DESARROLLO DE APLICACIONES INFORMÁTICAS CON MODELACIÓN MATEMÁTICA ORIENTADAS AL APRENDIZAJE DEL CÁLCULO INTEGRAL A NIVEL LICENCIATURA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DESARROLLO DE APLICACIONES INFORMÁTICAS CON MODELACIÓN MATEMÁTICA ORIENTADAS AL APRENDIZAJE DEL CÁLCULO INTEGRAL A NIVEL LICENCIATURA"

Transcripción

1 Capítulo 5. Uso de los recursos teológicos e el proceso de apredizaje de las matemáticas DESARROLLO DE APLICACIONES INFORMÁTICAS CON MODELACIÓN MATEMÁTICA ORIENTADAS AL APRENDIZAJE DEL CÁLCULO INTEGRAL A NIVEL LICENCIATURA Víctor Guevara Basaldúa, Víctor Larios Osorio Uiversidad Autóoma de Querétaro México victorguevara1@hotmail.com, vil@uaq.mx Campo de ivestigació: Modelació matemática Nivel: Superior Resume. E este documeto presetamos ua maera de trabajar co la defiició del Cálculo Itegral, defiició a través de Sumas de Riema e la cual se utiliza, por ejemplo, Límites y Sumatorias. Lo que pretedemos co esta forma de ver el Cálculo Ifiitesimal, es diseñar alguas actividades detro de u software iteractivo (que tambié diseñaremos) que cotega los elemetos ivolucrados e el proceso de eseñaza-apredizaje de esta materia ta importate a ivel liceciatura. La modelació matemática y la visualizació so alguos de esos elemetos y, la iteció co el software, es icremetar la aplicabilidad de éstos, logrado así u mejor etedimieto de los coceptos imersos e dicha defiició. Mostramos aquí u acercamieto de lo que co el software los alumos llegar podría llegar a realizar ua vez que éste estuviese debidamete termiado. Dicho trabajo es u proyecto de maestría que se ecuetra a la mitad de su desarrollo, pero que deseamos termiar y aplicar para el siguiete ciclo escolar. Palabras clave: cálculo itegral, modelació matemática, matemática educativa, visualizació, software Itroducció Es bie sabido que e la vida escolar preuiversitaria o uiversitaria u bue úmero de dificultades e los estudiates está asociadas al maejo de los coceptos básicos y o ta básicos del Cálculo diferecial e itegral. Se ha probado iclusive que aú aquellos estudiates que ya ha llevado uo o dos cursos de Cálculo muestra serias deficiecias al mometo de trabajar co los coceptos imersos e esta materia: Aparicio (006 citado e Cabrera y Zaldívar, 007). Por supuesto que esto trae cosigo las cosecuecias más lametables para los estudiates que iteta u desarrollo persoal y profesioal detro de ua preparació cietífica y social importate para su vida. Ua de estas cosecuecias es la deserció escolar que fialmete termia por cobrar costosas facturas a la sociedad. Por ejemplo, e la UNAM deserta el 30% de los 35, 000 alumos que igresa a algua de las liceciaturas, y por tal motivo la sociedad mexicaa pierde 6 milloes 500 mil pesos auales e alumos que o cocluye su carrera profesioal como lo señala Rodríguez (000 citado e García, 006). Cabe señalar tambié que u 5% de alumos que abadoa la liceciatura, lo hace por reprobar materias de matemáticas 1185

2 Acta Latioamericaa de Matemática Educativa 3 (pricipalmete Cálculo Diferecial e Itegral) e los dos primeros semestres (Aparicio y Ordaz, 006). Es claro que existe u problema co la eseñaza de las matemáticas e geeral, puesto que las estadísticas señala altos porcetajes del disgusto que esta disciplia causa e la mayoría de los estudiates. Particularmete e el área del Cálculo a ivel liceciatura los métodos covecioales de eseñaza lleva a los profesores a teñir de algoritmos sus cursos obteiedo poca gaacia cogitiva y repercutiedo directamete e el currículo: Catoral (1993 citado e Zaldívar, 006). Además de que el estudio del Cálculo tiede a cetrarse e ua práctica algorítmica, se iteta desde los iicios, aplicar los tradicioales métodos rigurosos de demostració matemática: Moreo (005 citado e Cabrera y Zaldívar, 007). No se recooce los mecaismos de producció de los coocimietos i la orgaizació social e el aula, que e cojuto hace posible tal costrucció; es decir, podemos decir que existe ua cofrotació etre la obra matemática y la matemática escolar: Cordero (001 citado e Cabrera y Zaldívar, 007). Por otra parte, muchas veces la eseñaza del Cálculo es presetada e los saloes alejada del mudo e que se desevuelve o se podría desevolver los alumos. Cosideracioes sobre visualizació y modelació matemática Co el propósito de subsaar los problemas que hemos mecioado ateriormete sobre el apredizaje y la eseñaza del Cálculo, itetaremos dar ua idea geeral e este apartado sobre lo que deseamos haga uestro software. Creemos que el trabajo algebraico, algorítmico y operatorio es importate para eseñar Cálculo Itegral, si embargo aquí haremos hicapié e el trabajo co modelació matemática, así como tambié co la visualizació, ya que so elemetos que se puede icluir de maera más secilla al estar trabajado co el software. De la misma maera que lo señala Catoral y Motiel (001) etedemos a la visualizació como la habilidad para represetar, trasformar, geerar, comuicar, documetar y reflejar iformació visual e el pesamieto y el leguaje del que aprede. Por otro lado, sabemos que la modelació matemática es u proceso ivolucrado e la obteció de u modelo matemático. Mietras tato, u modelo matemático de u feómeo o de ua situació es u cojuto de símbolos y relacioes matemáticas que represeta, de algua maera, el feómeo e cuestió. Tal y como 1186

3 Capítulo 5. Uso de los recursos teológicos e el proceso de apredizaje de las matemáticas se señala e Salett y Hei (004), el modelo matemático o sólo permite obteer ua solució particular, sio tambié servir de soporte para otras aplicacioes o teorías. Como podemos ver, el sigificado de estos dos coceptos es muy importate y si se lograse aplicar tal y como se dice e su defiició, sería ua gra gaacia, puesto que prácticamete se apredería muy bie la matemática al mismo tiempo e que ésta se aplicaría para resolver problemas iteresates y más cercaos a la realidad. Precisamete itetaremos platear alguas actividades e las cuales, co ayuda del software, se pueda resolver situacioes que ayude al estudiate a compreder ocioes sobre las Sumas de Riema que se ve e la defiició de la Itegral, todo esto utilizado la visualizació y la modelació como herramietas para el apredizaje. Alguos ejemplos Para acercaros u poco e esto de la modelació matemática veamos los siguietes ejemplos tomados de (Guevara, 008), los cuales os idica que cada preguta sobre u tema o situació puesta e escea es fudametal para llegar a la costrucció de u cocepto más grade que puede formar parte del apredizaje sigificativo sobre la situació señalada. 1. Determiar la presió sobre ua placa triagular sumergida verticalmete e agua y e tal forma que ua base del triágulo está al ivel de la superficie del líquido. Figura

4 Acta Latioamericaa de Matemática Educativa 3 E la figura aterior se muestra ua represetació de dicha placa y la idea es aalizar a lápiz y papel cómo es que se puede ecotrar la presió que el agua provoca sobre la placa. Alguos de los pasos que se pide cotestar a los alumos so: a) Si divides la placa e frajas horizotales de igual acho. Cuál es el acho e térmios de la altura h y el úmero de frajas? Podrías platear algua expresió para el acho? Cuál es? b) Tomado e cueta que la presió es igual al área de la superficie sumergida por la profudidad de sumergimieto y pesado que las frajas forma rectágulos y o trapecios (como e la Figura 1), ecotrar el valor para l k (la logitud de la fraja k- ésima.) Qué tiee qué ver para esta ecomieda los triágulos ABC y PBQ? Figura c) Cuáto es el área de la figura rectagular sombreada? d) Cuáto es la presió sobre dicha fraja? La presió total sobre la placa triagular se ecuetra sumado las presioes sobre las frajas particulares: P k 1 k ( 1 ) k O bie P k 1 k k 1 k. 1188

5 Capítulo 5. Uso de los recursos teológicos e el proceso de apredizaje de las matemáticas e) Qué sigificados tiee las expresioes ateriores? f) Utilizar los resultados de límites y sumatorias ecesarios para cocluir que la presió total sobre la placa es P 3 O bie P 6. Ecotrar el ritmo al que fluye la sagre a través de ua arteria. Figura 3 La velocidad de la sagre e ua arteria es fució de la distacia al eje cetral de la arteria, es cm decir, la velocidad de la sagre ( ) que está a r cm. del eje cetral de la arteria es s S( r) k( R figura (Ley de Poiseville). r ), dode R es el radio de la arteria y k es ua costate. Ver la siguiete 3 cm La preguta que resolveremos paso por paso es co qué ritmo ( ) fluye la sagre a través de s la arteria? a) Si divides el itervalo [0, R] e sub-itervalos de igual logitud r y te fijas e el sub-itervalo [ r j, r j 1 ], cuál es el área del aillo compredido e dicho itervalo? A dicho aillo llámale aillo r j (Figura 4). 1189

6 Acta Latioamericaa de Matemática Educativa 3 Figura 4 b) Cuál es la velocidad de la sagre e ese aillo, segú la Ley de Poiseville? c) Al multiplicar el área del aillo y la velocidad, ecuetras su ritmo, cuáto es el ritmo? d) Si haces más fia tu partició de [0, R], más cerca estás de ecotrar el ritmo total e la arteria, esto porque los resultados ateriores so aproximacioes, porqué? Si sumas ora todos los ritmos de flujo ecotrarás el ritmo total de maera exacta. Cuáto es etoces, el ritmo e la arteria? Cabe otar que estas so alguas de las actividades que forma parte de la tesis de Guevara (008) y fuero diseñadas para aplicarlas, e u pricipio, a u grupo de profesores de ivel medio como parte de u diplomado sobre modelació. Metodología La maera como se puede trabajar co el software utilizado la modelació y la visualizació, por ejemplo para el tema de volúmees e sólidos de revolució y Sumas de Riema, la podemos ejemplificar co ua actividad como la que sigue. Se tiee la fució f( x) x Cuál será el volume del sólido obteido al girar la fució sobre el eje de las abscisas e el itervalo [1, 3.5]? Como esta es la preguta a resolver por el método de Sumas de Riema y co la ayuda del software, podemos pesar que, cuado se platea la situació de ecotrar el volume, aú o se ha visto co aterioridad los coceptos i las herramietas ecesarias para poder respoder la preguta co más facilidad (podríamos pesar e ua clase de itroducció e el saló de clase). Por tato, cada actividad cosecuete deberá seguir, cuáto más sea posible, los pricipios de la 1190

7 Capítulo 5. Uso de los recursos teológicos e el proceso de apredizaje de las matemáticas modelació y de la visualizació para que pueda surgir la costrucció del coocimieto sobre el tema de Sumas de Riema y la Itegral Defiida de maera más o meos guiada. Alguas de las situacioes siguietes puede ser: si cosideras ua partició del itervalo [1, 3.5] e 10 subitervalos de la misma logitud, cuáles so los putos que delimita a cada uo de los 10 subitervalos? Cuál es la distacia etre cada par de putos (el acho de cada sub-itervalo)? Cuál es la forma del sólido del cuál debes ecotrar el volume? Podrías hacer u bosquejo? Cooces algua fórmula para ecotrar el volume de formas como la que se está aalizado e esta ocasió? Si cotestaste que o a esta última preguta, etoces puedes recurrir a las situacioes siguietes: Elige alguo de los sub-itervalos costruidos y costruye u cilidro que tega de altura al acho de dicho sub-itervalo y que sea parte del volume que se desea ecotrar. Cómo tedrías qué utilizar la fució para saber el volume del cilidro que has de calcular? Si haces lo mismo (costruyes u cilidro) co los demás sub-itervalos, Qué ta cercao estás del volume que se te pidió calcular? Estas actividades, las podemos resumir co u algoritmo secillo que debe seguirse al trabajar co el software. De esta forma el software se apega mucho a las características que debe teer u bue software, señaladas por Mochó (006). El algoritmo dice que el estudiate: 1. Decide u itervalo adecuado para ecotrar el volume del sólido.. Elige la partició adecuada para dividir uiformemete su itervalo elegido. 3. Calcula el acho de cada itervalo. 4. Calcula el radio de los discos formados. 5. Calcula el volume de los cilidros formados. 6. Calcula el volume aproximado del sólido que costruyó. La iterfaz co la que trabajaría el alumo tiee ua cara como la siguiete: 1191

8 Acta Latioamericaa de Matemática Educativa 3 Figura 4 Observamos que co la maipulació tato de la fució como de los mismos cilidros el alumo se percata más fácilmete de los coceptos ivolucrados e la defiició de Riema, lo cual ayuda eormemete a reducir los problemas cocerietes al apredizaje de los elemetos idispesables e esta disciplia. El procedimieto que u alumo sigue detro del saló de clases para apreder sobre sólidos de revolució se ve ora reforzado y más agilizado co la ayuda del software porque le permite visualizar las regioes que forma el volume, además de que tambié ayuda a costruir cilidros que aproxima al volume de la regió. Referecias bibliográficas Aparicio, E., y Ordaz, G. (006). Estudio Cualitativo sobre la Reprobació del Cálculo e el área de Ciecia Computacioales y Matemáticas. X Escuela de Iviero e Matemática Educativa pp Sta. Cruz Tlaxcala (006).. 119

9 Capítulo 5. Uso de los recursos teológicos e el proceso de apredizaje de las matemáticas Cabrera, L., y Zaldívar, J. (007). Formació Didáctica e Cálculo Uiversitario. Ua Propuesta Basada e el Diseño de Actividades como Eje Rector. XI Escuela de Iviero e Matemática Educativa pp Mérida, Yucatá Catoral, R., y Motiel, G. (001). Fucioes: visualizació y pesamieto matemático. México: Pearso. García, E. (006). U estudio descriptivo de las iteraccioes e el aula. Elemeto de aálisis e la reprobació y rezago del Cálculo. Tesis de Liceciatura o publicada. Uiversidad Autóoma de Yucatá.México. Guevara, B. V. (008). La Modelació Matemática e la Formació de Profesores de Bachillerato. Tesis de Liceciatura o publicada. Uiversidad Autóoma de Querétaro. México. Mochó, S. (006). Avaces y hallazgos e la implemetació de tecologías para la eseñaza de las matemáticas y las ciecias. E Filloy, E (Comp), Matemática educativa, treita años: Ua mirada fugaz, ua mirada extera y compresiva, ua mirada actual (pp ), México: Cetro de Ivestigació y de Estudios Avazados del IPN y Satillaa. Salett, B. M., y Hei, N. (004). Modelació matemática y los desafíos para eseñar matemática. Educació Matemática, 16 (), Zaldívar, J. (006). U estudio sobre elemetos para el diseño de actividades didácticas e Cálculo. Tesis de liceciatura o publicada. Uiversidad Autóoma de Yucatá. México. 1193

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias.

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias. Sesió 27 Series de potecias Temas Series de potecias. Itervalo y radio de covergecia de ua serie de potecias. Capacidades Coocer y compreder el cocepto de serie de potecias. Determiar el itervalo y el

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

Sucesiones I Introducción

Sucesiones I Introducción Temas Qué es ua sucesió? Notacioes y coceptos relacioados. Maeras de presetar ua sucesió. Gráfico de sucesioes. Capacidades Coocer y compreder el cocepto de sucesió. Coocer y maejar las diferetes maeras

Más detalles

Números poligonales como disparadores de un proceso de validación

Números poligonales como disparadores de un proceso de validación Septiembre de 007, Número 11, págias 147-155 ISSN: 1815-0640 Números poligoales como disparadores de u proceso de validació Resume E este trabajo aalizamos la respuesta de estudiates de Profesorado e Matemática

Más detalles

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica

Más detalles

MODELO DE RESPUESTAS. Lim n. Lim

MODELO DE RESPUESTAS. Lim n. Lim Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Lapso 008 - INTEGRAL MATEMÁTICA I (175) FECHA PRESENTACIÓN: 08-11-008 MODELO DE RESPUESTAS OBJ 7 PTA 7 Dadas las sucesioes de térmios

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

1 Primeras aproximaciones a la integral de una función cuadrática

1 Primeras aproximaciones a la integral de una función cuadrática Cátedra de Matemática Matemática Hoja : Aproximacioes a la itegral Facultad de Arquitectura Uiversidad de la República Primer semestre Defiirlaitegralcomoelárea bajo u gráfico os efreta al problema de

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada.

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada. (Aputes e revisió para orietar el apredizaje) CONVERGENCIA ABSOLUTA TEOREMA. Si e la serie alterada ( ) valor absoluto de sus térmios, se tiee la serie: a + a + + a + a se toma el = que si es covergete,

Más detalles

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander

Rudimentos 5: Teorema del Binomio Profesor Ricardo Santander Rudimetos 5: Teorema del Biomio Profesor Ricardo Satader Este capitulo esta destiado a presetar coteidos y actividades que permitirá al estudiate: Operar co simbología matemática, desarrollar expresioes

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R P á g i a INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA GUIA Nº 3: Sucesioes, Límite de Sucesioes y Límite de Fucioes e R GRADO: º AREA: MATEMÁTICAS PROFESORA: Ebli Martíez M. ESTUDIANTE: PERIODO: III

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

Listado para la Evaluación 2 Cálculo II (527148)

Listado para la Evaluación 2 Cálculo II (527148) Uiversidad de Cocepció Facultad de Ciecias Físicas y Matemáticas Departameto de Matemática Área, Volume y Logitud de arco. Listado para la Evaluació Cálculo II (5748). Calcular el área ecerrada por la

Más detalles

RESUMEN O ABSTRACT PROBLEMÁTICA

RESUMEN O ABSTRACT PROBLEMÁTICA ELEMENTOS SOCIOEPISTEMOLÓGICOS DE LAS CONDICIONES INICIALES EN LAS ECUACIONES DIFERENCIALES LINEALES 1 Eriva Velasco Núñez-Gabriela Buedía Abalos Cimate-Uach, Chiapas, México. erivel79@hotmail.com Campo

Más detalles

Introducción básica a series

Introducción básica a series Itroducció básica a series Gearo Lua Carreto * 2 Noviembre de 206, 8 pm. Series: u caso particular de sucesió Supoga que tiee ua sucesió cualquiera a. Explicaremos la forma de geerar ua sucesió s, muy

Más detalles

Convergencia de variables aleatorias

Convergencia de variables aleatorias Capítulo Covergecia de variables aleatorias El objetivo del presete capítulo es estudiar alguos tipos de covergecia de variables aleatorias. Iiciaremos co la defiició de los distitos modos de covergecia...

Más detalles

El método de Monte Carlo

El método de Monte Carlo El método de Mote Carlo El método de Mote Carlo es u procedimieto geeral para seleccioar muestras aleatorias de ua població utilizado úmeros aleatorios. La deomiació Mote Carlo fue popularizado por los

Más detalles

Figuras geométricas y números enteros. Introducción

Figuras geométricas y números enteros. Introducción Revista del Istituto de Matemática y Física Figuras geométricas y úmeros eteros Juaa Cotreras S. 6 Claudio del Pio O. 7 Istituto de Matemática y Física Uiversidad de Talca Itroducció Etre las muchas relacioes

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

La Matemática Financiera desde un enfoque de las Ecuaciones en Diferencias

La Matemática Financiera desde un enfoque de las Ecuaciones en Diferencias La Matemática Fiaciera desde u efoque de las Ecuacioes e Diferecias Luis Eresto Valdez Efraí Omar Nieva Luis Edgardo Barros Eje temático: Matemática aplicada Resume Usualmete, se preseta a la Matemática

Más detalles

Cilindros, troncos de cono y preguntas capciosas. Ilustrando los peligros del paso al límite. Introducción El volumen de un sólido de revolución.

Cilindros, troncos de cono y preguntas capciosas. Ilustrando los peligros del paso al límite. Introducción El volumen de un sólido de revolución. Cilidros, trocos de coo y pregutas capciosas. Ilustrado los peligros del paso al límite. Atoio M. Oller Marcé Departameto de Matemáticas Uiversidad de Zaragoza Itroducció A meudo se preseta las matemáticas

Más detalles

Entonces el volumen del k-ésimo cilindro es. n n) πar2 k 2. k 2 = πar2 k 2 n(n + 1)(2n + 1) 6

Entonces el volumen del k-ésimo cilindro es. n n) πar2 k 2. k 2 = πar2 k 2 n(n + 1)(2n + 1) 6 Uidad 1 Itegrales Múltiples 1.2 Itegral de ua fució de dos variables como volume Volumees Cuado deimos volume aceptaremos el hecho de que si se trata de u cubo de lado a etoces V cubo) = a 3 y si se trata

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Álgebra I Práctica 2 - Números naturales e inducción

Álgebra I Práctica 2 - Números naturales e inducción FCEyN - UBA - Segudo Cuatrimestre 203 Álgebra I Práctica 2 - Números aturales e iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + 2 + 3 + 4 + + 00, (b) + 2 + 4 + 8

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

Repaso...Último Contenidos NM 4

Repaso...Último Contenidos NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Fucioes y relacioes. Diagrama Sagital. Sea A = { a,b, c} y B = { 1, 2, 3, 4} Repaso...Último Coteidos NM 4 A: Cojuto

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE---M---7 CURSO: Matemática Básica SEMESTRE: Segudo CÓDIGO DEL CURSO: TIPO DE EXAMEN: Tercer exame parcial FECHA

Más detalles

SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles 10 de agosto del Solucionario

SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles 10 de agosto del Solucionario SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles de agosto del ESCUELA DE MATEMÁTICA Segudo Eame Parcial Cálculo I PROYECTO MATEM Tiempo Probable: horas Solucioario. Use

Más detalles

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11.

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11. rueba Itegral Lapso 03-7-76-77 /0 Uiversidad Nacioal Abierta Matemática I (Cód. 7-76-77) icerrectorado Académico Cód. Carrera: 6-36-80-08- -60-6-6-63 Fecha: 0 0-0 MODELO DE RESUESTAS Objetivos al. OBJ

Más detalles

NOTAS SOBRE INFERENCIA ESTADÍSTICA BAYESIANA. José G. Ríos Alejandro. Abril del 2011.

NOTAS SOBRE INFERENCIA ESTADÍSTICA BAYESIANA. José G. Ríos Alejandro. Abril del 2011. NOTAS SOBRE INFERENCIA ESTADÍSTICA BAYESIANA José G. Ríos Alejadro Abril del 11. INTRODUCCIÓN E los cursos de estadística usualmete se estudia la estadística co efoque frecuetista, la cual alguos autores

Más detalles

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia...

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia... covergecia este capítulo teemos como objetivo demostrar las propiedades más importates de la Itegral de Lebesgue. teemos que demostrar todavía las propiedades fudametales de liealidad y aditividad respecto

Más detalles

Desigualdad entre las medias Aritmética y Geométrica

Desigualdad entre las medias Aritmética y Geométrica Desigualdad etre las medias Aritmética y Geométrica Jorge Tipe Villaueva Dados reales positivos a 1, a,..., a, defiimos la media aritmética de a 1, a,..., a como el úmero a 1 + a +... + a y la media geométrica

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k)

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k) Permutacioes. E Matemáticas, dado u cojuto fiito co todos sus elemetos diferetes, llamamos permutació a cada ua de las posibles ordeacioes de los elemetos de dicho cojuto. Por ejemplo, e el cojuto 1, 2,

Más detalles

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS

COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS "Toda cosa grade, majestuosa y bella e este mudo, ace y se forja e el iterior del hombre". Gibrá Jalil Gibrá. Uidad : PROCESOS INFINITOS Y LA NOCIÓN

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

ÍNDICE INTRODUCCIÓN... 3 OBJETIVOS... 3 METODOLOGÍA... 3 DETALLE DE RESULTADOS... 5

ÍNDICE INTRODUCCIÓN... 3 OBJETIVOS... 3 METODOLOGÍA... 3 DETALLE DE RESULTADOS... 5 Ciecia y Tecología de los Alimetos ÍNDICE INTRODUCCIÓN... 3 OBJETIVOS... 3 METODOLOGÍA... 3 DETALLE DE RESULTADOS... 5 1. La opiió y satisfacció de los titulados... 5 1.1. Satisfacció co la formació y

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Proyecto No. 2. Suponga que una curva es descrita por medio de una función desconocida f (x)

Proyecto No. 2. Suponga que una curva es descrita por medio de una función desconocida f (x) UNIVERSIDAD DE SAN CARLOS DE GUATEMALA DEPARTAMENTO DE MATEMÁTICA FACULTAD DE INGENIERÍA MATEMÁTICA BÁSICA 1 Proyecto No. 2 Etrega: Martes 17 de abril de 2018 Itroducció: Cotiuado co el desarrollo de las

Más detalles

(3 ) (6 ) 5 (3 x ) 5 81x. log (3 4) log 5 3log 5 5 (3log 5) y x x. cos 7 4 ( 1) 2 (3 ) 2 4

(3 ) (6 ) 5 (3 x ) 5 81x. log (3 4) log 5 3log 5 5 (3log 5) y x x. cos 7 4 ( 1) 2 (3 ) 2 4 E.T.S.I. Idustriales y Telecomuicació Curso 010-011 Tema : Fucioes reales de ua variable real Cálculo de derivadas Calcular la derivada primera de las siguietes fucioes: 1. y 5 1 6 6 y 5 ( ) (6 ) 5 5 5

Más detalles

( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( ) I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS INFERENCIA ESTADÍSTICA El coeficiete itelectual de los alumos de u cetro se distribuye N(110,15). Escogemos 5 alumos al azar. Cuál es la probabilidad

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas.

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas. 1. Itegral defiida: área compredida etre dos curvas. Uo de los grades logros de la geometría clásica fue el cálculo de áreas y volúmees de figuras como triágulos, esferas o coos mediate ua fórmula. E esta

Más detalles

MATEMÁTICAS Y CULTURA B O L E T Í N No. 259 COORDINACIÓN DE MATEMÁTICAS DUERME BIEN Y ACERTARÁS

MATEMÁTICAS Y CULTURA B O L E T Í N No. 259 COORDINACIÓN DE MATEMÁTICAS DUERME BIEN Y ACERTARÁS MATEMÁTICAS Y CULTURA B O L E T Í N.08.009 No. 9 COORDINACIÓN DE MATEMÁTICAS CULTURA DUERME BIEN Y ACERTARÁS CULTURA Si reflexioamos u poco, y observamos a uestro alrededor, os damos cueta que e la actualidad

Más detalles

Denición 1. R es un restángulo en R n si es un conjunto de la forma

Denición 1. R es un restángulo en R n si es un conjunto de la forma Uidad Itegrales Múltiples. Itegral de ua fució de dos variables como volume Deició. es u restágulo e si es u cojuto de la forma [a, b ]... [a, b ] dode cada [a i, b i ] es u itervalo cerrado de úmeros

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile 12.4. Raíces de la uidad Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Itroducció al Álgebra 08-1 Importate: Visita regularmete http://www.dim.uchile.cl/~algebra.

Más detalles

ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL.

ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. U itervalo de cofiaza, para u parámetro poblacioal θ, a u ivel de cofiaza (1 ) 100 %, o es más que u itervalo (L i, L s

Más detalles

Matemáticas Discretas Inducción y Recursión

Matemáticas Discretas Inducción y Recursión Coordiació de Ciecias Computacioales - INAOE Matemáticas Discretas Iducció y Recursió Cursos Propedéuticos 00 Ciecias Computacioales INAOE Iducció y recursió Geeralidades Iducció de úmeros aturales Iducció

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

Integral de una función

Integral de una función Itegral de ua fució Itegral de ua fució Los coceptos de primitiva e itegral idefiida La itegració de ua fució es el paso iverso a la derivació de ua fució. Para defiir correctamete la itegral de ua fució,

Más detalles

Luis González Abril y Luis M. Sánchez-Reyes {luisgon, - Dpto. Economía Aplicada I Universidad de Sevilla

Luis González Abril y Luis M. Sánchez-Reyes {luisgon, - Dpto. Economía Aplicada I Universidad de Sevilla ETUDIO OBRE EL EXCEO DE AMPLITUD EN LA CONTRUCCIÓN DE INTERVALO DE CONFIANZA PARA LA MEDIA POBLACIONAL CON VARIANZA DECONOCIDA EN UNA POBLACIÓN NORMAL Luis Gozález Abril y Luis M. áchez-reyes {luisgo,

Más detalles

4.- Series. Criterios de convergencia. Series de Taylor y Laurent

4.- Series. Criterios de convergencia. Series de Taylor y Laurent 4.- Series. Criterios de covergecia. Series de Taylor y Lauret a) Itroducció. Series de fucioes reales. b) Covergecia de secuecias y series. c) Series de Taylor. d) Series de Lauret. e) Propiedades adicioales

Más detalles

Métodos Iterativos para resolución de sistemas de ecuaciones lineales.

Métodos Iterativos para resolución de sistemas de ecuaciones lineales. Métodos Iterativos para resolució de sistemas de ecuacioes lieales Roberto Leó V Jorge Costazo V robertoleo@gmailcom jcosta@ifutfsmcl 8 de agosto de 006 Motivació El problema de la resolució de sistemas

Más detalles

Significados escolares asociados a la derivada de orden superior

Significados escolares asociados a la derivada de orden superior Acta Latioamericaa de Matemática Educativa Vol.20 ASPECTOS NUMÉRICOS Y GRÁFICOS DE LA DERIVADA DE ORDEN SUPERIOR Ricardo Catoral Uriza, Mario Sáchez Aguilar y Jua Gabriel Molia Zavaleta Civestav-IPN, Cicata-IPN.

Más detalles

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce

Más detalles

Capítulo 4. Desarrollo de la investigación. A continuación presentamos los datos que finalmente proporcionaron las universidades

Capítulo 4. Desarrollo de la investigación. A continuación presentamos los datos que finalmente proporcionaron las universidades Capítulo 4 Desarrollo de la ivestigació 4.1 Datos dispoibles A cotiuació presetamos los datos que fialmete proporcioaro las uiversidades correspodietes, debido a políticas de cada uiversidad y pla de estudios

Más detalles

TRANSFORMADA RAPIDA DE FOURIER (FFT)

TRANSFORMADA RAPIDA DE FOURIER (FFT) Capítulo 6 TRASORADA RAPIDA DE OURIER (T) Los temas a tratar e el presete capítulo so: 6. Algoritmo T 6. T Iversa. 6.3 Implemetació Televisió Digital 6- La implemetació de la ec. (4.5) ivolucra u úmero

Más detalles

Apellidos y Nombre: Aproximación lineal. dy f x dx

Apellidos y Nombre: Aproximación lineal. dy f x dx INGENIERÍA DE TELECOMUNICACIÓN HOJA 0 Aproximació lieal Defiició (Diferecial).- Sea y = f ( x) ua fució derivable e u itervalo abierto que cotiee al úmero x, - La diferecial de x es igual al icremeto de

Más detalles

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:...

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 6 de julio de 5 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... Ejercicio Ejercicio Ejercicio Ejercicio 4 Ejercicio 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Cálculo II (0252) TEMA 6 SERIES DE POTENCIAS. Semestre

Cálculo II (0252) TEMA 6 SERIES DE POTENCIAS. Semestre Cálculo II (5) Semestre - TEMA 6 SERIES DE POTENCIAS Semestre - José Luis Quitero Julio Departameto de Matemática Aplicada UCV FIUCV CÁLCULO II (5) José Luis Quitero Las otas presetadas a cotiuació tiee

Más detalles

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como:

Otro ejemplo es la tasa de cambio del tamaño de una población (N), que puede expresarse como: SOLUCIÓN DE ECUACIONES DIFERENCIALES Autor: Keith Gregso Traducció: José Alfredo Carrillo Salazar Muchos sistemas diámicos puede represetarse e térmios de ecuacioes difereciales. Por ejemplo, la tasa de

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

La Serie de Fourier: estimación de observaciones económicas inexistentes

La Serie de Fourier: estimación de observaciones económicas inexistentes La Serie de Fourier: estimació de observacioes ecoómicas iexistetes Aaró Misael Percastre Gómez E el presete trabajo se pretede mostrar la Serie de Fourier (sf como ua alterativa para estimar observacioes

Más detalles

Cálculo Diferencial e Integral II 7 de agosto de Ejemplos que conducen al concepto de integral definida (Área bajo una curva, trabajo, etc.

Cálculo Diferencial e Integral II 7 de agosto de Ejemplos que conducen al concepto de integral definida (Área bajo una curva, trabajo, etc. Cálculo Diferecial e Itegral II 7 de agosto de 03 Tema Ejemplos que coduce al cocepto de itegral defiida Área bajo ua curva, trabajo, etc. Área parte Usado lo aterior trataremos de probar que el área de

Más detalles

PREGUNTA 1. 2x 5. x + (x + 1) 2x + 1. x (x 1) x x Indica con una X si son correctas o incorrectas las siguientes expresiones:

PREGUNTA 1. 2x 5. x + (x + 1) 2x + 1. x (x 1) x x Indica con una X si son correctas o incorrectas las siguientes expresiones: PREGUNTA 1 Idica co ua X si so correctas o icorrectas las siguietes expresioes: Leguaje ordiario Expresió algebraica Correcta Icorrecta A) Dismiuimos e cico uidades el doble del úmero de videojuegos de

Más detalles

Orden en los números naturales

Orden en los números naturales 88 Aritmética U istrumeto para medir usado fraccioes comues Refleioes adicioales Dividir ua uidad e partes iguales: El Teorema de Thales se refiere a dividir u segmeto e cualquier úmero de segmetos iguales.

Más detalles

Eje I: Números y Operaciones

Eje I: Números y Operaciones Colegio Provicial de Educació Secudaria Nº Gregorio Álvarez Maestro Patagóico C I C L O Eje I: Números y Operacioes L E C T I V O 0 1 8 ALUMNO: PROFESORA: MARÍA ELISA PALMAS Eje I: Números y Operacioes

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

DESIGUALDADES CLÁSICAS

DESIGUALDADES CLÁSICAS DESIGUALDADES CLÁSICAS PARA EL SEMINARIO DE PROBLEMAS (CURSO 017/018) ALBERTO ARENAS 1 Desigualdades etre medias La estrategia más geeral para probar desigualdades es trasformar la desigualdad a la que

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA X INFERENCIA ESTADÍSTICA Sea ua característica o variable aleatoria de la població objeto de estudio y sea ( X, X, X,..., X ) ua muestra aleatoria de dicha població. 1 3 U parámetro poblacioal es ua caracterizació

Más detalles

Series Infinitas. Una serie es la suma de los términos de una sucesión. Se representa una serie con

Series Infinitas. Una serie es la suma de los términos de una sucesión. Se representa una serie con ISFD Nº 3 "Dr. Julio C. Avaza" Profesor. Norerto Molia Alumas. Gutiérrez Graciela - Gutiérrez Jimea Series Ifiitas Ua serie es la suma de los térmios de ua sucesió. Se represeta ua serie co térmios a como

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales Uiversidad de Atofagasta Fac. de Ciecias Básicas Depto. de Matemáticas A. Alarcó, L. Media, E. Rivero, R. Zuñiga Segudo Semestre 204 Sistema de ecuacioes lieales El sistema de ecuacioes lieales a, + a,2

Más detalles

Guía de estudio para 2º año Medio

Guía de estudio para 2º año Medio Liceo Marta Dooso Espejo Medio Reforzamieto Guía de estudio para º año Medio El propósito de esta guía es hacer ua revisió de los pricipales coteidos tratados e el 1º año Medio durate el año 009. I. Números

Más detalles

Coeficientes Binomiales

Coeficientes Binomiales Uiversidad de los Ades Facultad de Ciecias Ecoómicas y Sociales Escuela de Estadística Coeficietes Biomiales Prof. Gudberto José Leó Ragel MÉRIDA- VENEZUELA, 5 Profesor Gudberto Leó Uiversidad de Los Ades

Más detalles

GUINV004M2-A17V1. Guía: Operando en un nuevo conjunto numérico

GUINV004M2-A17V1. Guía: Operando en un nuevo conjunto numérico Matemática GUINV004M2-A17V1 Guía: Operado e u uevo cojuto umérico Matemática - Segudo Medio Secció 1 Me cocetro Objetivos Idetificar los úmeros irracioales como úmeros decimales que tiee desarrollo ifiito

Más detalles

Funciones Integrables. Lema 1. Sena A y B dos conjuntos tales que a A b B ocurre que a b. Sean A A y B B tales que sup A = ínf B entonces.

Funciones Integrables. Lema 1. Sena A y B dos conjuntos tales que a A b B ocurre que a b. Sean A A y B B tales que sup A = ínf B entonces. Uidad Itegrales Múltiples.3 Propiedades de las fucioes itegrables Fucioes Itegrables Lema. Sea A y B dos cojutos tales que a A b B ocurre que a b. Sea A A y B B tales que sup A = íf B etoces sup A = íf

Más detalles

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N.

Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N. Iducció matemática A meudo deseamos probar proposicioes de la forma N, p. Por ejemplo: 1 N, 1 + + 3 + + 1 + 1. N, + 4. 3 N, par implica par. Proposicioes y 3 se puede probar usado la técica de variable

Más detalles