = s f 4,8. f, 4,8 f f =0,96 m. La imagn s ral, invrtida rspcto dl objto

Más detalles

TEMA 66. Distribuciones de probabilidad de variable

TEMA 66. Distribuciones de probabilidad de variable TEMA 66. Disribucions d probabilidad d variabl coninua. Disribución normal TEMA 66. Disribucions d probabilidad d variabl coninúa. Disribución Normal.. Inroducción.. Hisórica. Los concpos d azar incridumbr

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL

MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas

Más detalles

LAS FUNCIONES HIPERBÓLICAS

LAS FUNCIONES HIPERBÓLICAS LAS FUNCIONES HIPERBÓLICAS Por Juan Manul PÉREZ DELGADO Inrpraión goméria dl argumno d la funion hiprbólia La dfiniión d la funion hiprbólia 3 Fórmula d la uma difrnia d argumno Rlaion nr la funion hiprbólia

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Tema 2.4: Conceptos básicos de control PID?

Tema 2.4: Conceptos básicos de control PID? ma 2.4: Concpo báico d conrol D? Índic ma 2.4: Concpo báico d conrol.. Accion báico d conrol.. Conrolador odo.nada. 2. Conrol proporcional. 3. Conrol proporcional-drivaivo D. 4. Conrol proporcional-ingral.

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS (EDOS)

ECUACIONES DIFERENCIALES ORDINARIAS (EDOS) EUAIONES DIFERENIALES ORDINARIAS EDOS.- Introducción onsidrmos los siguints roblmas. Problma uáls srán las curvas qu vrifican qu la ndint n cada uno d sus untos s igual al dobl d la suma d las coordnadas

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

PROPAGACIÓN EN LÍNEAS DE TRANSMISIÓN

PROPAGACIÓN EN LÍNEAS DE TRANSMISIÓN PROPAGACÓN EN LÍNEAS DE TRANSMSÓN Connido 1.- nroducción a las línas. 2.- Campos E y H n una lína. 3.- Modlo circuial d una lína. 4.- Ecuacions d onda. 5.- mpdancia caracrísica. 6.- Onda sacionaria. 7.-

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

ANALISIS MACROECONOMICO DEL TIPO DE CAMBIO NOMINAL Y PRECIOS EN EL ECUADOR Karen Delgado Arévalo 1, Sonia Zurita Erazo 2, Roberto Iturralde Barriga 3

ANALISIS MACROECONOMICO DEL TIPO DE CAMBIO NOMINAL Y PRECIOS EN EL ECUADOR Karen Delgado Arévalo 1, Sonia Zurita Erazo 2, Roberto Iturralde Barriga 3 ANALISIS MACROECONOMICO DEL TIPO DE CAMBIO NOMINAL Y PRECIOS EN EL ECUADOR Karn Dlgado Arévalo, Sonia Zuria Erazo, Robro Iurrald Barriga Economisa, scialización Scor Público 999 Economisa, scialización

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una

Más detalles

Modelo de Regresión Logística

Modelo de Regresión Logística Modlo d Rgrsión Logística Modlo d rgrsión qu lica l comortaminto d una variabl dndint discrta, Y, dicotómica n función d una o más variabls indndints cualitativas o cuantitativas. Los valors qu toma la

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma Aálisis d Sñals Capíulo III: Trasormada d Fourir discra Prosor: ésor Bcrra Yoma 3. Torma dl Musro Gra dsarrollo d la compuació > digializació d sñals mdia musro, posrior rcosrucció d la sñal Codició csaria

Más detalles

PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal)

PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal) PROLMAS TMA JRCICIO j 9.5 d Frádz Abascal La cotizació olsa d u cirto título s cosidra ua variabl alatoria ormalmt distribuida co arámtros dscoocidos, ro s diso d la siguit iformació: a ist u,5% d robabilidad

Más detalles

Desintegración radiactiva

Desintegración radiactiva Daramno Física Fac. Cincias Exacas - UNLP Dsingración raiaciva El núclo y sus raiacions Página 1 (DF Facor caimino DF DF = x (- = x {(- ln2/t 1/2 } Una amolla connino 99m Tc (T 1/2 = 6h sá roulaa 75 kbq/ml

Más detalles

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros.

Solución. Se deriva en forma logarítmica. Se empieza por tomar logaritmos neper1anos en ambos miembros. . Drivar simplificar: a. S driva n forma logarítmica. S mpiza por tomar logaritmos npranos n ambos mimbros. ln ln Aplicando las propidads d los logaritmos s baja l ponnt. ln ln S drivan los dos mimbros

Más detalles

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 2. Sistemas Lineales - Análisis de Señales - Convolución

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 2. Sistemas Lineales - Análisis de Señales - Convolución MEMÁIC VNZ RBJO PRÁCICO N O Sima Linal - nálii d Sñal - Convolción ESCRIPCIÓN E SEÑLES: FUNCIONES RMP ESCLÓN Y EL E IRC Grafiq la igin fncion dl impo. a b r - c d P - r-r- Ecriba na rprnación mamáica para

Más detalles

Unidad 11 Derivadas 4

Unidad 11 Derivadas 4 Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no

Más detalles

(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL

(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL (Apns n risión para orinar l aprndizaj) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL Fnción logarimo naral S sa q n+ n d + C ; n n + S comnzará con la dfinición d na ingral indfinida pariclar d

Más detalles

El transistor bipolar de unión (BJT)

El transistor bipolar de unión (BJT) l rasisor biolar d uió (JT roducció 1948-1949: illia hockly, Joh ard y alr H. raai dscubr s disosiivo y modla su riciio d fucioamio. s l rasisor más uilizado circuios discros. Prsa mayors vlocidad d rsusa

Más detalles

MAESTRIA EN OPTOELECTRONICA

MAESTRIA EN OPTOELECTRONICA MAESTRA EN OPTOELECTRONCA Complmnos d Mamáicas.- Sismas linals rprsnación d Fourir Sismas linals Muchos nómnos ísicos pudn dscribirs mamáicamn mdian maniuds uncions dl spacio dl impo. En muchas siuacions

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles