Práctica 7. Integración de funciones de dos variables

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 7. Integración de funciones de dos variables"

Transcripción

1 Práctica 7. Integración de funciones de dos variables Integración con Mathematica Recuerda que Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión, variable] Calcula la integral indefinida de la expresión dada con respecto a la variable indicada Integrate[expresión,{variable,a,b}] Calcula la integral definida de la expresión dada con respecto a la variable indicada en el intervalo [a,b]. Ambas instrucciones pueden también indicarse directamente mediante los símbolos: Ÿ Ñ Ñ (integral indefinida) Ÿ Ñ Ñ Ñ Ñ (integral definida) In[]:= Out[]= 6 48 Ix y + x + 7 y M x y In[]:= IntegrateAIntegrateAx y + x + 7 y, 8x,, 6<E, 8y,, <E Out[]= 48 La opción FilledPlot será de gran utilidad porque nos permite representar gráficamente la región comprendida entre dos funciones. Para poder utilizar esta instrucción es necesario cargar el paquege gráfico << Graphics`FilledPlot`

2 Practica7_Integrales_dobles.nb In[]:= << Graphics`FilledPlot` FilledPlotA9x, x + =, 8x,, <E General::obspkg : Graphics`FilledPlot` is now obsolete. The legacy version being loaded may conflict with current Mathematica functionality. See the Compatibility Guide for updating information. à Out[4]= Ejemplo Calcular el valor de las siguientes integrales iteradas: ü (a) Ÿ-Ÿ-x - y y x Dibujamos el dominio de integración (en este caso es un rectángulo). In[5]:= <, 8x,, <D Out[6]= Integramos primero respecto a y In[7]:= Out[7]= x Hx ^ y ^ L y y el resultado que hemos obtenido lo integramos con respecto a x

3 Practica7_Integrales_dobles.nb In[8]:= Out[8]= x x También podemos calcular la integral doble directamente: In[9]:= Out[9]= 8 Hx ^ y ^ L y x ü (b) Ÿ 4 Ÿ x ye -x y x Dibujamos el dominio de integración In[]:= PlotB:, x >, 8x,, 4<, Filling 8 8<<F Out[]= Integramos primero respecto a y In[]:= Out[]= x H y x L y x H + xl y el resultado que hemos obtenido lo integramos con respecto a x 4 In[]:= H x H + xll x Out[]= In[4]:= 4 NB H x H + xll xf Out[4]=.9467

4 4 Practica7_Integrales_dobles.nb Ejemplo Dibujar la región D cuya área está dada por la 4-x integral iterada Ÿ -Ÿ- y x. Después cambiar el orden 4-x de integración y comprobar que ambas integrales coinciden. Dibujamos el dominio de integración In[5]:= FilledPlotB: 4 x, 4 x >, 8x,, <, AspectRatio AutomaticF Out[6]= Estamos calculando el área del círculo x + y 4. Evaluamos la integral iterada 4-x In[7]:= y x x Out[7]= 4 π Si intercambiamos el orden de integración - y y para cada valor fijo de y necesitamos calcular los límites de integración para x In[8]:= ^ + y ^ 4, xd Out[8]= ::x 4 y >, :x 4 y >> Evaluamos la integral iterada intercambiando el orden de integración.

5 Practica7_Integrales_dobles.nb 5 4-y In[9]:= x y y Out[9]= 4 π Ejemplo. Evaluar Ÿ Ÿx -y y x cambiando el orden de integración. Dibujamos el dominio de integración In[]:= <, 8x,, <, AspectRatio AutomaticD..5 Out[]= Si intercambiamos el orden de integración y y para cada valor fijo de y se tiene que x y. Evaluamos la integral iterada intercambiando el orden de integración. In[]:= y -y x y Out[]= 4 In[]:= y -y x y Out[]= 4 Ejemplo 4. Utilizar coordenadas polares para evaluar la integral doble ŸŸ D fhx, yl A siendo

6 6 Practica7_Integrales_dobles.nb fhx, yl = x + y, D =9Hx, yl : x + y 4, x, y =. Se trata de un cuarto de círculo de radio, que en coordenadas polares se expresa como < r, q pê. Dibujamos el dominio de integración en coordenadas polares In[4]:= RegionPlotA9x + y 4, x, y =, 8x,, <, 8y,, <E Out[5]= πê In[6]:= Hr + r r r θ Out[6]= 6 Comparamos con el valor de la integral en coordenadas rectangulares In[7]:= 4 x^ Hx + yl y x Out[7]= 6 Ejercicios propuestos Ejercicio. Calcular ŸŸ D + x + y A siendo D={(x,y)ŒR : x, x y x}.

7 Practica7_Integrales_dobles.nb 7 Ejercicio. Calcular ŸŸ D x y A siendo D la región acotada por las curvas y=5x e y=x. Ejercicio. Siendo D={(x,y) Œ R : -x + 5 y, x- y} se pide: a) Representar gráficamente el recinto D. b) Calcular el área del recinto mediante integración doble. c) Invertir el orden de integración. Ejercicio 4. Calcular la integral ŸŸ D x + y A haciendo el cambio a coordenadas polares, siendo D={(x,y)ŒR : x + y 9, y }.

Práctica 7. Integración de funciones de dos variables. Teorema de Fubini. Cambio de variable a coordenadas polares.

Práctica 7. Integración de funciones de dos variables. Teorema de Fubini. Cambio de variable a coordenadas polares. Práctica 7. Integración de funciones de dos variables. Teorema de Fubini. Cambio de variable a coordenadas polares. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería

Más detalles

1. Cálculo de límites para funciones de dos variables

1. Cálculo de límites para funciones de dos variables . Cálculo de límites para funciones de dos variables Los límites de funciones de dos variables exigen, en general, un proceso de cálculo difícil. En el presente apartado se hará un análisis sobre los siguientes

Más detalles

Práctica 02 Gráficos 2D con Mathematica

Práctica 02 Gráficos 2D con Mathematica Práctica 0 Gráficos D con Mathematica Mathematica dispone de varias instrucciones para representar gráficamente funciones,curvas o elementos geométricos en el plano.la instrucción Plot nos permite representar

Más detalles

APÉNDICE 2: GRÁFICOS 2D y 3D.

APÉNDICE 2: GRÁFICOS 2D y 3D. 98 Cálculo avanzado con Mathematica.nb ToCharacterCode "hola\nhola" 104, 111, 108, 97, 10, 104, 111, 108, 97 FromCharacterCode hola hola LISTA DE CARACTERES DE UNA CADENA Characters[string] devuelve las

Más detalles

Práctica 5 Cálculo integral y sus aplicaciones

Práctica 5 Cálculo integral y sus aplicaciones Práctica 5 Cálculo integral y sus aplicaciones 5.1.- Integración con Mathematica o Integrales indefinidas e integrales definidas Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión

Más detalles

2. Integrales dobles sobre regiones no rectangulares.

2. Integrales dobles sobre regiones no rectangulares. GRADO DE INGENIERÍA AEROESPACIAL. CRSO 0. Lección. Integrales múltiples.. Integrales dobles sobre regiones no rectangulares. Supongamos que tenemos una función f :(, ) f(, ) continua positiva cuo dominio

Más detalles

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5).

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5). 74 MÉTOOS NUMÉRICOS Informática de Sistemas - curso 9/1 Hojas de problemas Tema I - Cálculo diferencial e integral en varias variables I.1 Representación de funciones de dos variables 1. ibuja el plano

Más detalles

Integrales paramétricas e integrales dobles y triples.

Integrales paramétricas e integrales dobles y triples. Integrales paramétricas e integrales dobles y triples. Eleonora Catsigeras * 19 de julio de 2006 PRÓLOGO: Notas para el curso de Cálculo II de la Facultad de Ingeniería. Este texto es complementario al

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

Práctica 3. Derivadas parciales

Práctica 3. Derivadas parciales Práctica 3. Derivadas parciales Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión 1.- DERIVADAS PARCIALES Dada f@x, yd una función

Más detalles

Extremos de varias variables

Extremos de varias variables Capítulo 1 Extremos de varias variables Problema 1 Encontrar los extremos absolutos de la función fx, y) = xy en el conjunto A = x, y) IR : x + y 4, x 5/}. Solución: En primer lugar representamos el conjunto

Más detalles

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad 1 Funciones de varias variables Observación 1.1 Conviene repasar,enestepunto,lodadoeneltema8paratopología en R n : bolas,

Más detalles

Unidad V: Integración

Unidad V: Integración Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables

Más detalles

Tema 10: Límites y continuidad de funciones de varias variables

Tema 10: Límites y continuidad de funciones de varias variables Tema 10: Límites y continuidad de funciones de varias variables 1 Funciones de varias variables Definición 1.1 Llamaremos función real de varias variables atodafunciónf : R n R. Y llamaremos función vectorial

Más detalles

1 Función real de dos variables reales

1 Función real de dos variables reales Cálculo Matemático. Tema 10 Hoja 1 Escuela Universitaria de Arquitectura Técnica Cálculo Matemático. Tema 10: Funciones de dos variables. Curso 008-09 1 Función real de dos variables reales Hasta el momento

Más detalles

Funciones y gráficas (1)

Funciones y gráficas (1) Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes

Más detalles

2. Vector tangente y gráficas en coordenadas polares.

2. Vector tangente y gráficas en coordenadas polares. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 Vector tangente y gráficas en coordenadas polares De la misma forma que la ecuación cartesiana y = yx ( ) define una curva en el plano, aquella formada por los

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

4. Sucesiones y funciones

4. Sucesiones y funciones 1 4. Sucesiones y funciones Mathematica dispone de herramientas para hacer sumas de series numéricas, derivadas de funciones de una y varias variables, cálculo de primitivas de funciones de una variable,

Más detalles

1. Funciones de varias variables: representaciones gráficas, límites y continuidad.

1. Funciones de varias variables: representaciones gráficas, límites y continuidad. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Funciones de varias variables: representaciones gráficas, límites y continuidad. En el análisis de los problemas de la ciencia y de la técnica, las cantidades

Más detalles

-1 y 2 son mínimos relativos, pero sólo 2 podría ser un mínimo (absoluto). 0 es un máximo relativo, pero no es un máximo (absoluto)

-1 y 2 son mínimos relativos, pero sólo 2 podría ser un mínimo (absoluto). 0 es un máximo relativo, pero no es un máximo (absoluto) Máximos y mínimos relativos Dada una funci ón f definida sobre un intervalo I, un punto aœ I es un máximo relativo de f si existe un ε > 0 tal que para cualquier x que verifique x - a < ε (es decir, x

Más detalles

DISEÑO ASISTIDO POR ORDENADOR

DISEÑO ASISTIDO POR ORDENADOR Actividad: Dibujar utilizando CADStd DISEÑO ASISTIDO POR ORDENADOR 1. Introducción Algo aparentemente tan complicado como el manejo de un programa de dibujo técnico necesita iniciarse en dos conceptos

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1.- Se construye un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto. Epresar el volumen V de ese depósito en función del radio r del cilindro y de su altura h..-

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta.

Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta. Nivelación de Matemática MTHA UNLP 1 1. Desigualdades 1.1. Introducción. Intervalos Los números reales se pueden representar mediante puntos en una recta. 1 0 1 5 3 Sean a y b números y supongamos que

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA : Límites continuidad de funciones en R n. -. Dibuja cada uno de los subconjuntos de R siguientes. Dibuja su

Más detalles

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad) Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb

Más detalles

FUNCIÓN CUADRÁTICA. Los gráficos de as funciones cuadráticas tienen siempre un eje de simetría vertical. En este caso coincide con el eje y.

FUNCIÓN CUADRÁTICA. Los gráficos de as funciones cuadráticas tienen siempre un eje de simetría vertical. En este caso coincide con el eje y. FUNCIÓN CUADRÁTICA 5º AÑO 013 PROF. RUHL, CLAUDIA FUNCIÓN CUADRÁTICA BATÁN, ROMINA FORMA CANÓNICA FORMA POLINÓMICA FORMA FACTORIZADA Y = a. ( x h ) + k Y = a. x + b. x + c y = a. ( x x1 ). ( x x FORMA

Más detalles

Teoremas de la función implícita y de la función inversa

Teoremas de la función implícita y de la función inversa Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Teoremas de la función implícita y de la función inversa 1. El teorema de la función implícita 1.1. Ejemplos

Más detalles

a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica:

a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica: TEMA 10: REPRESENTACIÓN DE FUNCIONES. 10.1. DOMINIO. El dominio de definición de una función y = f{) (valores para los cuales eiste la función) es, en principio, todo ir, salvo que haya operaciones imposibles

Más detalles

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0 ANÁLISIS. (Junio 994) a) Encontrar las asíntotas de la curva f () = 2 3 2 4 b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. 2. (Junio

Más detalles

Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO

Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO Profesor : Nombre del Estudiante : Oficina : Sección : Horas de Oficina : I. Título del curso : Cálculo III II. Codificación

Más detalles

Lección 7 - Coordenadas rectangulares y gráficas

Lección 7 - Coordenadas rectangulares y gráficas Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano

Más detalles

REPRESENTACIONES GRÁFICAS: CONCEPTOS PREVIOS

REPRESENTACIONES GRÁFICAS: CONCEPTOS PREVIOS graficos.nb 1 REPRESENTACIONES GRÁFICAS: CONCEPTOS PREVIOS PLANO: CURVAS PLANAS 1) FORMA EXPLICITA : y=f(x) Ejemplo: y = x 2 2) FORMA PARAMETRICA : x x t y y t Comando: Plot Comando: ParametricPlot Ejemplo:

Más detalles

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

1 El plano y el espacio Euclídeos. Operaciones

1 El plano y el espacio Euclídeos. Operaciones Fundamentos Matemáticos de la Ingeniería. (Tema 8 Hoja 1 Escuela Técnica Superior de Ingeniería Civil e Industrial (Esp. en Hidrología Fundamentos Matemáticos de la Ingeniería. Tema 8: Cálculo diferencial

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

Halla dominio e imagen de las funciones

Halla dominio e imagen de las funciones Tema 1 Las Funciones y sus Gráficas Ejercicios Resueltos Ejercicio 1 Halla dominio e imagen de las funciones y Como no está definido si, es decir, si El recorrido o imagen será el conjunto de todos los

Más detalles

Hasta ahora hemos evitado entrar en la cuestión de qué significa el símbolo

Hasta ahora hemos evitado entrar en la cuestión de qué significa el símbolo Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Límites y continuidad 1. Límite de funciones de dos variables Hasta ahora hemos evitado entrar en la

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

RELACIÓN DE FUNCIONES. 1. Obtener, de forma razonada, el dominio de definición de las siguientes funciones:

RELACIÓN DE FUNCIONES. 1. Obtener, de forma razonada, el dominio de definición de las siguientes funciones: RELACIÓN DE FUNCIONES 1. Obtener, de forma razonada, el dominio de definición de las siguientes funciones: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ). Dibuja las siguientes funciones a trozos: ( ) { ( ) { ( )

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero 2013. Ejercicios Resueltos del Tema 2.2.5. Asignatura de Matemáticas Grado en Química UAM CSIC Grupo 9 Febrero Ejercicios Resueltos del Tema..5 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: y. Consejo: En todos los ejercicios es esencial dibujar el dominio

Más detalles

Funciones de varias variables

Funciones de varias variables Tema 5 Funciones de varias variables Supongamos que tenemos una placa rectangular R y determinamos la temperatura T en cada uno de sus puntos. Fijado un sistema de referencia, T es una función que depende

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa

Más detalles

EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x +

EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x + EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS).- La temperatura T, en grados centígrados, que adquiere una pieza sometida a un proceso viene dada en función del tiempo t, en horas, por la epresión: Tt t

Más detalles

Qcad. Es un programa de diseña asistido por ordenador en 2 dimensiones.

Qcad. Es un programa de diseña asistido por ordenador en 2 dimensiones. Qcad Es un programa de diseña asistido por ordenador en 2 dimensiones. 1. La ventana del Qcad Barra de títulos Barra de menús Barra de herramientas Área de dibujo Barra de herramientas de dibujo Barra

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

Introducción. Estadística 1. 1. Introducción

Introducción. Estadística 1. 1. Introducción 1 1. Introducción Introducción En este tema trataremos de los conceptos básicos de la estadística, también aprenderemos a realizar las representaciones gráficas y a analizarlas. La estadística estudia

Más detalles

Práctica 0. Introducción al Mathematica

Práctica 0. Introducción al Mathematica Práctica 0. Introducción al Mathematica El programa Mathematica constituye una herramienta muy potente para la realización de todo tipo de cálculos matemáticos: operaciones aritméticas, cálculo simbólico,

Más detalles

10 - Dibuja sin lápiz ni papel

10 - Dibuja sin lápiz ni papel 10 Dibuja sin lápiz ni p apel 01rsp.indd 119 119 12/30/13 9:55 AM En la lección 7 vimos como la electrónica y las computadoras han modificado la forma de crear e interpretar la música a lo largo del las

Más detalles

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II

Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II Escuela Técnica Superior de Ingeniería Universidad de Sevilla GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II CURSO 2015-2016 Índice general 1. Derivación de funciones

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

Un sistema experto desarrollado en el software Mathematica para analizar funciones de R en R

Un sistema experto desarrollado en el software Mathematica para analizar funciones de R en R Un sistema experto desarrollado en el software para analizar funciones de R en R VII FAST WORKSHOP ON APPLIED AND COMPUTATIONAL MATHEMATICS Robert Ipanaqué Chero ripanaquec@unp.edu.pe http://www.unp.edu.pe/pers/ripanaque

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD SEPTIEMBRE 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

Tema 14: Cálculo diferencial de funciones de varias variables II

Tema 14: Cálculo diferencial de funciones de varias variables II Tema 14: Cálculo diferencial de funciones de varias variables II 1 Desarrollos de Taylor en varias variables Vamos ahora a generalizar los desarrollos de Taylor que vimos para funciones de una variable.

Más detalles

Cuatro maneras de representar una función

Cuatro maneras de representar una función Cuatro maneras de representar una función Una función f es una regla que asigna a cada elemento x de un conjunto A exactamente un elemento, llamado f(x), de un conjunto B. Una función f es una regla que

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

Horria - Página: 1 / 9

Horria - Página: 1 / 9 013705754 Bai / Si 01627621A Bai / Si 0231404 Bai / Si 10846107C Bai / Si 11921968X Bai / Si 11931151Q Bai / Si 14573708B Bai / Si 14586408S Bai / Si 14586961Q Bai / Si 15933872R Bai / Si 15999326C Bai

Más detalles

Funciones de dos o más variables. Gráficas. Curvas de nivel

Funciones de dos o más variables. Gráficas. Curvas de nivel Funciones de dos o más variables. Gráficas. Curvas de nivel 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos 1 Introducción 2 3 4 5 6 Índice Introducción 1 Introducción 2 3

Más detalles

Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular. Con la expresión seleccionada

Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular. Con la expresión seleccionada Integrales Definidas e Indefinidas Cómo calcular una integral indefinida (primitiva) o una integral definida? Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular Con la

Más detalles

MATEMÁTICAS (Grado en Química) PRÁCTICA 9 ECUACIONES DIFERENCIALES ORDINARIAS

MATEMÁTICAS (Grado en Química) PRÁCTICA 9 ECUACIONES DIFERENCIALES ORDINARIAS MATEMÁTICAS (Grado en Químic PRÁCTICA 9 ECUACIONES DIFERENCIALES ORDINARIAS 1.- RESOLUCIÓN DE ECUACIONES DIFERENCIALES El comando principal que incorpora Mathematica para resolver ecuaciones diferenciales

Más detalles

T I T U L O I N O R M A S G E N E R A L E S 1/21

T I T U L O I N O R M A S G E N E R A L E S 1/21 B O R R A D O R D E A N T E P R O Y E C T O D E L R E G L A M E N T O D E F U N C I O N A M I E N T O D E L D E P A R T A M E N T O D E F I S I O L O G I A, A N A T O M I A Y B I O L O G I A C E L U L

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

III unidad: vectores y cinemática. Primero medio Graciela Lobos González Profesora de Física

III unidad: vectores y cinemática. Primero medio Graciela Lobos González Profesora de Física III unidad: vectores y cinemática Primero medio Graciela Lobos González Profesora de Física Suma de vectores Sumar es agregar. Este es el sentido de la suma de los vectores. El vector resultante es aquel

Más detalles

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O.

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O. Texto de Cálculo I Intervalos de la recta real R Versión preliminar L. F. Reséndis O. 2 Contents 1 Números reales L.F. Reséndis O. 5 1.1 Números racionales e irracionales.l.f. Reséndis O............ 5

Más detalles

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 8. Preparado por: Héctor Muñoz GUÍAS DE TRABAJO Material de trabajo para los estudiantes UNIDAD 8 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl Responde en tu cuaderno las siguientes preguntas. Guía de Trabajo

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

TEMA 1 (Última modificación 8-7-2015)

TEMA 1 (Última modificación 8-7-2015) FACULTAD DE CIENCIAS EXACTAS Y NATURALES Y AGRIMENSURA CATEDRA : CALCULO DIFERENCIAL E INTEGRAL II TEMA 1 (Última modificación 8-7-015) ESPACIO DE N DIMENSIONES Un espacio es de n dimensiones, cuando para

Más detalles

1. Visualización de datos con Octave

1. Visualización de datos con Octave 1. Visualización de datos con Octave Versión final 1.0-19 agosto 2002 Octave es un poderoso software de cálculo numérico. En este documento explicamos un subconjunto realmente pequeño de sus comandos,

Más detalles

DIBUJO TÉCNICO. ideas. 2. Bocetos, croquis y planos. 1. El dibujo como técnica de expresión y comunicación de

DIBUJO TÉCNICO. ideas. 2. Bocetos, croquis y planos. 1. El dibujo como técnica de expresión y comunicación de DIBUJO TÉCNICO 1. El dibujo como técnica de expresión y comunicación de ideas Tenemos distintas formas de comunicar a los demás lo que queremos transmitir: hablando, por escrito, mediante dibujos o imágenes,

Más detalles

Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme

Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme Ejercicios resueltos de Movimiento rectilíneo uniforme 1) Pasar de unidades las siguientes velocidades: a) de 36 km/h a m/s b) de 10 m/s a km/h c) de 30 km/min a cm/s d) de 50 m/min a km/h 2) Un móvil

Más detalles

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g Funciones holomorfas 2.1. Funciones variable compleja En este capítulo vamos a tratar con funciones f : Ω C C, donde Ω C es el dominio de definición. La forma habitual de expresar estas funciones es como

Más detalles

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las

Más detalles

2FUNCIONES CUADRÁTICAS

2FUNCIONES CUADRÁTICAS CONTENIDOS El modelo cuadrático La función cuadrática Desplazamientos de la gráfica Máximos, mínimos, ceros, crecimiento y decrecimiento Ecuaciones cuadráticas Sistemas mixtos En este capítulo se analizan

Más detalles

Clave: 107-5-V-2-2013

Clave: 107-5-V-2-2013 Clave: 107-5-V-2-2013 Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de Matemática Clave de Examen: 107-5-V-2-2013 Curso: Matemática Intermedia 1 Semestre: Segundo Código del

Más detalles

http://cursodecalculo.com Profesor Raúl Vega Muñoz LÍMITES

http://cursodecalculo.com Profesor Raúl Vega Muñoz LÍMITES LÍMITES FUNCIONES A TROZOS (FUNCIONES POR PARTES) Las funciones a trozos también son conocidas como funciones definidas por partes o funciones determinadas por más de una ecuación. En este ensayo vamos

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Sobrantes 00 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 00 (Modelo ) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO Sea el recinto del plano definido

Más detalles

1. CONTINUIDAD EN VARIAS VARIABLES

1. CONTINUIDAD EN VARIAS VARIABLES . CONTINUIDAD EN VARIAS VARIABLES. Calcular el dominio de las siguientes funciones reales de varias variables reales:. f(x, y) = 9 x 2 y 2x Debe ocurrir y 2x para evitar que el denominador se anule y 9

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Autor: José Arturo Barreto M.A. Páginas web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Capítulo I El Problema 1.1 Planteamiento del problema

Más detalles

Aplicaciones de la Integral Definida

Aplicaciones de la Integral Definida CAPITULO 7 Aplicaciones de la Integral Definida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5 58 EJERCICIOS DE FUNCIONES FUNCIONES y GRÁFICAS. Construir una tabla de valores para cada una de las siguientes funciones: a) y=3+ b) f()= c) y= -4 d) f(). Completar la siguiente tabla (obsérvese el primer

Más detalles

Parcial 2 Precálculo

Parcial 2 Precálculo Parcial 2 Precálculo Marzo 4 de 2008. (.5 puntos) Encuentre la ecuación de la recta que pasa por los puntos (-2,-2) y (-9,-3) Encuentre los interceptos en x y en y. Encuentre la ecuación de la recta que

Más detalles

Lim Sinf = Lim Ssup = Área de f( x) = f( x) dx = Integral definida

Lim Sinf = Lim Ssup = Área de f( x) = f( x) dx = Integral definida Concepto de integral definida: INSTITUTO UNIVERSITARIO DE TECNOLOGÍA INTEGRAL DEFINIDA Sea una función continua definida en [a, b]. Supongamos que dividimos este intervalo en n subintervalos : [a, ], [,

Más detalles

Prof. Virginia Mazzone - Prof. Mariana Suarez

Prof. Virginia Mazzone - Prof. Mariana Suarez SISTEMAS NO LINEALES SISTEMAS PLANARES - CICLOS LÍMITES Prof. Virginia Mazzone - Prof. Mariana Suarez 1 Teorema de Hartman-Grobman 2 Teorema de Hartman-Grobman Teorema Sea ẋ = f (x), con f suficientemente

Más detalles

Cálculo para la ingeniería. Salvador Vera

Cálculo para la ingeniería. Salvador Vera Cálculo para la ingeniería Salvador Vera 9 de enero de 005 ii Copyright c by Salvador Vera Ballesteros, 998-004. Índice general. Conceptos básicos.. La recta real...... Orden, desigualdades e intervalos......

Más detalles

Integrales de línea. Teorema de Green

Integrales de línea. Teorema de Green Integrales de línea. Teorema de Green José Antonio Vallejo Departamento de Matemáticas Facultad de iencias Universidad Autónoma de San Luis Potosí email: jvallejo@fciencias.uaslp.mx 16 Noviembre 2007 1.

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles