Denición 1. R es un restángulo en R n si es un conjunto de la forma

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Denición 1. R es un restángulo en R n si es un conjunto de la forma"

Transcripción

1 Uidad Itegrales Múltiples. Itegral de ua fució de dos variables como volume Deició. es u restágulo e si es u cojuto de la forma [a, b ]... [a, b ] dode cada [a i, b i ] es u itervalo cerrado de úmeros reales. Al úmero d( (b a (b a lo llamaremos la diagoal de. Al úmero m( (b a... (b a se le llamará medida de. Se tiee que m( 0 y e el caso de esta medida es el área de, mietras que e 3 esta medida es el volume de. Dado u rectágulo ó 3 existe muchas formas de subdividirlo, trabajaremos co aquellas particioes que se obtiee de hacer subdivisioes e cada uo de los itervalos [a i, b i ] Deició. Sea [a, b ] [a, b ]. Si P i es ua partició del itervalo [a i, b i ] para cada i,..., decimos que P P P es ua partició de Deició 3. Sea P y Q dos particioes de, co P P P y Q Q Q. Decimos que Q rea a P si P i Q i para cada i,..., Facultad de Ciecias UNAM Cálculo Diferecial e Itegral IV Prof. Esteba ubé Hurtado Cruz

2 Uidad Itegrales Múltiples. Itegral de ua fució de dos variables como volume Dada ua fució de dos variables que está deida sobre el rectágulo cerrado [a, b] [c, d] {(x, y a x b, c y d} supoiedo que f(x, y 0. La gráca de f es ua superfície co ecuació z f(x, y. Sea S el sólido que esta ecima de y debajo de la gráca de f, es decir S {(x, y, z 3 0 z f(x, y, (x, y } El volume e este caso de S es ua aproximació al volume por debajo de la supercie -Ahora bie si dividimos el rectágulo e subrectágulos Para el itervalo [a,b] teemos m subitervalos [x i, x i ] co ua logitud de x b a m Para el itervalo [c,d] teemos subitervalos [y j, y j ] co ua logitud de y d c Al trazar rectas paralelas a los ejes coordeados a través de los putos extremos de las particioes formamos los subrectágulos ij [x i, x i ] [y j, y j ] {(x, y x i x x i, y j y y j } cada uo co u área igual a A x y. Si elegimos u puto muestra (x i, y j e cada ij, etoces podemos aproximar la parte de S que esta ecima de cada ij mediate ua caja rectágular delgada co base ij y altura f(x i, y j El volúme de la caja es el producto del área de su base por su altura, por lo tato ua aproximació al volúme de S es: m V f(x i, yj A Facultad de Ciecias UNAM Cálculo Diferecial e Itegral IV Prof. Esteba ubé Hurtado Cruz

3 Uidad Itegrales Múltiples. Itegral de ua fució de dos variables como volume Co u desarrollo aalogo para u cojuto S el sólido que esta ecima de y ecima de la gráca de f, es decir S {(x, y, z 3 0 f(x, y z (x, y } Obteemos tambié ua aproximació al volume que se ecuetra por debajo de la supercie Si cosideramos ahora M ij sup{f(x i, y j } y m ij íf{f(x i, y j } co (x i, y j ij podemos deducir que m m m ij ij V (S M ij ij Deició 4. Sea f ua fució (de valores reales deida y acotada sobre u rectágulo coteido e y P ua partició de. Si ij, i,.., m, j,..., so los subrectágulos de iducidos por la partició P, deimos la suma iferior de f correspodiete a la partició P deotada por S(f, p como S(f, p m m ij ij Aalogamete deimos la suma superior de f correspodiete a la partició P deotada por S(f, p como S(f, p Estas sumas tiee ua serie de propiedades m M ij ij Proposició. Si P es cualquier partició de, etoces Demostració. Ejercicio de la tarea S(f, P S(f, P Proposició. Si P, Q P (Particioes del rectágulo. Si Q rea a P etoces Demostració. Ejercicio de la tarea S(f, P S(f, Q y S(f, Q S(f, P Facultad de Ciecias UNAM Cálculo Diferecial e Itegral IV Prof. Esteba ubé Hurtado Cruz 3

4 Uidad Itegrales Múltiples. Itegral de ua fució de dos variables como volume Proposició 3. Si P y Q so cualesquiera dos particioes del rectágulo etoces se cumple Demostració. Ejercicio de la tarea S(f, P S(f, Q Deotaremos por S(f al cojuto de todas las sumas iferiores de ua fució f (Deida sobre el rectágulo y como S(f al cojuto de todas las sumas superiores es decir S(f {S(f, P P P } S(f {S(f, P P P } Deició 5. Al supremo del cojuto S(f lo llamamos itegral iferior de f sobre y se puede deotar f. Y al ímo del cojuto S(f lo llamamos itegral superior de f sobre y podemos deotar f Deició 6. Sea f : acotada sobre el rectágulo. Decimos que f es itegrable segú iema sobre si se tiee que la itegral iferior y la itegral superior de f sobre so iguales. Es decir f E este caso, a este úmero lo llamaremos la itegral de f y lo deotarremos por f Ejemplo Calcular f y f para f(x, y x + 4y y [0, ] [0, ] Solució Teemos que para [0, ] cosideramos ua partició P {x 0, x,..., x } co logitud 0 f de esta maera se tiee que x i i y x i i. Mietras que para [0, ] cosideramos ua partició P {y 0, y,..., y } co logitud 0 esta maera se tiee que y j j y y j j. de Facultad de Ciecias UNAM Cálculo Diferecial e Itegral IV Prof. Esteba ubé Hurtado Cruz 4

5 Uidad Itegrales Múltiples. Itegral de ua fució de dos variables como volume Para todo rectágulo ij, M ij sup{f(x i,j x ij [x i, x i ] [y j, y j ]} x i + 4y j y m ij sup{f(x i,j x ij [x i, x : i] [y j, y j ]} x i + 4y j S(f, P ( (x i + 4y j ( ( i + 4j ( 3 ( (i 5 + ( + i ( (( Ahora bie para se tiee que: ( 3 S(f, P ( ( i ( i+4j 5 i + 3 ( ( i + 4j ( ( ( ( 3 (i 5+4 i ( ( ( 3 + ( ( f sup{s(f, P } lím S(f, P lím (i + 4j ( 3 (x i + 4y j ( 3 i+4 i ( ( ( ( + ( i + 4 j ( ( 3 ( ( f if{s(f, P } lím S(f, P lím ( + ( + ( ( ( ( + 4( + + Facultad de Ciecias UNAM Cálculo Diferecial e Itegral IV Prof. Esteba ubé Hurtado Cruz 5

Entonces el volumen del k-ésimo cilindro es. n n) πar2 k 2. k 2 = πar2 k 2 n(n + 1)(2n + 1) 6

Entonces el volumen del k-ésimo cilindro es. n n) πar2 k 2. k 2 = πar2 k 2 n(n + 1)(2n + 1) 6 Uidad 1 Itegrales Múltiples 1.2 Itegral de ua fució de dos variables como volume Volumees Cuado deimos volume aceptaremos el hecho de que si se trata de u cubo de lado a etoces V cubo) = a 3 y si se trata

Más detalles

Funciones Integrables. Lema 1. Sena A y B dos conjuntos tales que a A b B ocurre que a b. Sean A A y B B tales que sup A = ínf B entonces.

Funciones Integrables. Lema 1. Sena A y B dos conjuntos tales que a A b B ocurre que a b. Sean A A y B B tales que sup A = ínf B entonces. Uidad Itegrales Múltiples.3 Propiedades de las fucioes itegrables Fucioes Itegrables Lema. Sea A y B dos cojutos tales que a A b B ocurre que a b. Sea A A y B B tales que sup A = íf B etoces sup A = íf

Más detalles

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n Uidad 5 Covergecia Uiforme 5.1 Series de potecias y radio de covergecia. Serie de Potecias Deició 1. A ua serie de la forma a () dode a 1, a 2,..., a,... so costates y c R es jo, se le llama serie de potecias

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Cálculo Diferencial e Integral II 7 de agosto de Ejemplos que conducen al concepto de integral definida (Área bajo una curva, trabajo, etc.

Cálculo Diferencial e Integral II 7 de agosto de Ejemplos que conducen al concepto de integral definida (Área bajo una curva, trabajo, etc. Cálculo Diferecial e Itegral II 7 de agosto de 03 Tema Ejemplos que coduce al cocepto de itegral defiida Área bajo ua curva, trabajo, etc. Área parte Usado lo aterior trataremos de probar que el área de

Más detalles

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n ema 3 Series de Fourier. Hemos visto, e el tema 8, que alguas fucioes reales puede represetarse mediate su desarrollo e serie de potecias, lo que sigifica que puede aproximarse mediate poliomios. Si embargo,

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas.

Lección 2. Integrales y aplicaciones. 1. Integral definida: área comprendida entre dos curvas. 1. Itegral defiida: área compredida etre dos curvas. Uo de los grades logros de la geometría clásica fue el cálculo de áreas y volúmees de figuras como triágulos, esferas o coos mediate ua fórmula. E esta

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

Función Logaritmo. 1 t dt, x > 0. ln x =

Función Logaritmo. 1 t dt, x > 0. ln x = Uidad 3 Fució Logaritmo Epoecial 3. Logaritmo a través de la itegral propiedades Fució Logaritmo Deició. Deimos la fució Logaritmo Natural l : (0, + R l = t dt, > 0 Observacioes: (a l = 0 Demostració.

Más detalles

SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles 10 de agosto del Solucionario

SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles 10 de agosto del Solucionario SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles de agosto del ESCUELA DE MATEMÁTICA Segudo Eame Parcial Cálculo I PROYECTO MATEM Tiempo Probable: horas Solucioario. Use

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias.

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias. Sesió 27 Series de potecias Temas Series de potecias. Itervalo y radio de covergecia de ua serie de potecias. Capacidades Coocer y compreder el cocepto de serie de potecias. Determiar el itervalo y el

Más detalles

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales)

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales) Itroducció a las Fucioes Vectoriales (Fucioes de R R 1 Fucioes de R e R (Fucioes Vectoriales Llamaremos fució vectorial de variable real o simplemete fució vectorial, a aquellas co domiio e u subcojuto

Más detalles

1 Primeras aproximaciones a la integral de una función cuadrática

1 Primeras aproximaciones a la integral de una función cuadrática Cátedra de Matemática Matemática Hoja : Aproximacioes a la itegral Facultad de Arquitectura Uiversidad de la República Primer semestre Defiirlaitegralcomoelárea bajo u gráfico os efreta al problema de

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales)

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales) Itroducció a las Fucioes Vectoriales (Fucioes de R R 1 Fucioes de R e R (Fucioes Vectoriales Llamaremos fució vectorial de variable real o simplemete fució vectorial, a aquellas co domiio e u subcojuto

Más detalles

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES MATE 3032 - DR. UROYOÁN R. WALKER. Sucesioes Teorema.. Sucesioes mootóicas acotadas coverge. Ejemplo.2. Sea {a } la sucesió deida recursivamete

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia...

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia... covergecia este capítulo teemos como objetivo demostrar las propiedades más importates de la Itegral de Lebesgue. teemos que demostrar todavía las propiedades fudametales de liealidad y aditividad respecto

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen Criterio de Comparació Si a 0 y b 0. Si existe ua costate C > 0 tal que a Cb etoces la covergecia de b implica la covergecia de a. Ejemplo.- Sabemos que la serie coverge a, pero como (+), etoces la serie

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 3: Series de térmios positivos. Criterios de covergecia. Series de térmios positivos Elaborado por los profesores Edgar Cabello y Marcos Gozález La característica fudametal de ua serie cuyos

Más detalles

PRÁCTICA INTEGRACIÓN MÚLTIPLE. SUMAS DE RIEMANN CURSO CÁLCULO II. Práctica 1 (7/02/2017)

PRÁCTICA INTEGRACIÓN MÚLTIPLE. SUMAS DE RIEMANN CURSO CÁLCULO II. Práctica 1 (7/02/2017) PÁCTICA INTEGACIÓN MÚLTIPLE. SUMAS DE IEMANN CUSO 206-207 CÁLCULO II Prácticas Matlab Práctica (7/02/207) Objetivos o o o Calcular itegrales dobles sobre rectágulos mediate sumas de iema. epresetar superficies

Más detalles

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

FUNCIONES VECTORIALES DE VARIABLE ESCALAR CAPITULO II CALCULO II Competecia FUNCIONES VECTORIALES DE VARIABLE ESCALAR Recooce y aplica satisfactoriamete las operacioes, procedimietos, reglas y métodos del cálculo itegral y diferecial e las fucioes

Más detalles

Apellidos y Nombre: Aproximación lineal. dy f x dx

Apellidos y Nombre: Aproximación lineal. dy f x dx INGENIERÍA DE TELECOMUNICACIÓN HOJA 0 Aproximació lieal Defiició (Diferecial).- Sea y = f ( x) ua fució derivable e u itervalo abierto que cotiee al úmero x, - La diferecial de x es igual al icremeto de

Más detalles

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

1) Considera el sistema de ecuaciones:

1) Considera el sistema de ecuaciones: SESIÓN 4: Álgebra lieal umérica ) Cosidera el sistema de ecuacioes: x + aa aa y a) Calcula las matrices iterativas de los métodos de Jacobi y Gauss-Seidel. b) Para qué valores de a coverge el método de

Más detalles

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:...

ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 16 de julio de 2015 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... ANÁLISIS MATEMÁTICO I - EXAMEN FINAL - 6 de julio de 5 APELLIDO Y NOMBRE:... CORRIGIÓ:...REVISÓ:... Ejercicio Ejercicio Ejercicio Ejercicio 4 Ejercicio 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11.

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11. rueba Itegral Lapso 03-7-76-77 /0 Uiversidad Nacioal Abierta Matemática I (Cód. 7-76-77) icerrectorado Académico Cód. Carrera: 6-36-80-08- -60-6-6-63 Fecha: 0 0-0 MODELO DE RESUESTAS Objetivos al. OBJ

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

TALLER SOLUCIÓN NUMÉRICA DE ECUACIONES

TALLER SOLUCIÓN NUMÉRICA DE ECUACIONES . Apliue los métodos de bisecció y de la regla falsa para ecotrar todas las solucioes detro de 0 para 7 + 6 = 0. 5. Apliue el método de bisecció para solucioes eactas detro de 0 para: a. = 0 R: 0.68. Apliue

Más detalles

Sucesiones. Límite de una

Sucesiones. Límite de una Capítulo 3 Sucesioes. Límite de ua sucesió 3.. Itroducció La oció de sucesió es u istrumeto importate para el estudio de u gra úmero de problemas relativos a las fucioes. Ua sucesió es, simplemete, ua

Más detalles

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función Tema 8 Derivabilidad y reglas de derivació 8. Derivada de ua fució f : I R es derivable e a I si eiste el límite que llamaremos f 0 (a) f() f(a) lim a a Ejercicio 8.. Si f() 3 calcular f 0 () f(a + ) f(a)

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

Listado para la Evaluación 2 Cálculo II (527148)

Listado para la Evaluación 2 Cálculo II (527148) Uiversidad de Cocepció Facultad de Ciecias Físicas y Matemáticas Departameto de Matemática Área, Volume y Logitud de arco. Listado para la Evaluació Cálculo II (5748). Calcular el área ecerrada por la

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Licenciatura en Matemáticas Soluciones del examen final de Cálculo de junio de n n 2 + 2

Licenciatura en Matemáticas Soluciones del examen final de Cálculo de junio de n n 2 + 2 Liceciatura e Matemáticas Solucioes del exame fial de de juio de Ejercicio. a) Calcular el ite de la sucesió b) Estudiar la covergecia de la serie Solució. a) Pogamos A + el ite de la sucesió A B + + +

Más detalles

Sucesiones I Introducción

Sucesiones I Introducción Temas Qué es ua sucesió? Notacioes y coceptos relacioados. Maeras de presetar ua sucesió. Gráfico de sucesioes. Capacidades Coocer y compreder el cocepto de sucesió. Coocer y maejar las diferetes maeras

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

Práctica 8: Series - Convergencia Uniforme - Espacios de Funciones

Práctica 8: Series - Convergencia Uniforme - Espacios de Funciones Cálculo Avazado Segudo Cuatrimestre de 2005 Práctica 8: Series - Covergecia Uiforme - Espacios de Fucioes Ejercicio. i) E cada uo de los casos siguietes, hallar el límite putual de la sucesió (f ) N deida

Más detalles

Desigualdad entre las medias Aritmética y Geométrica

Desigualdad entre las medias Aritmética y Geométrica Desigualdad etre las medias Aritmética y Geométrica Jorge Tipe Villaueva Dados reales positivos a 1, a,..., a, defiimos la media aritmética de a 1, a,..., a como el úmero a 1 + a +... + a y la media geométrica

Más detalles

Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Series Infinitas

Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Series Infinitas Uiversidad Nacioal Autóoma de México Liceciatura e Ecoomía Cálculo Diferecial e Itegral Series Ifiitas El ifiito! Nigua cuestió ha comovido ta profudamete el espíritu del ser humao. David Hilbert Defiició

Más detalles

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene:

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene: Ejercicio. Obteer los cuatro primeros térmios o ulos de la solució e forma de serie de potecias de x del problema de valores iiciales < (x + )y y = y() = : y () = Solució Como os pide que resolvamos u

Más detalles

Gráfica de la función

Gráfica de la función Uiversidad Diego Portales Facultad de Igeiería. Istituto de Ciecias Básicas Asigatura: Cálculo II LABORATORIO Nº 5 Itegració aproximada Coteido: Estimació del puto medio. Regla del Trapecio. Regla de Simpso

Más detalles

VECTORES. A partir de la representación de, como una recta numérica, los elementos

VECTORES. A partir de la representación de, como una recta numérica, los elementos VECTORES VECTORES Los ectores, que era utilizados e mecáica e la composició de fuerzas y elocidades ya desde fies del siglo XVII, o tuiero repercusió etre los matemáticos hasta el siglo XIX cuado Gauss

Más detalles

Ayudantia 8 - MAT1116

Ayudantia 8 - MAT1116 Ayudatia 8 - MAT1116 14 de Septiembre del 2017 Defiició Puto Adherete: Sea X R, se dice que a es u puto adherete a X, si a = lím x co x X Defiició Clausura de u cojuto: Llamaremos clausura de u cojuto

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Cálculo. 1 de septiembre de Cuestiones

Cálculo. 1 de septiembre de Cuestiones Cálculo. de septiembre de 005 Cuestioes. Si ua fució f(x, y) es cotiua e (0, 0), etoces: a) f(0, 0) = 0. b) f(x, y) = 0. (x,y) (0,0) c) f es difereciable e (0,0). d) igua de las ateriores. Si ua fució

Más detalles

PROPIEDADES DE LAS SUCESIONES. Un tipo importante de sucesiones son las llamadas sucesiones monótonas.

PROPIEDADES DE LAS SUCESIONES. Un tipo importante de sucesiones son las llamadas sucesiones monótonas. ANÁLISIS MATEMÁTICO BÁSICO. PROPIEDADES DE LAS SUCESIONES. U tipo importate de sucesioes so las llamadas sucesioes moótoas. Defiició.. a: Ua sucesió de úmeros reales ( ) = se llama moótoa creciete si +

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE TEMA CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE Derivada de ua ució e u puto Sea : D y u puto iterior de Se dice que es derivable e eiste lim Dicho límite recibe el ombre de derivada de e Notas ) Notaremos

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Análisis Matemático IV

Análisis Matemático IV Aálisis Matemático IV Relació 4. Ejercicios resueltos Ejercicio : Estudiar la covergecia putual y uiforme de las siguietes series fucioales e los cojutos que se idica (i) Σ x =! e x e [0, ] Primero, estudiamos

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS Asigatura : Cálculo Numérico, MAT-23. Profesor : Emilio Cariaga L. Periodo : er. Semestre 205. SERIES DE POTENCIAS

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

Soluciones de los problemas de la HOJA 2B

Soluciones de los problemas de la HOJA 2B ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Igeiería Idustrial (GITI/GITI+ADE) Igeiería de Telecomuicació (GITT/GITT+ADE) CÁLCULO Curso 5-6 Solucioes de los

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

si G es abierto. La función del conjunto m tiene las siguientes propiedades: de partes de se dice que es una , entonces E.

si G es abierto. La función del conjunto m tiene las siguientes propiedades: de partes de se dice que es una , entonces E. LA INTGRAL D LBSGU PARA FUNCIONS D UNA SOLA VARIABL RSULTADOS TÓRICOS LA MDIDA D LBSGU CONJUNTOS MDIBLS Dado u couto abierto o vació G de la recta real, existe ua amilia iita o umerable {V: œl}, ormada

Más detalles

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k)

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k) Permutacioes. E Matemáticas, dado u cojuto fiito co todos sus elemetos diferetes, llamamos permutació a cada ua de las posibles ordeacioes de los elemetos de dicho cojuto. Por ejemplo, e el cojuto 1, 2,

Más detalles

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos.

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos. Cálculo Tarea y Problema. Calcula el supremo y el ífimo de los siguietes cojutos. a) A = {x : 0 x }. Es imediato que sup A = e íf A = 0. b) A = {x : 0 < x < }. Es imediato que sup A = e íf A = 0. c) A

Más detalles

SERIES E INTEGRALES DE FOURIER

SERIES E INTEGRALES DE FOURIER Uiversidad de Satiago de Chile Autores: Miguel Martíez Cocha Facultad de Ciecia Carlos Silva Corejo Departameto de Matemática y CC Emilio Villalobos Marí Part I SERIES E INTEGRAES DE FOURIER (Ejemplar

Más detalles

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II)

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II) Semaa 0 [/24] 2 de mayo de 2007 Sadwich de sucesioes Semaa 0 [2/24] Límites y Orde. Teorema Sea u ) y w ) sucesioes covergetes a u y w, respectivamete. Si 0 tal que para 0 se cumple que etoces u w. u w

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) =

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) = TEMA 9: LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN. 9. Cocepto de límite lateral. Límite. 9. Operacioes co fucioes covergetes. 9.3 Cálculo de límites. 9.4 Cotiuidad de ua fució. 9.5 Asítotas: Verticales, horizotales

Más detalles

MATEMATIKA SPANYOL NYELVEN MATEMÁTICAS

MATEMATIKA SPANYOL NYELVEN MATEMÁTICAS Matematika spayol yelve emelt szit 06 ÉRETTSÉGI VIZSGA 006 május 9 MATEMATIKA SPANYOL NYELVEN MATEMÁTICAS EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA EXAMEN ESCRITO DE BACHILLERATO DE NIVEL SUPERIOR JAVÍTÁSI-ÉRTÉKELÉSI

Más detalles

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x ALGUNOS PROBLEMAS PROCEDENTES DE EXÁMENES PRECEDENTES.. problemas de ites y series. Pruebe, usado la defiició, que: x 3/ x 8 x = 4. Solució. Dado ɛ > 0 queremos que x 8 ( 4 x, sea meor que ɛ cuado x esté

Más detalles

Marco Teórico n = i = 2. Deducción: Si la serie se suma dos veces de la siguiente forma:

Marco Teórico n = i = 2. Deducción: Si la serie se suma dos veces de la siguiente forma: Uiversidad de Sa Carlos de Guatemala Teoría de Cojutos Estudiate: Roald Oliverio Chubay Gallia -6 de mayo 0- Marco Teórico Para el presete texto se deduce alguas expresioes y luego se demuestra, para otras

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

1ª Prueba de Evaluación Continua 20 de septiembre de 2011 Tipo I

1ª Prueba de Evaluación Continua 20 de septiembre de 2011 Tipo I 1ª Prueba de Evaluació Cotiua 0 de septiembre de 011 Tipo I 1.- La medida del radio de ua pieza circular ha dado 15cm co ua cota de error de 0,0cm. a. Aproximar, mediate difereciales, el porcetaje del

Más detalles

EXAMEN FINAL 15 de enero de Titulación: Duración del examen: 2 horas 30 Fecha publicación notas: Fecha revisión examen:

EXAMEN FINAL 15 de enero de Titulación: Duración del examen: 2 horas 30 Fecha publicación notas: Fecha revisión examen: CÁLCULO I EXAMEN FINAL 15 de eero de 16 Apellidos: Titulació: Duració del exame: horas 3 Fecha publicació otas: -1-16 Fecha revisió exame: -1-16 Todas las respuestas debe de estar justificadas acompañádolas

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

1. (7 puntos)encuentre el área de la región acotada por la curva en el intervalo 0.

1. (7 puntos)encuentre el área de la región acotada por la curva en el intervalo 0. Uiversidad de Puerto Rico. Recito Uiversitario de Mayagüez Departameto de Ciecias Matemáticas Tercer Exame Departametal Mate 3032 4 de abril de 206 Nombre. Secció Número de Estudiate Profesor Número de

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García EJERCICIOS DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Ídice 3. Sucesioes y series. 3.. Sucesioes de úmeros reales..............................

Más detalles

Probabilidades y Estadística (M) Práctica 8 1 cuatrimestre 2012 Convergencias - Ley de los Grandes Números

Probabilidades y Estadística (M) Práctica 8 1 cuatrimestre 2012 Convergencias - Ley de los Grandes Números robabilidades y Estadística (M) ráctica 8 cuatrimestre 22 Covergecias - Ley de los Grades Números. Ua máquia produce artículos de 3 clases: A, B y C e proporcioes 25 %, 25 % y 5 % respectivamete. Las logitudes

Más detalles

3.2. Teoremas de Dini

3.2. Teoremas de Dini 3.2. TEOREMAS DE DINI 63 3.2. Teoremas de Dii Defiició 3.11. Sea X u espacio métrico y {f } ua sucesió e C(X). Decimos que la sucesió {f } es moótoa e si para todo x X se cumple f (x) f +1 (x), 1, o bie

Más detalles

Series alternadas. n n. Es decir sus términos son alternadamente positivos y negativos. Se analiza su comportamiento utilizando el siguiente teorema:

Series alternadas. n n. Es decir sus términos son alternadamente positivos y negativos. Se analiza su comportamiento utilizando el siguiente teorema: So series de la forma Series alteradas + ( ) a o ( ) a co a > = =. Es decir sus térmios so alteradamete positivos y egativos. Se aaliza su comportamieto utilizado el siguiete teorema: Teorema de Leibiz

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

Desigualdad de Tchebyshev

Desigualdad de Tchebyshev Desigualdad de Tchebyshev Si la Esperaza y la variaza de la variable X so fiitas, para cualquier úmero positivo k, la probabilidad de que la variable aleatoria X esté e el itervalo La probabilidad de que

Más detalles

Unidad 4 Ecuaciones de segundo grado. 1 EJERCICIOS PARA ENTRENARSE

Unidad 4 Ecuaciones de segundo grado. 1 EJERCICIOS PARA ENTRENARSE Uidad Ecuacioes de segudo grado. Escribe co ua icógita los siguietes datos: EJERCICIOS PARA ENTRENARSE a U úmero su cuadrado. b U úmero su raíz cuadrada. c Los cuadrados de dos úmeros cosecutivos. d Los

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular

No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular Repaso: Propiedades fudametales del Valor absoluto: x 0 x = 0 x = 0 xy = x y x + y x + y x = x x y = 0 x = y x y x z + z y x y x y No egatividad Defiició positiva Propiedad multiplicativa Desigualdad triagular

Más detalles

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices:

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices: EJERCICIOS PROPUESTOS. Tarea 3. Cosiderar las siguietes particioes de S 5 σ = 354 τ = 354 π = 453. a) Determiar el sigo de cada ua de las ateriores particioes. b) Ecotrar: τ o σ ; π o σ ; σ y τ.. Usar

Más detalles