Semana 14 [1/28] Matrices. 22 de julio de Matrices

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Semana 14 [1/28] Matrices. 22 de julio de Matrices"

Transcripción

1 Semana 14 [1/28] 22 de julio de 2007

2 Definiciones básicas Semana 14 [2/28] Definiciones básicas Matriz Una matriz A, de m filas y n columnas con coeficientes en el cuerpo à (en este apunte à será Ê ó C) es una tabla de doble entrada: A = a 11 a 1n.., a ij Ã, i = 1,..., m, j = 1,..., n. a m1... a mn Notación A = (a ij ). M mn (Ã): de m n a coeficientes en Ã.

3 Definiciones básicas Semana 14 [3/28] Definiciones básicas Matriz Una matriz A, de m filas y n columnas con coeficientes en el cuerpo à (en este apunte à será Ê ó C) es una tabla de doble entrada: A = a 11 a 1n.., a ij Ã, i = 1,..., m, j = 1,..., n. a m1... a mn Notación A = (a ij ). M mn (Ã): de m n a coeficientes en Ã.

4 Definiciones básicas Semana 14 [4/28] Definiciones básicas Matriz Una matriz A, de m filas y n columnas con coeficientes en el cuerpo à (en este apunte à será Ê ó C) es una tabla de doble entrada: A = a 11 a 1n.., a ij Ã, i = 1,..., m, j = 1,..., n. a m1... a mn Notación A = (a ij ). M mn (Ã): de m n a coeficientes en Ã.

5 Definiciones básicas Semana 14 [5/28] Igualdad de matrices Igualdad de matrices A M mn (Ã), B M m n (Ã), son iguales si y sólo si: (m = m ) (n = n ) ( i {1,..., m}, j {1,..., n}, a ij = b ij )

6 Definiciones básicas Semana 14 [6/28] Igualdad de matrices Igualdad de matrices A M mn (Ã), B M m n (Ã), son iguales si y sólo si: (m = m ) (n = n ) ( i {1,..., m}, j {1,..., n}, a ij = b ij )

7 Definiciones básicas Semana 14 [7/28] Estructura Suma de matrices A, B M mn (Ã), A + B = (a ij + b ij ) (M mn (Ã), +) tiene estructura de grupo Abeliano.

8 Definiciones básicas Semana 14 [8/28] Estructura Suma de matrices A, B M mn (Ã), A + B = (a ij + b ij ) (M mn (Ã), +) tiene estructura de grupo Abeliano.

9 Definiciones básicas Semana 14 [9/28] Estructura Producto de matrices A = (a ij ) M mr (Ã), B = (b ij ) M rn (Ã) se define C = AB como C M mn (Ã) tal que c ij = r a ik b kj, k=1 i = 1,..., m, j = 1,...,n. (M nn (Ã), +, ) es un anillo con unidad (existe neutro para ). Atención La multiplicación de matrices NO es conmutativa.

10 Definiciones básicas Semana 14 [10/28] Estructura Producto de matrices A = (a ij ) M mr (Ã), B = (b ij ) M rn (Ã) se define C = AB como C M mn (Ã) tal que c ij = r a ik b kj, k=1 i = 1,..., m, j = 1,...,n. (M nn (Ã), +, ) es un anillo con unidad (existe neutro para ). Atención La multiplicación de matrices NO es conmutativa.

11 Definiciones básicas Semana 14 [11/28] Estructura Producto de matrices A = (a ij ) M mr (Ã), B = (b ij ) M rn (Ã) se define C = AB como C M mn (Ã) tal que c ij = r a ik b kj, k=1 i = 1,..., m, j = 1,...,n. (M nn (Ã), +, ) es un anillo con unidad (existe neutro para ). Atención La multiplicación de matrices NO es conmutativa.

12 Definiciones básicas Semana 14 [12/28] invertible Matriz invertibles A M nn (Ã) es invertible si y sólo si existe B M nn (Ã) tal que: AB = BA = I. (1) De existir una matriz B que satisfaga (1), esta es única. Por ende la notaremos B = A 1.

13 Definiciones básicas Semana 14 [13/28] invertible Matriz invertibles A M nn (Ã) es invertible si y sólo si existe B M nn (Ã) tal que: AB = BA = I. (1) De existir una matriz B que satisfaga (1), esta es única. Por ende la notaremos B = A 1.

14 Definiciones básicas Semana 14 [14/28] particulares particulares A M nn (Ã) es: Diagonal si y sólo si a ij = 0 i j: A = a 11 0 a a nn. En este caso la matriz es notada A = diag(a 11, a 22,..., a nn ). Triangular superior si y sólo si a ij = 0 si i > j: a 11 a 12 a 1n A = 0 a 22 a 2n a nn

15 Definiciones básicas Semana 14 [15/28] particulares particulares A M nn (Ã) es: Diagonal si y sólo si a ij = 0 i j: A = a 11 0 a a nn. En este caso la matriz es notada A = diag(a 11, a 22,..., a nn ). Triangular superior si y sólo si a ij = 0 si i > j: a 11 a 12 a 1n A = 0 a 22 a 2n a nn

16 Definiciones básicas Semana 14 [16/28] particulares Triangular inferior si y sólo si a ij = 0 si i < j: a A = a 21 a a n1 a n2 a nn

17 Definiciones básicas Semana 14 [17/28] Notación por filas y columnas Notación Dada una matriz A M mn (Ã) notaremos su i-ésima fila como: A i = (a i1 a i2... a in ) y su j-ésima columna: Entonces: A = (A 1, A 2,..., A n ), A = A 1 A 2. A m, A j = a 1j a 2j. a mj llamada notación por columnas. llamada notación por filas.

18 Definiciones básicas Semana 14 [18/28] Notación por filas y columnas Notación Dada una matriz A M mn (Ã) notaremos su i-ésima fila como: A i = (a i1 a i2... a in ) y su j-ésima columna: Entonces: A = (A 1, A 2,..., A n ), A = A 1 A 2. A m, A j = a 1j a 2j. a mj llamada notación por columnas. llamada notación por filas.

19 Definiciones básicas Semana 14 [19/28] Mutiplicación por diagonales Ponderación de matrices Dada una constante λ Ã, definimos la matriz A ponderada por λ: λa = (λa ij ). Si D = diag (λ 1,..., λ n ) M nn (Ã), A M np (Ã), B M mn (Ã), se tiene que λ 1 A 1 DA =., (2) λ n A n BD = (λ 1 B 1,..., λ n B n ). (3)

20 Definiciones básicas Semana 14 [20/28] Mutiplicación por diagonales Ponderación de matrices Dada una constante λ Ã, definimos la matriz A ponderada por λ: λa = (λa ij ). Si D = diag (λ 1,..., λ n ) M nn (Ã), A M np (Ã), B M mn (Ã), se tiene que λ 1 A 1 DA =., (2) λ n A n BD = (λ 1 B 1,..., λ n B n ). (3)

21 Definiciones básicas Semana 14 [21/28] Multiplicación entre matrices triangulares El producto de matrices triangulares inferiores (superiores) es triangular inferior (superior).

22 Definiciones básicas Semana 14 [22/28] Potencias Potencias de una matriz Dada A M nn (Ã) A 0 = I, A n = AA n 1, n 1. Matriz traspuesta Dada A = (a ij ) M mn (Ã), se define la traspuesta de A como aquella matriz de n m que denotaremos por A t tal que (A t ) ij = a ji. Matriz simétrica A M nn (Ã) es simétrica si y sólo si A = A t Es fácil verificar que A es simétrica si y sólo si: a ij = a ji i, j = 1,.., n

23 Definiciones básicas Semana 14 [23/28] Potencias Potencias de una matriz Dada A M nn (Ã) A 0 = I, A n = AA n 1, n 1. Matriz traspuesta Dada A = (a ij ) M mn (Ã), se define la traspuesta de A como aquella matriz de n m que denotaremos por A t tal que (A t ) ij = a ji. Matriz simétrica A M nn (Ã) es simétrica si y sólo si A = A t Es fácil verificar que A es simétrica si y sólo si: a ij = a ji i, j = 1,.., n

