Belén Martínez Pérez. Profesora de Enseñanza Secundaria. I.E.S. Bajo Cinca, Fraga.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Belén Martínez Pérez. Profesora de Enseñanza Secundaria. I.E.S. Bajo Cinca, Fraga."

Transcripción

1 NUEVS GEOMETRÍS elén Mtínez Péez. Pofeso de Enseñnz Seundi. I.E.S. jo in, Fg. 1.- usndo l geometí. Entones el pinipito señló on gvedd: - No impot, es tn pequeñ mi s! Y gegó, quizás, on un poo de melnolí: -Deeho, mino delnte no se puede i muy lejos De est mne supe un segund os muy impotnte: su plnet de oigen e pens más gnde que un s Exupéy) Esto no podí somme muho. Sí muy ien que pte de los gndes plnets omo l Tie, Júpite, Mte, Venus, los ules se les h ddo nome, existen otos entenes de ellos tn pequeños vees, que es difíil distinguilos un on l yud del telesopio. (el pinipito, ntoine De Sint Viendo l seie Futum, que omo es sido emple muhos guiños mtemátios, enontmos est singul imgen. qué se efiee?. Si se tt de l mism gsoline, es posile?. L instntáne está tomd en Meuio, plnet on un dio de440km, es dei, uns 151 mills. Hiendo un pequeño álulo, mills de eudo. Es dei, l gsoline más en está situd extmente en el punto dimetlmente opuesto l señl. Supongmos ho que nuesto plnet fue muho más pequeño, si tnto omo el plnet del Pinipito, unos 3 ó 4 metos de dio. Seímos pes de onstui un etángulo del tmño de un nh de lonesto?. Podemos empez situándonos en el eudo y llí tz un líne todo lo et que podmos, (muy et no sldá poque osevmos que enseguid empezí uvse). ho, p l onstuión de ls nds, neesitmos dos línes pependiules l eudo 1

2 Y nos lo estámos imginndo ls ets se otn!. ms son pependiules l eudo y sin emgo no plels. Seá que no estmos tzndo ien ls ets? Seá que no hemos medido los ángulos de fom deud? Neesitmos un geometí espeífi p este pequeño mundo Mensje Tie. Semos que en l Tie hn existido gndes geómets de l tll de Eulides quien dedió gn pte de su vid l eloión de un geometí onsistente. Podá Eulides esolve nuesto polem?. Nuests uestiones son envids y ápidmente eiimos ví stélite ls espuests: No negmos l onsisteni de l geometí de Eulides peo es neesio tene en uent que los esultdos de est se sn en 5 xioms que dunte muhos ños se supusieon ietos. Los vnes en divess ms de ls Mtemátis y de l stofísi hn edo l neesidd de nuevs geometís elods po gndes mentes omo l de Riemnn, Lohevsky y olyi. Poponemos que sen ustedes mismos los que nlien que geometí deen pli en su pequeño plnet. P ello envimos un seie de dieties: L geometís que poponemos son: Geometí eulíde: los ángulos inteioes de un tiángulo sumn extmente º Geometí hipeóli: los ángulos inteioes de un tiángulo sumn menos de º Geometí elípti: los ángulos inteioes de un tiángulo sumn más de º P lleg onlui ul de ells se just sus neesiddes deeán demost utilizndo ls hemients y sees mtemátios que poseen un de ests tes ondiiones. He flt que se iet p todos los tiángulos. Seá neesio que tengn lo el onepto et, en ulquie geometí l et es el mino más oto que une dos puntos. on estos dtos, onfimos otengn un demostión file.

3 .- Nos ponemos en mh..1.- Geodésis. Lo pimeo que tenemos que nliz es si lo que hemos onsidedo un et elmente lo es, es dei si los eudoes son los minos más otos ente dos puntos. Neesimente este eudo es el mino más oto ente P y Q puesto que es l líne menos uvd que se puede tz en l esfe. Un iunfeeni máxim qued detemind po dos puntos que no sen dimetlmente opuestos P, Q junto on el punto O, ento de l esfe, sin más que he l inteseión ente el plno que deteminn los tes puntos y l esfe. P O Q Y tememos ls ets en nuest nuev geometí, ls iunfeenis máxims les llmemos geodésis. Ejeiio 1.- Dd un et en el plno euídeo, si situmos dos puntos soe ell, ómo qued dividid ést?. Qué ps si hemos lo mismo soe un geodési?. Ejeiio.- En l geometí de Eulides existe un únio mino mínimo ente dos puntos. Es esto siempe ieto en l geometí de l esfe?. Ejeiio 3.- Sís demost el teoem que sigue? Teoem: Dos iunfeenis máxims se otn en dos puntos dimetlmente opuestos (ntipodles). Pist: Tom los plnos que ontienen ls iunfeenis máxims y pens en su inteseión. on l demostión de este teoem podemos onlui el pime gn esultdo de nuest geometí: DOS RETS ULESQUIER TIENEN DOS PUNTOS EN OMÚN. Es dei, NO EXISTE PRLELISMO. Ejeiio 4.- Indi ls posiiones eltivs que pueden tene dos ets en el plno y en l esfe. Ejeiio 5.- Dds tes geodésis. de unts mnes puede qued dividid l esfe?. ompálo on el so de tes ets en el plno. uántos véties se deteminn en mos sos?. 3

4 Ejeiio 6 unts más ets/geodésis tes en ulquie de ls dos geometís, más egiones podás detemin. sís dei el númeo máximo de ells? Nº de línes N Plno Esfe..- Plno tngente: ángulos en l supefiie esféi. Ddo un punto ulquie de un supefiie esféi existe un únio plno tngente l esfe en ese punto. Este plno seá pependiul l dio de l esfe en diho punto. Si tenemos dos geodésis, el ángulo que fomn ms seá igul l ángulo fomdo po ls ets tngentes ls línes en el punto de inideni. Dihs ets nen de l inteseión del plno tngente en el punto on el plno que detemin d un de ls geodésis.3.- Tiángulos esféios. Un tiángulo esféio es un poión de supefiie esféi limitd po tes iunfeenis máxims. ho ien, tes ets soe un supefiie esféi deteminn 8 tiángulos esféios. Seá peiso detemin de qué tiángulo estmos hlndo. Si unimos el ento de l esfe on los véties del tiángulo, otenemos un tiedo que se oesponde unívomente on el tiángulo esféio. demás est oespondeni onsev los ángulos de l mne que se detll en l figu djunt. Po lo tnto, estudi ángulos de tiángulos esféios, equivle estudi los ángulos del tiedo oespondiente. Ejeiio 7.- lul ángulos de tiángulos esféios ) PN 0º,45º E 0º,45º W ) PN 0º,60º E 0º,60º W ) PS 0º,30º E 0º,30º W d) 45º N,0º 0º,90º E 0º,90º W e) 60º N,0º 0º,90º W 60º S,0º 4

5 .4.- Ángulos del tiángulo esféio. Teoem pevio: En un tiángulo esféio, l sum de l medid de los ldos es siempe meno que Demostión: Polongmos los ldos y hst l ntípod de ; omo es geodési, se veifi: ' ' ' ' ' ' R..q.d. Teoem: En un tiángulo esféio, los ángulos inteioes sumn más de º. Demostión: Lo pimeo que hemos seá onstui el tiedo suplementio: P ello neesitmos los tes dios de l esfe pependiules los tes plnos del tiedo de nuesto tiángulo esféio. Not:P tene un ide intuitiv del tiedo suplementio, podemos pens en el diedo suplementio. Osev que es evidente que los ángulos y sumn º. 5

6 6 Volviendo l tiedo suplementio: Los os de iunfeeni, y tendán uns longitudes de:. ; ; y los segmentos que deteminn, y :. ; ; Po lo tnto: Del mismo modo: ; Tomndo ls tes identiddes otenids y sumándols, otenemos: 3 omo Sustituyendo: q.d. Ejeiio 8.- Seá ieto el Teoem de Pitágos en Geometí esféi?..5.- Huso esféio. Denominmos Huso esféio ulquie poión de l supefiie esféi delimitd po dos geodésis. Ejeiio 9.- Siendo que el áe de l supefiie esféi es 4. uál seá el áe de un huso esféio de ángulo?.

7 .6.- Áe del tiángulo esféio. ómo lul el áe de un tiángulo esféio. ' ' 4 4 ' 4 ' ' 4 omo, (po se opuestos po el vétie) tenemos: Po tnto: 1 1 Ejeiio 10.- Supone que tenemos un tiángulo en l esfe on ángulos, y, podemos enont un tiángulo más gnde on los mismos ángulos?. Ejeiio 11.- Si de l fómul del áe del tiángulo esféio despejmos l sum de los ángulos, otenemos l siguiente fómul:. Siendo que el dio de l Tie es de 6350km. pti de que áe l sum de los ángulos supe en un gdo l sum eulíde (º)?. lul el áe de l Tie y ompál on el esultdo otenido. Podemos eliz los mismos álulos p l Lun (uyo dio es de 1736km) y p el plnet del pinipito (uyo dio podímos estim en 3m). Ejeiio 1.- Si onoiémos el áe de un polígono esféio. Podímos lul l sum de sus ángulos?. (Pens en el so de un polígono de 4 ldos) 7

8 UDRO OMPRTIVO Geometí Eulíde Un líne et es el mino más oto ente dos puntos Ls ets son infinits. L distni ente dos puntos no tiene ot supeio Existe un úni et que une dos puntos Existen línes que no tienen puntos en omún (plels) Dos ets no plels poseen un únio punto en omún Dos ets pependiules genen 4 ángulos etos Dos ets que se otn no tienen pependiul omún El polígono más senillo que se puede gene on ets se llm tiángulo Tes ets on un inteseión omún genen seis egiones infinits Si tes ets son sentes dos dos sin inteseión omún deteminn 7 egioines, seis infinits y un finit, tiángulo Si dos ets son plels y un es sente quedn deteminds seis egiones infinits Un tiángulo tiene, omo muho un ángulo eto Geometí esféi L geodési es el mino más oto ente dos puntos Un geodési tiene longitud finit π. L distni máxim que pueden tene dos puntos es π L geodési seá úni siempe y undo los dos puntos no sen ntipodles, en uyo so há infinits No existe plelismo Dos geodésis siempe tienen dos puntos ntipodles en omún Dos geodésis pependiules genen 8 ángulos etos Dos geodésis tienen pependiul omún El polígono más senillo que puede genese on geodésis es el huso esféio Tes geodésis on un punto en omún deteminn seis husos esféios (finitos) Tes iunfeenis máxims sin inteseión omún deteminn 8 tiángulos esféios. IMPOSILE! Un tiángulo esféio puede tene 0, 1, y hst 3 ángulos etos 8

9 3.- Geometí hipeóli. sí omo l geometí elípti ehz l existeni de plels, l geometí hipeóli ehz l uniidd de l plel un et psndo po un punto exteio ell. omo hímos omentdo, en est nuev geometí l sum de ls medids de los ángulos de un tiángulo es meno que º. Est geometí es l que se ven oligdos pli los hitntes de un pseudoesfe Puede pee sudo puesto que Quién puede vivi en un pseudoesfe?. Nosotos mismos, l teoí de l eltividd de Einstein, segu que el espio donde vivimos está uvdo de tl mne que es l geometí hipeóli l que deemos pli en él. modo de ejemplo: Newton entendí l gvitión omo un ión de fuezs. Dos mss (imginemos dos esfes) ejeen ente sí un fuez que se "mueve" (figutivmente hlndo) lo lgo de l et que ps po sus entos. P Einstein l gvedd se dee un "uvtu" del espio tiempo. P él tod ms poduií un distosión en el espio po el ul nosotos nos "deslizímos". Imginemos un m ien extendid, su supefiie se semej un supefiie eulidin, pln. Si soe es supefiie se poy un ol de plomo, dej de se pln p tnsfomse en "uv". ulquie ojeto que se enuente soe l sán e de l ol se deslizá hi él po efeto de l uvtu. En el so del espio tiempo, L Tie, po ejemplo, uví nuesto espio de mne que undo soltmos un lápiz él se deslizí po "es uvtu" hi el suelo 9

Belén Martínez Pérez. Profesora de Enseñanza Secundaria. I.E.S. Pilar Lorengar,Zaragoza.

Belén Martínez Pérez. Profesora de Enseñanza Secundaria. I.E.S. Pilar Lorengar,Zaragoza. NUEVS GEOMETRÍS elén Mtínez Péez. Pofeso de Enseñnz Seundi. I.E.S. Pil Loeng,Zgoz. 1.- usndo l geometí. Entones el pinipito señló on gvedd: - No impot, es tn pequeñ mi s! Y gegó, quizás, on un poo de melnolí:

Más detalles

Cómo se transportan segmentos y ángulos (1/2)

Cómo se transportan segmentos y ángulos (1/2) ómo se tnspotn segmentos y ángulos (1/2) Tnspote de segmentos. Los segmentos se tnspotn llevndo su longitud on el ompás. Vemos un ejemplo. Dtos Pso 1 Pso 2 (soluión) Polem: tnspot el segmento '' l et de

Más detalles

Escaleno: TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS

Escaleno: TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS TRIÁNGULO: Supefiie pln limitd po tes segmentos o ldos que se otn dos dos en tes véties. NOENLTUR: Los véties se nomn on lets minúsuls y los ldos on lets myúsuls emplendo l mism let que el vétie opuesto.

Más detalles

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto.

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto. TRIGONOMETRÍA INTRODUCCIÓN En un sentido ásio, se puede fim que l Tigonometí es el estudio de ls eliones numéis ente los ángulos ldos del tiángulo. Peo su desollo l h llevdo tene un ojetivo más mplio,

Más detalles

NOCIONES DE TRIGONOMETRÍA

NOCIONES DE TRIGONOMETRÍA Ejeiios de Tigonometí http://pi-tgos.esp.st NOCIONES DE TRIGONOMETRÍA L Tigonometí tiene po ojeto l esoluión de tiángulos, es dei, onoe los vloes de sus tes ldos de sus tes ángulos. P esolve un tiángulo

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR UNIVERSIDD NIONL DE FRONTER EPREUNF ILO REGULR 0708 URSO: MTEMÁTI SEMN 0 TEM: TRIÀNGULOS R.T. NGULOS GUDOS R.T. ULQUIER MGNITUD TEM: PRODUTOS NOTLES DIVISIÓN LGERI OIENTES NOTLES TRINGULOS DEFINIIÓN: Tiángulo

Más detalles

x y z 3 x y z x y z x y z 5 0 3

x y z 3 x y z x y z x y z 5 0 3 leto Enteo onde Mite González Jueo MTEMÁTIS II Deteminntes. Soluiones z. Siendo que, lul n desoll el vlo de los guientes deteminntes: z z z z z z z z z z z z en en z z z z z z + Segundo método evit ls

Más detalles

CURVAS TÉCNICAS Óvalo, ovoide, espiral y voluta. Trazado como aplicación de tangencias TEMA9. Objetivos y orientaciones metodológicas. 1.

CURVAS TÉCNICAS Óvalo, ovoide, espiral y voluta. Trazado como aplicación de tangencias TEMA9. Objetivos y orientaciones metodológicas. 1. URS ÉNIS Óvlo, ovoide, espil y volut. zdo omo pliión de tngenis jetivos y oientiones metodológis E9 IUJ GEÉRI Se tt de un unidd temáti ot y senill. El lumno pendeá, l menos, un poedimiento de onstuión

Más detalles

INTRODUCCIÓN AL CÁLCULO VECTORIAL

INTRODUCCIÓN AL CÁLCULO VECTORIAL INTRODUCCIÓN L CÁLCULO VECTORIL 1.- MGNITUDES ESCLRES Y VECTORILES. Mgnitudes esles: son ls que quedn pefetmente definids po el vlo de l medid. Mgnitudes vetoiles: son ls que p definils pefetmente es peiso

Más detalles

Razón Trigonométrica (R.T) Propiedades Fundamentales. 54 Trigonometría Und. 2 R.T. de Ángulos Agudos A.

Razón Trigonométrica (R.T) Propiedades Fundamentales. 54 Trigonometría Und. 2 R.T. de Ángulos Agudos A. Luego estbleemos que:.o = Longitud del teto opuesto. RAZÓN TRIGONOMÉTRIA NOTAIÓN EFINIIÓN RAZÓN.A = Longitud del teto dyente. H = Longitud de l hipotenus. En físi es de gn impotni l pliión de los vetoes

Más detalles

Propiedad elipse: la normal en un punto de la elipse es la bisectriz de los segmentos que pasan por los focos

Propiedad elipse: la normal en un punto de la elipse es la bisectriz de los segmentos que pasan por los focos Óits elíptis Euiones elipse: y / x /,,,, ε (exentiidd / Popiedd elipse: l noml en un punto de l elipse es l isetiz de los segmentos que psn po los foos Euión dinámi: El ento de fuezs está en un foo Fuez

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

( x ) ( x 2 4 ) = x 2

( x ) ( x 2 4 ) = x 2 9. Teoems de Tles y itágos 5. Dibuj un eágono y todos sus ángulos. Cuánto sumn ente todos ellos? 1. Luges geométios y ángulos IENS Y CLCUL Cuánto mide d uno de los ino ángulos entles de un pentágono egul?

Más detalles

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación:

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación: Repesent ls dos poyecciones y l tece poyección de los puntos ddos continución: pto. lej. cot A + 0 B + = + C + < + D 0 + E - > + F - = + G - > + H - 0 I - > - J - = - K L - 0 < - - M + < - N + = - + >

Más detalles

10. Teoremas de Thales y Pitágoras

10. Teoremas de Thales y Pitágoras 140 SOLUCIONRIO 10. Teoems de Tles y itágos 5. Dibuj un eágono y todos sus ángulos. Cuánto sumn ente todos ellos? 1. LUGRES GEOMÉTRICOS Y ÁNGULOS IENS Y CLCUL Cuánto mide d uno de los ino ángulos entles

Más detalles

4 Dibuja dos rectas perpendiculares al segmento AB por sus

4 Dibuja dos rectas perpendiculares al segmento AB por sus 1 Hll l meditiz del egmento. 2 Tz l et pependiul l et po el punto. m 3 Tz l pependiul l et dede el punto. uál e l ditni del punto l et? 4 ibuj do et pependiule l egmento po u extemo. pli do método ditinto.

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

Tema 13: INTEGRALES DEFINIDAS

Tema 13: INTEGRALES DEFINIDAS Tem : INTEGRALES DEFINIDAS REFLEXIONA Ls gnnis de l ompñí RAMSES S.L. dunte los meses de un ño, en deens de miles de euos, se dn en l siguiente gái: 5 ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC Si

Más detalles

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y E F G I J H M K M L N N Q P R S Ejecicio 1. Medi con un egl estos segmentos y not, encim de cd uno de ellos, el esultdo en milímetos. T Ejecicio 2. on l yud del compás, tz: +, pti del punto M, -, pti del

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 50 "# Si α, qué elción tienen con los númeos α80º y 60º-α?! α80º [ cos( α 80º) i sen ( α 80º) ] (-cosα isenα ) -[(cosα isenα)] -( α ) -, luego son opuestos.! 60º-α [ cos( 60º- α) i sen (60º- α ) ] (cosα

Más detalles

2. TRANSFORMACIONES GEOMÉTRICAS

2. TRANSFORMACIONES GEOMÉTRICAS IUJO TÉNIO HILLRTO Lámins esuelts del TM. TRNSFORMIONS GOMÉTRIS eptmento de tes Plástis y iujo Tz un plel s que diste 5 mm de l et dd. dos los segmentos y, hll su poduto (x). d = = d = 1 m = 1d = d x =

Más detalles

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: SEMESTRE 1 TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA RESEÑA HISTÓRICA HISTORIA DE LA TRIGONOMETRÍA. L histoi de l tigonometí

Más detalles

III.4 UNIDAD 4: TRIGONOMETRÍA

III.4 UNIDAD 4: TRIGONOMETRÍA III.4 UNIDAD 4: TRIGONOMETRÍA L Tigonometí es un pte de l mtemáti que estudi ls eliones ente los ldos ángulos de un tiángulo etángulo. Ests son de muh utilidd p esolve polems en divess ms de est ieni o

Más detalles

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS GEOMETRÍ DEL PLNO 3º E.S.O. FIGURS SEMEJNTES Dos figus son semejntes cundo sólo difieen en tmño. Los segmentos coespondientes son popocionles. d longitud de un de ells se otiene multiplicndo l longitud

Más detalles

CALCULAR LA RAZÓN DE DOS SEGMENTOS

CALCULAR LA RAZÓN DE DOS SEGMENTOS 9 LULR L RZÓN DE DOS SEGMENTOS REPSO Y POYO OJETIVO 1 RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un punto

Más detalles

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO OJETIVO 1 lulr l RzÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

FIGURAS EN EL PLANO Y EN EL ESPACIO

FIGURAS EN EL PLANO Y EN EL ESPACIO Consejeí de Educción, Cultu y Depotes CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simienz C/ Fncisco Gcí Pvón, 16 Tomelloso 1700 (C. Rel) Teléfono Fx: 96 51 9 9 Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS

Más detalles

TRANSFORMACIONES GEOMÉTRICAS: Inversión.

TRANSFORMACIONES GEOMÉTRICAS: Inversión. PRFESR: FRNCISC MNUEL GLÁN SN JSÉ. TRNSFRMCINES GEMÉTRICS: Invesión. INVERSIÓN siguientes leyes: La invesión es una tansfomaión que se ige po las M' ' 1. Dos puntos invesos y están alineados on un punto

Más detalles

Sumador Elemento que sirve para combinar dos señales de entrada generando una salida que es su suma (o resta)

Sumador Elemento que sirve para combinar dos señales de entrada generando una salida que es su suma (o resta) Digms en Bloques Un sistem de ontol puede onst de iet ntidd de omponentes. P most ls funiones que eliz d omponente se ostum us epesentiones esquemátis denominds Digm en Bloques. Este tipo de digms emple

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

SISTEMA SEXAGESIMAL. Unidad: El grado sexagesimal (º). 1 º = ángulo completo 360. ángulo completo = º = 400 g = 2π rad

SISTEMA SEXAGESIMAL. Unidad: El grado sexagesimal (º). 1 º = ángulo completo 360. ángulo completo = º = 400 g = 2π rad TRIGNMETRÍ. ÁNGULS igen: Positivos: tido ntihoio. Negtivos: tido hoio. + MEDID DE ÁNGULS Sistem segesiml Sistem entesiml Rdines SISTEM SEXGESIML. Unidd: El gdo segesiml (º. ángulo ompleto 60º º ángulo

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO RETÍCULO RECÍPROCO A pti el etíulo efinio nteiomente, en el que omo nuo oespone un motivo o llmemos etíulo ieto, es posible efini oto etíulo (que llmemos eípoo) en el ul los tes vetoes funmentles son:

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nome: Cuso: Fec: Se m ug geomético conjunto de todos os puntos que cumpen un detemind popiedd geométic. EJEMPLO Cuá es e ug geomético de os puntos

Más detalles

2πR π =

2πR π = PÁGIN 11 Pág. 1 oodends geogáfi cs 19 os ciuddes tienen l mism longitud, 15 E, y sus ltitudes son 7 5' N y 5' S. uál es l distnci ente ells? R b 7 5' b 5' Tenemos que ll l longitud del co coespondiente

Más detalles

ÁLGEBRA. DETERMINANTES

ÁLGEBRA. DETERMINANTES ÁLGER. DETERMINNTES MT II. DEFINICIÓN Dd un mtiz udd de oden n,... n n......... n n nn e llm deteminnte de l mtiz y e epeent po, l un númeo el que e igul : det( i( ( ( (... n ( n S n E dei, el deteminnte

Más detalles

La energía eléctrica y el potencial eléctrico

La energía eléctrica y el potencial eléctrico L enegí eléctic y el potencil eléctico Leyes de l fuez eléctosttic y gvitcionl Q Q F 2 ˆ 2 2 2 4πε 0 2 Atctiv o epulsiv / 2 muy fuete m m F G 2 ˆ 2 2 2 Siempe tctiv / 2 muy déil 2 Tnto l fuez gvitcionl

Más detalles

Si dos rectas coplanares no se cortan diremos que son paralelas.

Si dos rectas coplanares no se cortan diremos que son paralelas. - 1 - pítulo I: plelismo y pependiculidd Definición de ects plels Si dos ects coplnes no se cotn diemos que son plels xiom de Euclides Si dos ects coplnes ( y ) son cotds po un tece () fomndo ángulos colteles

Más detalles

Problema encadenado 1. Apartado 1

Problema encadenado 1. Apartado 1 Poblema enadenado 1. 1. Dibuja dos iunfeenias de igual adio tangentes ente si y tangentes a los lados del tiángulo del que se onoe: el lado = 120 mm, el ángulo = 700 y la mediana m = 85 mm. De las posibles

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA

EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 0 TALLER Nº: SEMESTRE EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA RESEÑA HISTÓRICA Pitágos. (isl de Smos, ctul Geci, h. 57.C.- h. 97.C.)

Más detalles

Mira bien las figuras PÁGINA 15

Mira bien las figuras PÁGINA 15 PÁGIN 5 Pág. Hll el áe de l pte sombed. l 0 cm El áe que buscmos es el doble de l que está coloed en est figu: l 0 cm 5 cm 5 cm Clculmos pimeo el ldo del cuddo inteio: Ldo 5 +5 50 5 cm CÍRCULO π 5 5π CUDRDO

Más detalles

. B. con regla y compás. 1.- Trazar, por el punto A, la recta perpendicular. 2.- Trazar, por el punto A, la recta perpendicular

. B. con regla y compás. 1.- Trazar, por el punto A, la recta perpendicular. 2.- Trazar, por el punto A, la recta perpendicular 1- Tz, po el punto, l ect pependicul l ect con egl y compás 2- Tz, po el punto, l ect pependicul l ect 3- Tz, po el punto, l ect plel l ect 4- Tz l meditiz del segmento 5- Tz, un ángulo igul l ángulo ddo

Más detalles

Ángulos tetraedrales

Ángulos tetraedrales poblems Poblem 1. Ángulos tetedles. Los ángulos ente ls uniones tetedles de l estutu dimnte son igules los que existen ente ls digonles de un ubo. He un nálisis vetoil p hll el vlo del ángulo. z u u 1

Más detalles

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS UNIVRSIDAD NACIONAL DL CALLAO FACULTAD D INGNIRÍA LÉCTRICA Y LCTRÓNICA SCULA PROFSIONAL D INGNIRÍA LÉCTRICA CURSO: TORÍA D CAMPOS LCTROMAGNÉTICOS PROFSOR: Ing. JORG MONTAÑO PISFIL PROBLMAS RSULTOS SOBR

Más detalles

TRIGONOMETRÍA (Resumen) Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec. cotg x +

TRIGONOMETRÍA (Resumen) Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec. cotg x + TRIGONOMETRÍA (Resumen) Definiiones en tiángulos etángulos ateto opuesto sen ateto ontiguo os ateto opuesto tg ateto ontiguo ose ateto opuesto se ateto ontiguo ateto ontiguo otg ateto opuesto Razones de

Más detalles

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota:

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota: Tz lines ects plels en posición hoizontl Tz lines ects plels en posición veticl Tz lines ects pependicules ls dds Tz lines ects plels l diección indicd Tz lines ects pependicules ls dds Tz lines ects pependicules

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electici Mgnetismo 9/ Electostátic efinición Los conuctoes en electostátic. Cmpo e un cg puntul. plicciones e l Le e Guss Integles e supeposición. Potencil electostático efinición e Intepetción. Integles

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO 5.- Geometí Afín Eulíde en el Epio tidimenionl.- (MODELO DE PRUEBA) Detemin p que lo punto A( ) B( ) C(5 - ) D( ) en oplnio. P el vlo de otenido

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electomgnetismo /3 Electostátic efinición Los conuctoes en electostátic. Cmpo e un cg puntul. plicciones e l Le e Guss Integles e supeposición. Potencil electostático efinición e Intepetción. Integles

Más detalles

TRIGONOMETRÍA 1 (Resumen) cotg. Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec.

TRIGONOMETRÍA 1 (Resumen) cotg. Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec. Tignometía Resumen TRIGONOMETRÍA (Resumen) Definiiones en tiángulos etángulos ateto opuesto sen ateto ontiguo os ateto opuesto tg ateto ontiguo ose ateto opuesto se ateto ontiguo ateto ontiguo otg ateto

Más detalles

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO DOCENTE EL SABINO DEPARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II PROFESORA CARMEN ADRIANA CONCEPCIÓN 1. Un potón (q potón

Más detalles

1 Inductancia interna de conductores

1 Inductancia interna de conductores Cmpos y Onds nductnci inten de conductoes Pág. nductnci inten de conductoes En est sección se efectún ls deducciones de l inductnci inten de distints geometís de conductoes, que conducen un coiente estcioni

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

XI Política macroeconómica con tipo de cambio flexible

XI Política macroeconómica con tipo de cambio flexible XI Políti moeonómi on tipo de mio flexile Modelo sin juste de peios En este so ptiul, el tipo de mio nominl E es un vile endógen y no está más fijd po l utoidd moneti. Reodemos ls expesiones [1], [3] y

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electici Mgnetismo Cuso 5/6 Métoo e ls Imágenes. Es un métoo potente ue pemite esolve lgunos polems complicos. Consiste en moific el polem, mplino el ecinto, e fom ue:» Resulte más sencillo.» Se sign cumplieno

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

Problemas de trigonometría

Problemas de trigonometría Prolems de trigonometrí Reliones trigonométris de un ángulo. Clulr ls rzones trigonométris de un ángulo α, que pertenee l primer udrnte, y siendo que 8 sin α. 7 sin α + os α 8 7 + os α os α 64 5 5 osα

Más detalles

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones:

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones: Lo fundmentl de l unidd Nombre y pellidos:... urso:... Feh:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... y sus distnis... D F D' ' F' ' ' Por ejemplo, si ls figurs

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 6 L semejnz sus pliiones Reuerd lo fundmentl urso:... Fe:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... sus distnis... Por ejemplo, si ls figurs F F' son semejntes,

Más detalles

Multiplicando miembro a miembro las siguientes desigualdades

Multiplicando miembro a miembro las siguientes desigualdades Miguel mengul ov L deiguldd de Eule pti de ot deiguldde ente elemento de un tiángulo. Ete tíulo e ontinuión del pulido en el númeo 5 (eneo-feeo 003). En et egund pte e etleen ei deiguldde geométi do tigonométi,

Más detalles

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA TERCER EJERCICIO GRUPO 1PV 22 de Mayo de 2002

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA TERCER EJERCICIO GRUPO 1PV 22 de Mayo de 2002 FUNDAMENTS FÍSCS DE LA NFMÁTCA TECE EJECC GUP 1P de Myo de 00 Cuestiones 1. ) Enunci el teoem de Ampèe. ) Aplic el teoem de Ampèe p clcul el cmpo mgnético cedo po un conducto ectilíneo indefinido, en un

Más detalles

EL ESPACIO AFÍN EUCLÍDEO

EL ESPACIO AFÍN EUCLÍDEO El espio etoil eulídeo. EL ESPACIO AFÍN EUCLÍDEO TEMA : EL ESPACIO AFÍN EL ESPACIO AFÍN SUBESPACIO AFINES SISTEMAS DE REFERENCIA 4 CAMBIO DE SISTEMA DE REFERENCIA 5 LA RECTA EN EL ESPACIO 7 EL PLANO EN

Más detalles

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB Cuso: FISICA II CB 3U Ley de Coulomb (1736-186). Si ls cgs se ten o epelen signific que hy un fuez ente ells. LEY DE COULOMB L fuez ejecid po un cg puntul sobe ot Está diigid lo lgo de l líne que los une.

Más detalles

1. SUPERFICIE PRISMÁTICA Y PRISMA

1. SUPERFICIE PRISMÁTICA Y PRISMA 1. SUPERFICIE PRISMÁTICA Y PRISMA. SUPERFICIE PIRAMIDAL Y PIRÁMIDE. CUERPOS REDONDOS. 4. SÓLIDOS DE REVOLUCIÓN Objetivos: Detemin áes de supeficies. Detemin volúmenes de sólidos. 1 1. SUPERFICIE PRISMÁTICA

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Mgnitudes vectoiles 1 de 8 MAGNITUDES VECTORIALES: Índice 1 Mgnitudes escles vectoiles Sum de vectoes lies Poducto de un escl po un vecto 3 Sistem de coodends vectoiles. Vectoes unitios 3 Módulo de un

Más detalles

Problema 4 del primer parcial de FT1-2do cuatri 2014

Problema 4 del primer parcial de FT1-2do cuatri 2014 Poblem 4 del pime pcil de FT - 2do cuti 204 Solución po imágenes Usulmente cundo nos plnten lgun geometí de conductoes tie, lo más común es pens en el método de imágenes, más que nd cundo se tt de lgun

Más detalles

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A IE Mediteáneo de Málg olución Julio Jun Clos lonso Ginontti Opción Poblem.. Obtene ondmente escibiendo todos los psos del onmiento utilido que: El lo del deteminnte de l mti ( puntos l mti - que es l mti

Más detalles

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo.

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo. 12 uepos en el espcio 1. Elementos básicos en el espcio ibuj mno lzd un punto, un ect, un omboide y un cubo. P I E N S A Y A L U L A Rect Punto Romboide ubo né clculist 489,6 : 7,5 = 65,28; R = 0 1 2 Escibe

Más detalles

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA Colegio L Pesentción Gnd OPCIÓN A 1- () [1 punto] Sen u y v dos vectoes otogonles y de módulo 1 Hll los vloes del pámeto p que lo vectoes u + v y u v fomen un ángulo 60º (b) [1 punto] Hll un vecto z de

Más detalles

a) El sistema puede ser visto como dos capacitores en paralelo, donde cada capacidad es de la forma C i = ε i A i /d i. Entonces se obtiene:

a) El sistema puede ser visto como dos capacitores en paralelo, donde cada capacidad es de la forma C i = ε i A i /d i. Entonces se obtiene: Julio 8 Exmen de Electomgnetismo Solución Poblem ) El sistem puede se visto como dos cpcitoes en plelo, donde cd cpcidd es de l fom C i ε i i /d i. Entonces se obtiene: ( ε ε ) L ε L ε L + C C + C + 4d

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

6 INTEGRAL DEFINIDA - ÁREAS

6 INTEGRAL DEFINIDA - ÁREAS 6 INTEGRL DEFINID - ÁRES INTRODUCCIÓN Histórimente, el álulo integrl surgió de l neesidd de resolver el prolem de l otenión de áres de igurs plns. Los griegos lo ordron, llegndo órmuls pr el áre de polígonos,

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1 .6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Deptmento de Físic, UTFSM Físic Genel II / of: A. Bunel. FIS10: FÍSICA GENERAL II GUÍA #3: otencil Eléctico. Objetivos de pendizje Est guí es un hemient que usted debe us p log los siguientes objetivos:

Más detalles

Departamento: Física Aplicada III

Departamento: Física Aplicada III Fund mentos Físi os de l Ingenierí. (Ind ustri les) Prlelogrmo insrito en trpezoide Ddo un trpezoide (udrilátero irregulr que no tiene ningún ldo prlelo otro), demuestre, usndo el álger vetoril, que los

Más detalles

Taller: Sistemas de ecuaciones lineales

Taller: Sistemas de ecuaciones lineales Deprtmento de ienis ásis Asigntur: Mtemátis I Doente: Vitor Hugo Gil Avendño Apellidos-Nomres: 0 de mrzo de 08 Tller: Sistems de euiones lineles Un sistem de euiones es un onjunto de dos o más euiones

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

Guía - 4 de Matemática: Trigonometría

Guía - 4 de Matemática: Trigonometría 1 entro Eduionl Sn rlos de rgón. oordinión démi Enseñnz Medi. Setor: Mtemáti. Nivel: NM Prof.: Ximen Gllegos H. Guí - de Mtemáti: Trigonometrí Nomre(s): urso: Feh. ontenido: Trigonometrí. prendizje Esperdo:

Más detalles

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O.

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O. TRIGONOMETRÍ 4º E.S.O. Frniso Suárez Bluen TRIGONOMETRÍ PREVIOS. Teorem de Tles (Semejnz) Si ortmos dos rets por un serie de rets prlels, los segmentos determindos en un de ells son proporionles los segmentos

Más detalles

CAPÍTULO 24: RESOLUCIÓN DE TRIÁNGULOS ESFÉRICOS (I)

CAPÍTULO 24: RESOLUCIÓN DE TRIÁNGULOS ESFÉRICOS (I) ÍTUL 24: RESLUIÓ DE TRIÁGULS ESFÉRIS (I) Dnte Gueeo-hnduví iu, 2015 FULTD DE IGEIERÍ Áe Detmentl de Ingenieí Industil y de Sistems ÍTUL 24: RESLUIÓ DE TRIÁGULS ESFÉRIS (I) Est o está jo un lieni etive

Más detalles

Tema 5. Semejanza. Tema 5. Semejanza

Tema 5. Semejanza. Tema 5. Semejanza Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL 8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

TRIGONOMETRÍA DEFINICIÓN

TRIGONOMETRÍA DEFINICIÓN Tigonometí TRIGONOMETRÍ DEFINIIÓN L tigonometí se oup, piniplmente, de estudi l elión ente ldos y ángulos de un tiángulo, y sugió zón de ls neesiddes de l stonomí, l togfí (el estudio de mps), l tilleí,

Más detalles

4πε. r 1. r 2. E rˆ La carga puntual q 1

4πε. r 1. r 2. E rˆ La carga puntual q 1 .3 L cg puntul q -5. nc está en el oigen l cg puntul q 3 nc está sobe el eje de ls en 3 cm. l punto P está en 4 cm. ) Clcule los cmpos elécticos debidos ls dos cgs en P. b) Obteng el cmpo eléctico esultnte

Más detalles