24 Definiciones básicas Semana 14 [24/28] Potencias Potencias de una matriz Dada A M nn (Ã) A 0 = I, A n = AA n 1, n 1. Matriz traspuesta Dada A = (a ij ) M mn (Ã), se define la traspuesta de A como aquella matriz de n m que denotaremos por A t tal que (A t ) ij = a ji. Matriz simétrica A M nn (Ã) es simétrica si y sólo si A = A t Es fácil verificar que A es simétrica si y sólo si: a ij = a ji i, j = 1,.., n

25 Definiciones básicas Semana 14 [25/28] Propiedades traspuesta 1 (A t ) t = A, A M mn (Ã). 2 (AB) t = B t A t. 3 Si D M nn (Ã) es diagonal, entonces D t = D.

26 Definiciones básicas Semana 14 [26/28] Propiedades traspuesta 1 (A t ) t = A, A M mn (Ã). 2 (AB) t = B t A t. 3 Si D M nn (Ã) es diagonal, entonces D t = D.

27 Definiciones básicas Semana 14 [27/28] Propiedades traspuesta 1 (A t ) t = A, A M mn (Ã). 2 (AB) t = B t A t. 3 Si D M nn (Ã) es diagonal, entonces D t = D.

28 Definiciones básicas Semana 14 [28/28] Propiedades inversa Sean A, B M nn (Ã) invertibles entonces: 1 La inversa de A es invertible y (A 1 ) 1 = A. 2 El producto AB es invertible y (AB) 1 = B 1 A 1. 3 n 0, (A n ) 1 = (A 1 ) n. 4 A t es invertible y (A t ) 1 = (A 1 ) t.

29 Definiciones básicas Semana 14 [29/28] Propiedades inversa Sean A, B M nn (Ã) invertibles entonces: 1 La inversa de A es invertible y (A 1 ) 1 = A. 2 El producto AB es invertible y (AB) 1 = B 1 A 1. 3 n 0, (A n ) 1 = (A 1 ) n. 4 A t es invertible y (A t ) 1 = (A 1 ) t.

30 Definiciones básicas Semana 14 [30/28] Propiedades inversa Sean A, B M nn (Ã) invertibles entonces: 1 La inversa de A es invertible y (A 1 ) 1 = A. 2 El producto AB es invertible y (AB) 1 = B 1 A 1. 3 n 0, (A n ) 1 = (A 1 ) n. 4 A t es invertible y (A t ) 1 = (A 1 ) t.

31 Definiciones básicas Semana 14 [31/28] Propiedades inversa Sean A, B M nn (Ã) invertibles entonces: 1 La inversa de A es invertible y (A 1 ) 1 = A. 2 El producto AB es invertible y (AB) 1 = B 1 A 1. 3 n 0, (A n ) 1 = (A 1 ) n. 4 A t es invertible y (A t ) 1 = (A 1 ) t.

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices elementales Diciembre 2010 Contenido Definición y tipos de matrices elementales 1 Definición y tipos de matrices 2 3 4 elementales 5 elementales Definición 1.1 (Matriz) Una matriz de m filas y n columnas

Más detalles

A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn

A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn Máster en Materiales y Sistemas Sensores para Tecnologías Medioambientales Erasmus Mundus NOTAS DE CÁLCULO NUMÉRICO Damián Ginestar Peiró ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA

Más detalles

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1 Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que

Más detalles

Matemática 2 MAT022. Clase 1 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Matrices

Matemática 2 MAT022. Clase 1 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Matrices Matemática 2 MAT022 Clase 1 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María Tabla de Contenidos 1 Matrices Propiedades Tabla de Contenidos Matrices 1 Matrices Propiedades

Más detalles

3. Matrices. 1 Definiciones básicas. 2 Operaciones con matrices. 2.2 Producto de una matriz por un escalar. 2.1 Suma de matrices.

3. Matrices. 1 Definiciones básicas. 2 Operaciones con matrices. 2.2 Producto de una matriz por un escalar. 2.1 Suma de matrices. Tema I Capítulo 3 Matrices Álgebra Departamento de Métodos Matemáticos y de Representación UDC 3 Matrices 1 Definiciones básicas Definición 11 Una matriz A de dimensión m n es un conjunto de escalares

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Tema II Capítulo 1 Matrices Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC Tema II Matrices y Determinantes 1 Matrices 1 Definiciones básicas Definición 11 Una matriz A de

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Definición: se llama matriz de m filas y n columnas sobre un cuerpo K (R ó C), a una ordenación rectangular de la forma Notación: a11 a...... a1n a21 a...... a2n A = M M M donde cada elemento a ij Є K

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 4 Matrices con coeficientes en un cuerpo 1. Matrices Sean I = {1,

Más detalles

MATRICES OPERACIONES BÁSICAS CON MATRICES

MATRICES OPERACIONES BÁSICAS CON MATRICES MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.

Más detalles

ALGEBRA y ALGEBRA LINEAL

ALGEBRA y ALGEBRA LINEAL 520142 ALGEBRA y ALGEBRA LINEAL Primer Semestre, Universidad de Concepción CAPITULO 7. MATRICES DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Matriz Sean

Más detalles

Matrices. Observación: Es usual designar una matriz por letras mayúsculas: A, B, C,... 3 B =

Matrices. Observación: Es usual designar una matriz por letras mayúsculas: A, B, C,... 3 B = Definición: A una ordenación o arreglo rectangular de ciertos objetos se define como matriz (en este curso nos interesa que los objetos de la matriz sean numeros reales. Observación: Es usual designar

Más detalles

1. Matrices Definiciones básicas

1. Matrices Definiciones básicas Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 07-2 Importante: Visita regularmente http://wwwdimuchilecl/ algebra Ahí encontrarás las guías de ejercicios

Más detalles

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar. UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.

Más detalles

1. Matrices. Operaciones con matrices

1. Matrices. Operaciones con matrices REPASO MUY BÁSICO DE MATRICES. Matrices. Operaciones con matrices.. Introducción Las matrices aparecieron por primera vez hacia el año 850, introducidas por el inglés J. J. Sylvester. Su desarrollo se

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

Tema I. Matrices y determinantes

Tema I. Matrices y determinantes Tema I. Matrices y determinantes 2007 Carmen Moreno Valencia 1. Matrices sobre un cuerpo 2. Operaciones con matrices 3. Determinante de una matriz cuadrada 4. Menor complementario y adjunto 5. Cálculo

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

Semana 2 [1/29] Matrices. 31 de julio de Matrices

Semana 2 [1/29] Matrices. 31 de julio de Matrices Semana 2 [1/29] 31 de julio de 2007 elementales Semana 2 [2/29] Matriz de permutación Matriz de permutación Una matriz elemental de permutación tiene la siguiente estructura: 1 0 0 1 0 1 fila p 1 I pq

Más detalles

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de matriz. Una matriz de orden m n es un conjunto de m n elementos pertenecientes a un conjunto, que para nosotros tendrá estructura de cuerpo conmutativo y lo denotaremos por K, dispuestos

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos

Más detalles

MATRICES. 2º Bachillerato. Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz.

MATRICES. 2º Bachillerato. Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz. Concepto de matriz. Igualdad de matrices MATRICES 2º Bachillerato Concepto de matriz. Igualdad de matrices Concepto de matriz. Igualdad de matrices Se llama matriz a una disposición rectangular de números

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ INVERSA DE UNA MATRIZ Profesores Omar Darío Saldarriaga Ortíz Ivan Darío Gómez Hernán Giraldo 2009 Definición Sean x = x 1 x n y y = y 1 y n vectores de n componentes, definimos el producto interno o producto

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca 30 de junio de 2015 Matriz de m por n Definimeros a una matriz A de orden m por n como un arreglo de números de m filas y n columnas. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = a 31 a 32 a 33 a 3n....

Más detalles

ÁLGEBRA Ejercicios no resueltos de la Práctica 3

ÁLGEBRA Ejercicios no resueltos de la Práctica 3 ÁLGEBRA Ejercicios no resueltos de la Práctica 3 Matrices y determinantes (Curso 2007 2008) 15. Encontrar la (única) respuesta correcta, de entre las indicadas, a las siguientes cuestiones: (b) En una

Más detalles

1 de 6 24/08/2009 9:54 MATRICES Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853 En

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Matrices y determinantes (Curso )

Matrices y determinantes (Curso ) ÁLGEBRA Práctica 3 Matrices y determinantes (Curso 2008 2009) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz triangular

Más detalles

Matriz tranpuesta Matriz inversa

Matriz tranpuesta Matriz inversa Matriz tranpuesta Matriz inversa Raúl Ures GAL 1 IMERL 14 de marzo de 2013 matriz traspuesta matriz traspuesta matriz traspuesta si A M m n (K) matriz m n A = (a ij ) i = 1,..., m j = 1,..., n llamamos

Más detalles

Algebra lineal Matrices

Algebra lineal Matrices Algebra lineal Matrices Una matriz A un arreglo rectangular de números dispuestos en m renglones (filas) y n columnas. Fila 1 La componente o elemento ij de A, denotado por es el número que aparece en

Más detalles

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos:

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos: TEMA V 1. MATRICES Y SISTEMAS DE ECUACIONES LINEALES. Sea el siguiente sistema de ecuaciones lineales: Realmente quien determina la naturaleza y las soluciones del sistema, no son las incógnitas: x, y,

Más detalles

Lección 8. Matrices y Sistemas de Ecuaciones Lineales

Lección 8. Matrices y Sistemas de Ecuaciones Lineales Lección 8 Matrices y Sistemas de Ecuaciones Lineales MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

MATRICES Y DETERMINANTES DEFINICIÓN DE MATRIZ. TIPOS

MATRICES Y DETERMINANTES DEFINICIÓN DE MATRIZ. TIPOS Índice Presentación... 3 Matrices... 4 Tipos de matrices I... 5 Tipos de matrices II... 6 Suma de matrices... 7 Multiplicación por un escalar... 8 Producto de matrices... 9 Trasposición de matrices...

Más detalles

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso Tema 4: Matrices y Determinantes Algunas Notas sobre Matrices y Determinantes Álgebra Lineal Curso 2004-2005 Prof. Manu Vega Índice 1. Determinantes 3 2. Regla de Sarrus 3 3. Propiedades de los determinantes

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 Importante: Visita regularmente http://wwwdimuchilecl/ docencia/algebra lineal Ahí encontrarás

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2

Más detalles

TEMA 7. Matrices y determinantes.

TEMA 7. Matrices y determinantes. TEMA 7 Matrices y determinantes. 1. Matrices. Generalidades Definición 1 Sea E un conjunto cualquiera, m, n IN. Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12... a 1n a 21

Más detalles

Capítulo 4. Matrices Definiciones y notación

Capítulo 4. Matrices Definiciones y notación Capítulo 4 Matrices 4.1. Definiciones y notación Esta primera Sección está dedicada a la introducción de la terminología usual asociada a las matrices. En primer lugar, definimos el propio concepto de

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES

SISTEMAS DE ECUACIONES LINEALES Y MATRICES y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

Matrices 2º curso de Bachillerato Ciencias y tecnología

Matrices 2º curso de Bachillerato Ciencias y tecnología MATRICES Índice:. Introducción-------------------------------------------------------------------------------------- 2. Definición de matriz-----------------------------------------------------------------------------

Más detalles

UNIDAD 3 FUNCIONES, MATRICES Y DETERMINANTES. Matrices. Dr. Daniel Tapia Sánchez

UNIDAD 3 FUNCIONES, MATRICES Y DETERMINANTES. Matrices. Dr. Daniel Tapia Sánchez UNIDD FUNCIONES, MTRICES Y DETERMINNTES Matrices Dr. Daniel Tapia Sánchez Estos son los temas que estudiaremos:.7. Concepto de matriz e igualdad de matrices.7. Clasificación de matrices según sus elementos.7.

Más detalles

Matrices y Determinantes

Matrices y Determinantes Tema 2 Matrices y Determinantes 21 Introducción Presentaremos en este tema las matrices y los determinantes, centrándonos en particualar en el caso de matrices constituidas por números reales 22 Matrices

Más detalles

Algebra de Matrices 1

Algebra de Matrices 1 Algebra de Matrices Definición Una matriz es un arreglo rectangular de valores llamados elementos, organizados por filas y columnas. Ejemplo: Notas: A 6. Las matrices son denotadas con letras mayúsculas..

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones

Más detalles

Capítulo 5. Cálculo matricial. 5.1 Matrices

Capítulo 5. Cálculo matricial. 5.1 Matrices Capítulo 5 Cálculo matricial 5. Matrices Una matriz de m filas y n columnas, en adelante matriz m n, es una configuración rectangular de elementos, con n entradas por cada fila, y m por cada columna, encerrada,

Más detalles

Matemá'cas generales

Matemá'cas generales Matemá'cas generales Matrices y Sistemas Patricia Gómez García José Antonio Álvarez García DPTO. DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN Este tema se publica bajo Licencia: Crea've Commons

Más detalles

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Segundo Cuatrimestre de 2002 ÁLGEBRA LINEAL

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Segundo Cuatrimestre de 2002 ÁLGEBRA LINEAL Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Segundo Cuatrimestre de 2002 ÁLGEBRA LINEAL Práctica N 2: Matrices Ejercicio 1 Probar que los siguientes

Más detalles

Matrices 3. Matrices. Verónica Briceño V. agosto 2012

Matrices 3. Matrices. Verónica Briceño V. agosto 2012 3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

UNIVERSIDAD DE CHILE FACULTAD DE ECONOMÍA Y NEGOCIOS DEPARTAMENTO DE ECONOMÍA ÁLGEBRA LINEAL. Apunte del Curso

UNIVERSIDAD DE CHILE FACULTAD DE ECONOMÍA Y NEGOCIOS DEPARTAMENTO DE ECONOMÍA ÁLGEBRA LINEAL. Apunte del Curso UNIVERSIDAD DE CHILE FACULTAD DE ECONOMÍA Y NEGOCIOS DEPARTAMENTO DE ECONOMÍA ÁLGEBRA LINEAL Apunte del Curso Mauricio Vargas S. mauvarga@fen.uchile.cl Apunte del Curso Álgebra Lineal 1 Mauricio Vargas

Más detalles

2.- TIPOS DE MATRICES

2.- TIPOS DE MATRICES 2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA.- MATRICES PROFESOR: RAFAEL NÚÑEZ NOGALES.- CONCEPTO DE MATRIZ. Definición de matriz Una matriz real A es un conjunto de números reales

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Sistemas de Ecuaciones Lineales. Matrices y determinantes.

Sistemas de Ecuaciones Lineales. Matrices y determinantes. Capítulo 3 Sistemas de Ecuaciones Lineales Matrices y determinantes 31 Sistemas de Ecuaciones Lineales El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación

Más detalles

Matrices y sus operaciones

Matrices y sus operaciones Capítulo 1 Matrices y sus operaciones 1.1. Definiciones Dados dos enteros m, n 1 y un cuerpo conmutativo IK, llamamos matriz de m filas y n columnas con coeficientes en IK a un conjunto ordenado de n vectores

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

1. Matrices. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza. 1 Introducción y definiciones 2

1. Matrices. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza. 1 Introducción y definiciones 2 1. Matrices. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Contents 1 Introducción y definiciones 2 2 Algebra matricial. 3 3 Matrices por bloques.

Más detalles

TEST DE DETERMINANTES

TEST DE DETERMINANTES Página 1 de 7 TEST DE DETERMINANTES 1 Si A es una matriz cuadrada de orden 3 con A = -2, a qué es igual -A? A -2 B 2 C 0 D -6 2 A -144 B 44 C 88 D -31 3 Indicar qué igualdad es falsa: A B C D 4 A -54 B

Más detalles

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n.

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n. Índice general 1. Álgebra de Matrices 1 1.1. Conceptos Fundamentales............................ 1 1.1.1. Vectores y Matrices........................... 1 1.1.2. Transpuesta................................

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010.

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010. Algebra Lineal * José de Jesús Ángel Ángel jjaa@mathcommx Working draft: México, DF, a 17 de noviembre de 2010 Un resumen de los principales temas tratados en un curso de Álgebra Lineal Contenido 1 Sistemas

Más detalles

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5

Más detalles

2 - Matrices y Determinantes

2 - Matrices y Determinantes Nivelación de Matemática MTHA UNLP 1 2 - Matrices y Determinantes 1 Matrices 11 Definición Una matriz A es cualquier ordenamiento rectangular de números o funciones a 11 a 12 a 1n a 21 a 22 a 2n A a m1

Más detalles

Matrices y Determinantes. Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC

Matrices y Determinantes. Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC Matrices y Determinantes Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC Origen y Usos Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J.

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2015 2016) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

1. Página 10 La matriz consta de dos filas que corresponden a los alumnos y cuatro columnas con sus calificaciones. Así:

1. Página 10 La matriz consta de dos filas que corresponden a los alumnos y cuatro columnas con sus calificaciones. Así: Matrices 1 ACTIVIDADES 1. Página 10 La matriz consta de dos filas que corresponden a los alumnos y cuatro columnas con sus calificaciones. Así: 2. Página 10 La matriz solución es. 3. Página 10 La matriz

Más detalles

ALGEBRA LINEAL - Práctica N 2 - Segundo cuatrimestre de 2017 Matrices y coordenadas

ALGEBRA LINEAL - Práctica N 2 - Segundo cuatrimestre de 2017 Matrices y coordenadas Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 2 - Segundo cuatrimestre de 2017 Matrices y coordenadas Ejercicio 1 Sean m n y r N i) Probar que

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

Matrices. En este capítulo: matrices, determinantes. matriz inversa

Matrices. En este capítulo: matrices, determinantes. matriz inversa Matrices En este capítulo: matrices, determinantes matriz inversa 1 1.1 Matrices De manera informal una matriz es un rectángulo de números dentro de unos paréntesis. A = a 1,1 a 1,2 a 1,3 a 2,1 a 2,2 a

Más detalles

Matrices positivas y aplicaciones. María Isabel García Planas Profesora Titular de Universidad

Matrices positivas y aplicaciones. María Isabel García Planas Profesora Titular de Universidad Matrices positivas y aplicaciones María Isabel García Planas Profesora Titular de Universidad Primera edición: Septiembre 2008 Editora: la autora c M ā Isabel García Planas ISBN: 978-84-612-6101-7 Depósito

Más detalles

Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse.

Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Definición de matriz Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Una matriz es un cuadrado o tabla de números ordenados. Se llama matriz

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Tareas adicionales Los problemas auxiliares de estas tareas adicionales no son muy difíciles y corresponden al nivel obligatorio de conocimientos. Los problemas principales de

Más detalles

Grado en Ingeniería Electrónica Industrial Universidad de Granada

Grado en Ingeniería Electrónica Industrial Universidad de Granada Tema 1 Matrices, determinantes, sistemas de ecuaciones lineales Asignatura: Matemáticas I Grado en Ingeniería Electrónica Industrial Universidad de Granada Prof Rafael López Camino Universidad de Granada

Más detalles

Matrices y Determinantes

Matrices y Determinantes Capítulo 1 Matrices y Determinantes 11 Matrices Generalidades Definición 11 Sea E un conjunto cualquiera, m, n N Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12 a 1n a 21 a

Más detalles

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ). 1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden

Más detalles

Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,...

Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,... INTRO. MATRICES Y DETERMINANTES Prof. Gustavo Sosa Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas

Más detalles

1. Matrices y determinantes

1. Matrices y determinantes A-PDF Page Cut DEMO: Purchase www.apuntesdemates.weebly.com from www.a-pdf.com to remove the watermark 1. Matrices y determinantes 1.1 Notación y definiciones Definición 1.1 [Matriz] Una matriz es una

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

Tema 3: MATRICES. Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada

Tema 3: MATRICES. Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Tema 3: MATRICES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura: Matemáticas

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Vectores y matrices. Problemas para examen

Vectores y matrices. Problemas para examen Vectores y matrices Problemas para examen Operaciones lineales con vectores 1. Programación: la suma de dos vectores. Escriba una función que calcule x + y, donde x, y R n. Calcule el número de flops.

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles