CAPÍTULO II. 3 El grupo lineal

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPÍTULO II. 3 El grupo lineal"

Transcripción

1 CAPÍTULO II 3 El grupo lineal Como ya se advirtió en el capítulo precedente, los grupos de transformaciones juegan un importante papel en el estudio de la geometría. En esta sección nos ocuparemos de aquellas transformaciones relacionadas con la estructura de espacio vectorial de R n. Definición II.1 Una aplicación f : R n R n se dice que es un automorfismo de R n si satisface las siguientes condiciones: i) f es biyectiva, es decir, la aplicación f asocia a cada vector u de R n un único vector de R n denotado por f(u), denominado el transformado o la imagen de u. Además, vectores distintos tienen transformados distintos, y cada vector de R n es la imagen de algún otro vector de R n. ii) f es lineal, esto es, para cualesquiera vectores u y v de R n y cualesquiera escalares α y β, se tiene que f(αu + βv) = αf(u) + βf(v). La linealidad de una aplicación f también se expresa, en lenguaje matemático coloquial, diciendo que f conserva o preserva las combinaciones lineales de vectores. Antes de ahondar en las propiedades de los automorfismos, conviene familiarizarse con ellos a partir de algunos casos concretos. Sea f : R R la aplicación dada por f(a) = 2a. Es evidente que f es biyectiva pues cada número real posee un duplo, números distintos tienen duplos distintos y cada real es el duplo de algún otro real, en concreto, de su mitad. Además, f(αa + βb) = 2(αa + βb) = α2a + β2b = αf(a) + βf(b). 2

2 Y lo mismo podría haberse razonado para aplicaciones del tipo h λ : R n R n, con λ un escalar no nulo, definidas mediante la expresión h λ (u) = λu. A los automorfismos anteriores se les conoce como homotecias de razón λ. Comprobemos ahora que la aplicación f : R 2 R 2 dada por f(x, y) = (2x y, x + y) es un automorfismo. Desde luego que cada vector u = (x, y) se transforma en el único vector f(u) = (2x y, x + y). Supongamos que un vector u = (x, y) se transforma en el vector (a, b). Entonces { } 2x y = a. x + y = b Resolviendo el sistema de dos ecuaciones lineales en las incógnitas x, y, obtenemos x = a + b 3, y = 2b a. 3 De aquí deducimos, por un lado, que dos vectores distintos no pueden tener el mismo transformado, y, por otro, que cada vector (a, b) es la imagen del vector ( a+b 3, 2b a 3 ). En suma: f es biyectiva. Veamos que f es lineal. Para ello tomemos dos vectores u = (x, y), v = (x, y ) y dos escalares α y β. Se tiene f(αu + βv) = f(αx + βx, αy + βy ) = = (2(αx + βx ) (αy + βy ), (αx + βx ) + (αy + βy )) = = (2(αx αy), αx + αy) + (2(βx βy ), βx + βy ) = = α(2x y, x + y) + β(2x y, x + y ) = αf(u) + βf(v), lo que prueba que f conserva combinaciones lineales. Resulta evidente que la aplicación identidad en R n, denotada por Id R n o, simplemente por Id si no hay confusión, la cual transforma cada vector sobre sí mismo (o sea, Id(u) = u, para cada u) es un automorfismo de R n. 3

3 Como muestra de aplicaciones que no son automorfismos, vayan las siguientes: * La aplicación f : R n R n que aplica todo vector en el vector 0 es lineal, pero no biyectiva. * La aplicación f : R R que transforma cada real a en su cubo a 3 es biyectiva, pero no lineal. * La aplicación f : R 2 R 2 dada por f(x, y) = (x 2, y 2 ) no es ni lineal ni biyectiva. Por qué? Dados dos automorfismos f y g de R n, su composición f g es también un automorfismo de R n. Recuérdese que la composición f g actúa aplicando cada vector u en el transformado por f del transformado por g de u, lo cual se escribe (f g)(u) = f(g(u)). Por ejemplo, la composición del automorfismo f(x, y) = (2x y, x + y) visto más arriba, con la homotecia h 4 de razón 4 proporciona el automorfismo g = f h 4 dado por g(x, y) = f(h 4 (x, y)) = f(4x, 4y) = (8x 2y, 4x + 4y). Si f, g y h son tres automorfismos de R n, se tiene que (f (g h))(u) = f((g h)(u)) = f(g(h(u))) = (f g)(h(u)) = ((f g) h)(u), luego la composición de automorfismos es asociativa. Además, es evidente que, sea cual sea el automorfismo f, se tiene que f Id = Id f = f. Como puede adivinarse, buscamos una estructura de grupo en el conjunto de los automorfismos de R n. Como la operación es asociativa y disponemos de un elemento neutro, la identidad, sólo nos falta ver que cada automorfismo posee un inverso. Y a ello nos dedicaremos de inmediato. De la condición i) de la definición II.1 se deduce que si f es un automorfismo de R n, para cada u R n existe al menos un v R n tal que u = f(v). Este vector v es único. Justifique el lector esta última afirmación. Al único vector v tal que f(v) = u se le denotará por f 1 (u). Esto permite definir otra aplicación, llamada la inversa de f, denotada por f 1, que asocia a cada 4

4 u de R n el vector f 1 (u). Como f(u) = v si y solo si f 1 (v) = u, entonces f(f 1 (v)) = v y f 1 (f(u)) = u, es decir, f f 1 = Id = f 1 f. Tampoco representa muchos problemas demostrar que f 1 es un automorfismo. Por ejemplo se probará a continuación la linealidad de f 1. Sean u y v dos vectores de R n, y α y β dos escalares. Aplíquese f a la combinación lineal αf 1 (u) + βf 1 (v) para obtener la cadena de igualdades f(αf 1 (u) + βf 1 (v)) = αf(f 1 (u)) + βf(f 1 (v)) = αu + βv, lo cual no es sino escribir αf 1 (u) + βf 1 (v) = f 1 (αu + βv), o sea, f 1 es lineal. A fin de cuentas, hemos demostrado el Teorema II.1 El conjunto de los automorfismos de un espacio vectorial R n constituye un grupo, denominado el grupo lineal, y se denotará GL n. Según la filosofía de Félix Klein, enunciada por primera vez en su tesis doctoral de la Universidad de Erlangen, la rama de las matemáticas conocida como álgebra lineal se ocupa de todos los conceptos que son invariantes por transformaciones del grupo lineal. En el siguiente teorema se compendian, sin demostración, algunas aseveraciones acerca de los automorfismos. Teorema II.2 Un automorfismo f GL n satisface las siguientes propiedades: i) El transformado del vector 0 es el vector 0 (f(0) = 0). ii) Si (u 1, u 2,..., u n ) es una base de R n, entonces (f(u 1 ), f(u 2 ),..., f(u n )) es otra base. 5

5 iii) Si S es un subespacio de R n de dimensión k, entonces el subconjunto f(s) = {f(u) : u S} iv) de las imágenes de todos los vectores de S es también un subespacio de la misma dimensión. Para subespacios S y T de R n se tiene que f(s + T ) = f(s) + f(t ) y f(s T ) = f(s) f(t ). Por eso, porque son invariantes por automorfismos, los conceptos de base, subespacio, dimensión, y suma e intersección de subespacios son competencia del álgebra lineal. El punto ii) del teorema anterior sugiere que un automorfismo quede determinado dando la imagen de una base, la cual debe ser también otra base. En efecto, sean (u 1, u 2,..., u n ) y (v 1, v 2,..., v n ) dos bases de R n. Veamos que solo hay un automorfismo f que transforma cada u i (i {1, 2,..., n} ) de la primera base en el correspondiente v i de la segunda. Si existiera ese automorfismo f, como cada vector u de R n se expresa de forma única como combinación lineal u = α 1 u 1 + α 2 u α n u n de los u i, por la linealidad de f, a u no le queda más remedio que aplicarse por f en el vector f(u) = α 1 f(u 1 ) + α 2 f(u 2 ) α n f(u n ). Luego la única posible opción para f sería f(u) = α 1 v 1 + α 2 v α n v n. Compruébese como ejercicio que una tal f definida así es un automorfismo. Sin embargo, lo que nos interesará en el futuro es encontrar una especie de ecuación que nos describa a un automorfismo en función de las coordenadas de los vectores respecto de una base prefijada, por lo común, la canónica. Comencemos entonces dando las imágenes u 1 = f(e 1 ), u 2 = f(e 2 ),..., u n = f(e n ) de los vectores e i de la base canónica de R n por medio del automorfismo f GL n. Cada uno de los u i tendrá unas coordenadas en la base canónica. Sean estas (a i1, a i2,..., a in ), es decir, para cada i {1, 2,..., n}, f(e i ) = u i = a i1 e 1 + a i2 e a in e n, 6

6 donde el doble subíndice de a ij se interpreta de forma parecida a la de los cambios de base de la sección precedente. El primero de los índices indica el vector u i que se va a expresar como combinación lineal de los de la base canónica, y el segundo, el e j al que multiplica en dicha combinación. Los n 2 números a ij pueden disponerse en una matriz A = (a ij ). Basta con estos datos para conocer la imagen de cualquier vector. En concreto, un sencillo cálculo demuestra que si (x 1, x 2,..., x n ) son las coordenadas de u, entonces f(u) es el vector cuyas coordenadas (y 1, y 2,..., y n ) vienen dadas por medio del producto matricial a 11 a a 1n a 21 a a 2n (y 1, y 2,..., y n ) = (x 1, x 2,..., x n ) a n1 a n2... a nn, o, resumida de forma más compacta y = xa, donde x representa al vector fila de las coordenadas de un vector u, por y se denota al vector fila de las coordenadas de f(u) y A es la matriz definida con anterioridad, cuyas filas están constituidas por las coordenadas de las imágenes f(e i ) de los vectores de la base. A las expresiones anteriores se las conoce como las ecuaciones del automorfismo, y se escribe f y = xa. De A se dirá que es la matriz de f, o la matriz asociada a f en la base canónica. En la figura II.10 se ilustra un automorfismo de R 2. Ha quedado establecido que cada automorfismo de GL n queda determinado por una matriz n n. Y ahora nos surge una pregunta natural, dada una matriz n n arbitraria A, existe algún automorfismo f de la cual sea su asociada? La respuesta, en general, es negativa. Por ejemplo, la matriz A llena de ceros no puede ser la matriz de un automorfismo f pues, en tal caso, la aplicación f transformaría todo vector en el vector 0. Ésta era una de las situaciones que se comentaron más arriba de una aplicación lineal no biyectiva. 7

7 Figura II.10 Una herramienta muy útil para averiguar si una matriz A de n filas y n columnas está acreditada para ser la asociada de algún automorfismo es el determinante. No se pretende aquí tratar de modo exhaustivo la teoría de determinantes, pero sí al menos enunciar sus propiedades más significativas. Con objeto de dar una definición elemental de los determinantes, recordaremos el concepto de adjunto de un elemento de una matriz. Sea A una matriz n n, con n > 1. Por adjunto del elemento a ij se entenderá a la matriz de n 1 filas y n 1 columnas obtenida de A mediante la supresión de la fila y la columna a la que pertenece a ij. Al adjunto de a ij se le denotará por A ij. Por ejemplo, si A es la matriz A = 2 π , ( 1 6 entonces el adjunto de a 12 = π es la matriz ( ) 2 4 es A = ), y el adjunto de a 22 = 0 8

8 Definición II.2 A cada matriz A de orden n n se le asocia un número real A, llamado el determinante de A, y que se calcula inductivamente mediante: i) Si n = 1, entonces A es el único elemento a 11 de la matriz. ii) Si n > 1, entonces A = a 11 A 11 a 12 A 12 + a 13 A ± a 1n A 1n. Adviértase que los signos del segundo miembro de la expresión de arriba cambian alternativamente. La definición anterior, aun no dando una fórmula explícita de cálculo, funciona. En efecto, el determinante de una matriz A de orden n n viene en función de n determinantes A 1n de orden (n 1) (n 1). Cada uno de ellos se obtendría evaluando otros determinantes de orden (n 2) (n 2). Y así sucesivamente llegaríamos a n! (factorial de n) determinantes de orden 1 1 cuyo valor es el de ellos mismos. Desde luego que no es nada cómodo operar así. Para órdenes bajos, existen procedimientos simples que dan el determinante de una matriz y que se recuerdan a continuación. El determinante de una matriz 2 2 es a 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21. El de una matriz 3 3 es a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 a 11 a 23 a 32 a 12 a 21 a 33, para el que existe una sencilla regla mnemotécnica: los productos representados a la izquierda de la figura II.11 llevan signo positivo, mientras que los de la derecha lo llevan negativo. 9

9 Figura II.11 Por desgracia no hay otras reglas tan sencillas como estas que puedan ser aplicadas a determinantes de orden superior a 3. Las propiedades más importantes de los determinantes quedan resumidas en el siguiente Teorema II.3 Sea A una matriz n n. Entonces: i) A = A t, donde A t denota a la matriz traspuesta de A, es decir, la obtenida de A al intercambiar las filas por las columnas. El intercambio ha de entenderse en el sentido de que para cada i y cada j, el elemento de la i ésima fila y j ésima columna de A t coincide con el de la j ésima fila e i ésima columna de la matriz A. ii) Para n > 1, el determinante A es igual a 0 si y solamente si alguno de los vectores fila de A es combinación lineal del resto de los vectores fila. iii) Para n > 1, el determinante A es igual a 0 si y solamente si alguno de los vectores columna de A es combinación lineal del resto de los vectores columna. iv) Si B es una matriz obtenida de A mediante el intercambio de dos vectores fila o de dos vectores columna, entonces el determinante de B es el opuesto del determinante de A. v) Si a un vector fila de A se le suma una combinación lineal del resto de los vectores fila y no se alteran las filas restantes, se obtiene otra matriz B tal que B = A. vi) Si a un vector columna de A se le suma una combinación lineal del resto de los vectores columna y no se alteran las columnas restantes, se obtiene otra matriz B tal que B = A. 10

10 vii) Si B es otra matriz n n, entonces AB = A B. Usando del modo adecuado los enunciados de arriba, se facilita el cálculo de determinantes de matrices de orden superior. Por ejemplo, dada la matriz A = el determinante de A se obtendría, recurriendo directamente a la definición, por medio de, A = ( 7) Y así se reduce el cálculo de A al de 4 determinantes de matrices de orden 3 3. Sin embargo, es factible aprovechar que la segunda fila de A contiene dos ceros para, permutando las dos primeras filas, recurrir a la propiedad iv) y escribir = Así, solo necesitaremos evaluar dos determinantes en lugar de cuatro pues los dos primeros elementos de la primera fila son ceros y, multipliquen a lo que multipliquen, anularán a dos de los cuatro sumandos. Más aún, Si tenemos en cuenta a vi), multiplicando por 3 la tercera columna y sumándosela a la cuarta aniquilaremos otro elemento de la primera fila: ,

11 de donde A = ( 1) = = ( 1) ( 1) = 20. Lo que nos interesa, por el momento, de los determinantes es que resuelven el problema que nos planteábamos líneas arriba, el de dilucidar cuándo una matriz n n es la asociada de algún automorfismo. Teorema II.4 Una matriz de orden n n es la asociada de algún automorfismo f de R n si y solo si A 0. Dadas dos bases B = (u 1, u 2,..., u n ) y B = (v 1, v 2..., v n ) de R n, vimos más arriba que conocida la matriz A = (a ij ), cuyas filas son las coordenadas de los u i en la base B, los vectores fila x y y de coordenadas de un vector respecto de ambas bases quedan relacionados por medio de la expresión y = xa. Hay una evidente analogía entre esta última igualdad y la ecuación de un automorfismo. De hecho, fijadas B y B, puede considerarse el automorfismo f que transforma cada u i en el v i (i {1, 2..., n}). Es obvio que f y = xa, de donde se desprende fácilmente, con la ayuda del teorema II.4, que una matriz n n es la matriz de algún cambio de base si y solamente si A = 0. Conviene entonces bautizar esta propiedad. Definición II.3 De una matriz se dice que es no singular, si posee tantas filas como columnas y su determinante no se anula. A continuación expondremos otra naturaleza del grupo lineal. Para ello, obsérvese que el automorfismo Id deja invariantes a todos los vectores de la base canónica. La identidad quedará descrita por una matriz del tipo ,

12 o sea, una matriz (a ij ) donde a ij = 1 si i = j, y a ij = 0 para i j. A una tal matriz se la denomina matriz unidad de orden n y se la denota por I n, o simplemente por I si no hay lugar a confusión. Por otro lado, si f y g son dos automorfismos de R n de matrices respectivas A y B en la base canónica, entonces para hallar la imagen por g f del vector u, cuyas coordenadas consistan en el vector fila x, tendremos que multiplicar (a la derecha) primero por la matriz A y luego por la matriz B, es decir, (g f) y = xab. De ahí que la matriz asociada a la composición g f se obtenga como el producto (en orden inverso) de las respectivas matrices de g y f. Lo anterior nos lleva a pensar que el grupo lineal GL n es, en esencia, el grupo de las matrices no singulares de orden n n, con el producto invertido y con la matriz unidad como elemento neutro. Queda por dilucidar la existencia de elemento inverso. Sea entonces A una matriz no singular de orden n n. Esta matriz define un automorfismo f de R n. Denotemos por A 1 a la matriz asociada al automorfismo f 1 inverso de f. Como f f 1 = f 1 f = Id, ha de ocurrir que A 1 A = AA 1 = I, con lo que el grupo lineal GL n puede asimilarse al grupo de las matrices no singulares de orden n n. Aunque no abundaremos en ello, queremos incluir aquí algún método de cálculo de la inversa de una matriz. Dada una matriz A = (a ij ), si denotamos por (b ij ) a la inversa de A, entonces cada b ij viene dado por b ij = ( 1) i+j A ji A. En términos coloquiales, para hallar A 1, primero se traspone, luego se sustituye cada elemento a ji por el determinante de su adjunto A ji afectado del signo ( 1) i+j, y, por último, se dividen todos los elementos por A. Compruebe el lector, por el gusto de practicar, que si A = , entonces A 1 = /11 1/11 2/11 4/11 1/11 2/11. 2/11 5/11 1/11 13

13 Hay algunas consecuencias sencillas de todo lo razonado hasta ahora. Por ejemplo, sabemos que la matriz unidad I n satisface que A I n = A = I n A cualquiera que sea la matriz A de orden n n. Tomando determinantes y aplicando el teorema II.3.vii) se obtendrá A I n = A = I n A, lo cual solo sucede si I n = 1. Un argumento semejante lleva a que A 1 = A 1 para cada matriz no singular A. Hasta ahora solo hemos considerado ecuaciones de automorfismos en donde los datos estaban todos referidos a la base canónica. Para finalizar esta sección, se discutirá lo que ocurre cuando se manejan otras bases distintas. Sea f un automorfismo de GL n de ecuación f y = xa con respecto a la base canónica. Recuérdese que esto significa que los vectores fila de la matriz A son las imágenes f(e i ) de los vectores e i de la base canónica, y que si x representa al vector fila de coordenadas de un vector u, entonces y es el vector fila de coordenadas de la imagen f(u) de u. Todas las coordenadas están referidas a la base canónica. Sea ahora B = (u 1, u 2,..., u n ) otra base y P = (p ij ) la matriz del cambio de base. Se pretende encontrar alguna ecuación que ligue las coordenadas de cada vector u y las de su imagen f(u), pero ahora referidas a la nueva base B. Dado un vector u de coordenadas x respecto a la base B, sus coordenadas en la canónica serán x = xp, y su imagen por f tendrá unas coordenadas y = (xp )A respecto a la canónica. Las coordenadas y de f(u) respecto de la base B y las coordenadas y, también de f(u), pero respecto a la canónica están ligadas por la relación y = yp, y, multiplicando a la derecha ambos miembros por la inversa de P, se obtiene y = y P 1. Así, las coordenadas de f(u) referidas a la base B vendrán dadas por y P 1 = ((xp )A)P 1. Como el producto de matrices es asociativo, podemos escribir f y = x(p AP 1 ) 14

14 como nueva ecuación para f, donde las coordenadas están ahora referidas a la base B. Un hecho curioso se produce al tomar determinantes, y obtener P AP 1 = P A P 1 = A, es decir, un automorfismo puede quedar descrito por varias matrices dependiendo de la base que se fije, pero el determinante de todas esas matrices valdrá la misma cantidad. En ese sentido, el determinante es lo que en matemáticas se denomina un invariante. 15

CAPÍTULO II. 4 El grupo afín

CAPÍTULO II. 4 El grupo afín CAPÍTULO II 4 El grupo afín En geometría clásica, antes de la aparición de los espacios vectoriales, se hablaba de puntos en lugar de vectores. Para nosotros serán términos sinónimos salvo que, cuando

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

CAPÍTULO II. 2 El espacio vectorial R n

CAPÍTULO II. 2 El espacio vectorial R n CAPÍTULO II 2 El espacio vectorial R n A una n upla (x 1, x 2,..., x n ) de números reales se le denomina vector de n coordenadas o, simplemente, vector. Por ejemplo, el par ( 3, 2) es un vector de R 2,

Más detalles

Formas bilineales y cuadráticas.

Formas bilineales y cuadráticas. Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos

Más detalles

CAPÍTULO II. 5 El grupo ortogonal

CAPÍTULO II. 5 El grupo ortogonal CAPÍTULO II 5 El grupo ortogonal Desde el punto de vista afín, no existen discriminaciones entre el sistema de referencia canónico y otro sistema de referencia arbitrario. Ello se debe a que uno puede

Más detalles

4 Aplicaciones lineales

4 Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 4 Aplicaciones lineales 4. Aplicación lineal Sean V y W dos espacios vectoriales sobre el mismo cuerpo K (en general, R o C. Una aplicación

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

1. Cambios de base en R n.

1. Cambios de base en R n. er Curso de Ingeniero de Telecomunicación. Álgebra. Curso 8-9. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 5. Cambios de Base. Aplicaciones Lineales. Teoría y Ejercicios Resueltos..

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Tema 4: Aplicaciones lineales Definición, primeras propiedades y ejemplos Definición. Sean V y W dos espacios vectoriales sobre un cuerpo K. Una función f : V W se dice que es una aplicación lineal si

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

CAPÍTULO II. 5 Requerimientos matemáticos adicionales

CAPÍTULO II. 5 Requerimientos matemáticos adicionales CAPÍTULO II 5 Requerimientos matemáticos adicionales En esta última sección del capítulo II se tratarán el resto de los conceptos matemáticos necesarios para abordar el estudio de la relatividad especial.

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Problemas y Ejercicios Resueltos. Tema 3: Aplicaciones Lineales.

Problemas y Ejercicios Resueltos. Tema 3: Aplicaciones Lineales. Problemas y Ejercicios Resueltos. Tema : Aplicaciones Lineales. Ejercicios 1.- Determinar cuáles de las siguientes aplicaciones son lineales: (i) f : R R 2 definida por f((x, y, z)) = (x y, y + 2z). (ii)

Más detalles

4 Aplicaciones Lineales

4 Aplicaciones Lineales Prof Susana López 41 4 Aplicaciones Lineales 41 Definición de aplicación lineal Definición 23 Sean V y W dos espacios vectoriales; una aplicación lineal f de V a W es una aplicación f : V W tal que: 1

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

Espacios vectoriales y Aplicaciones lineales

Espacios vectoriales y Aplicaciones lineales Espacios vectoriales y Aplicaciones lineales Espacios vectoriales. Subespacios vectoriales Espacios vectoriales Definición Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS 2 Í N D I C E CAPÍTULO MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES. MATRIZ. DEFINICIÓN 2. ALGUNOS

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES

4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES Espacios Vectoriales y Aplicaciones Lineales 4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA 1.- Espacios Vectoriales..- Propiedades de un Espacio Vectorial..-

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires Fascículo 2 Cursos de grado ISSN 1851-1317 Gabriela Jeronimo Juan Sabia Susana Tesauri Álgebra Lineal Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2008

Más detalles

Espacio afín. Transformaciones afines y movimientos

Espacio afín. Transformaciones afines y movimientos Capítulo Espacio afín. Transformaciones afines y movimientos. Espacio afín y espacio afín métrico Definición. El espacio afín (tridimensional) está constituido por los siguientes elementos. El espacio

Más detalles

Análisis III. Joaquín M. Ortega Aramburu

Análisis III. Joaquín M. Ortega Aramburu Análisis III Joaquín M. Ortega Aramburu Septiembre de 1999 Actualizado en julio de 2001 2 Índice General 1 Continuidad en el espacio euclídeo 5 1.1 El espacio euclídeo R n...............................

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Capítulo 6 MATRICES Y DETERMINANTES 6.. Introducción Las matrices y los determinantes son herramientas del álgebra que facilitan el ordenamiento de datos, así como su manejo. Los conceptos de matriz y

Más detalles

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos.

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Prof. D. Miguel Ángel García Hoyo. Septiembre de 2011 Dependencia lineal

Más detalles

Tema 3. Aplicaciones lineales. 3.1. Introducción

Tema 3. Aplicaciones lineales. 3.1. Introducción Tema 3 Aplicaciones lineales 3.1. Introducción Una vez que sabemos lo que es un espacio vectorial y un subespacio, vamos a estudiar en este tema un tipo especial de funciones (a las que llamaremos aplicaciones

Más detalles

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2

Más detalles

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid Grado en Ingeniería en Tecnologías Industriales Grado en Ingeniería Química Apuntes de Álgebra ( Curso 2014/15) Departamento de Matemática

Más detalles

Aplicaciones lineales

Aplicaciones lineales Capítulo 4 Aplicaciones lineales 4.1. Introduccción a las aplicaciones lineales En el capítulo anterior encontramos la aplicación de coordenadas x [x] B que asignaba, dada una base del espacio vectorial,

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Capítulo 8 Espacios vectoriales con producto interno En este capítulo, se generalizarán las nociones geométricas de distancia y perpendicularidad, conocidas en R y en R 3, a otros espacios vectoriales.

Más detalles

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector

Más detalles

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide:

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide: .- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax, así como los subespacios vectoriales N(f) e Im(f) a) f(x,y) = (x,-y) b) f(x,y)

Más detalles

VII. Estructuras Algebraicas

VII. Estructuras Algebraicas VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación

Más detalles

Clase 15 Espacios vectoriales Álgebra Lineal

Clase 15 Espacios vectoriales Álgebra Lineal Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

(Ec.1) 2α + β = b (Ec.4) (Ec.3)

(Ec.1) 2α + β = b (Ec.4) (Ec.3) Problema 1. Hallar t R para que el vector x = (3, 8, t) pertenezca al subespacio engendrado por los vectores u = (1, 2, 3) y v = (1, 3, 1). Solución del problema 1. x L{ u, v} si, y sólo si, existen α,

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios Sonia L. Rueda ETS Arquitectura. UPM Curso 2007-2008. 1 MATEMÁTICAS I TEMA 1: Espacios Vectoriales 1 Definición de espacio vectorial. Subespacios Dados dos conjuntos V y K se llama ley de composición externa

Más detalles

Matrices y sus operaciones

Matrices y sus operaciones Capítulo 1 Matrices y sus operaciones 1.1. Definiciones Dados dos enteros m, n 1 y un cuerpo conmutativo IK, llamamos matriz de m filas y n columnas con coeficientes en IK a un conjunto ordenado de n vectores

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

Espacios vectoriales y aplicaciones lineales.

Espacios vectoriales y aplicaciones lineales. Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en

Más detalles

Teoremas de la función implícita y de la función inversa

Teoremas de la función implícita y de la función inversa Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Teoremas de la función implícita y de la función inversa 1. El teorema de la función implícita 1.1. Ejemplos

Más detalles

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V.

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V. Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL x x x1 n θ y y ȳ1 n 1 n x1 n ȳ1 n Carlos Arce S. William Castillo E. Jorge González V. 2003 Algebra Lineal Carlos Arce S., William Castillo

Más detalles

(x + y) + z = x + (y + z), x, y, z R N.

(x + y) + z = x + (y + z), x, y, z R N. TEMA 1: EL ESPACIO R N ÍNDICE 1. El espacio vectorial R N 1 2. El producto escalar euclídeo 2 3. Norma y distancia en R N 4 4. Ángulo y ortogonalidad en R N 6 5. Topología en R N 7 6. Nociones topológicas

Más detalles

Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009)

Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009) ÁLGEBRA Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009) I. Se considera el homomorfismo f : P 2 (IR) P 2 (IR) definido por las siguientes condiciones: (1) Los polinomios sin

Más detalles

CUADERNO IV ESPACIOS VECTORIALES Y APLICACIONES LINEALES

CUADERNO IV ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1 CUADERNO IV ESPACIOS VECTORIALES Y APLICACIONES LINEALES Miguel A. Sainz, Joan Serarols, Anna M. Pérez Dep. de Informática y Matemática Aplicada Universidad de Girona RESUMEN: Se va a desarrollar la

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Tema 2: Espacios vectoriales La estructura de espacio vectorial juega un papel fundamental en el álgebra lineal pues es la base de todos los conceptos que ahí se desarrollan. Vamos en la siguiente sección

Más detalles

Espacios vectoriales. Bases. Coordenadas

Espacios vectoriales. Bases. Coordenadas Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos

Más detalles

ESPACIO VECTORIAL ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN

ESPACIO VECTORIAL ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN Tema 5.- ESPACIOS VECTORIALES ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN ESPACIO VECTORIAL Fundamentos Matemáticosde la Ingeniería 1 Aunque históricamente el primer trabajo de Álgebra

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

Grupos. Subgrupos. Teorema de Lagrange. Operaciones.

Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial

Más detalles

Sistemas de vectores deslizantes

Sistemas de vectores deslizantes Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido

Más detalles

Variedades Diferenciables. Extremos Condicionados

Variedades Diferenciables. Extremos Condicionados Capítulo 16 Variedades Diferenciables. Extremos Condicionados Vamos a completar lo visto en los capítulos anteriores sobre el teorema de las Funciones Implícitas y Funciones Inversas con un tema de iniciación

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

9.1 Primeras definiciones

9.1 Primeras definiciones Tema 9- Grupos Subgrupos Teorema de Lagrange Operaciones 91 Primeras definiciones Definición 911 Una operación binaria en un conjunto A es una aplicación α : A A A En un lenguaje más coloquial una operación

Más detalles

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra)

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra) MATEMÁTICAS II 1 José M. Ramos González Este libro es totalmente gratuito y solo vale la tinta y el papel en que se imprima. Es de libre divulgación y no está sometido a ningún copyright. Tan solo se

Más detalles

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012 Grupo: Matrícula: Nombre: Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 22. (pts) Sea A una matriz cuadrada. Indique validez a cada una de las siguientes

Más detalles

Algebra Lineal: Aplicaciones a la Física

Algebra Lineal: Aplicaciones a la Física Algebra Lineal: Aplicaciones a la Física Resumen del curso 2014 para Lic. en Física (2 o año), Depto. de Física, UNLP. Prof.: R. Rossignoli 0. Repaso de estructuras algebraicas básicas Un sistema algebraico

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

TEMA 2: Grupos. El grupo Simétrico.

TEMA 2: Grupos. El grupo Simétrico. Álgebra y Estructuras Discretas Grupo B de la Ingeniería Técnica de Sistemas TEMA 2: Grupos. El grupo Simétrico. 1. Definición de Grupo. Propiedades Básicas. Definición 1. Dado un conjunto no vacío G,

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

Caracterización de los campos conservativos

Caracterización de los campos conservativos Lección 5 Caracterización de los campos conservativos 5.1. Motivación y enunciado del teorema Recordemos el cálculo de la integral de línea de un gradiente, hecho en la lección anterior. Si f : Ω R es

Más detalles

1. Números Reales 1.1 Clasificación y propiedades

1. Números Reales 1.1 Clasificación y propiedades 1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

Apuntes de Matemática Discreta 7. Relaciones de Orden

Apuntes de Matemática Discreta 7. Relaciones de Orden Apuntes de Matemática Discreta 7. Relaciones de Orden Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 7 Relaciones de Orden Contenido

Más detalles

Grupos. 2.1 Introducción. Capítulo

Grupos. 2.1 Introducción. Capítulo Capítulo 2 Grupos 2.1 Introducción La estructura de grupo es una de las más comunes en toda la matemática pues aparece en forma natural en muchas situaciones, donde se puede definir una operación sobre

Más detalles

El examen de Geometría afín y proyectiva del 3 de julio del 2007 resuelto por cortesía de Alberto Castellón

El examen de Geometría afín y proyectiva del 3 de julio del 2007 resuelto por cortesía de Alberto Castellón El examen de Geometría afín y proyectiva del 3 de julio del 2007 resuelto por cortesía de Alberto Castellón 1) Considérese la proyectividad σ del plano proyectivo real en sí mismo que, en relación al sistema

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Aplicaciones Lineales y Multilineales Continuas

Aplicaciones Lineales y Multilineales Continuas Capítulo 4 Aplicaciones Lineales y Multilineales Continuas La conexión entre las estructuras vectorial y topológica de los espacios normados, se pone claramente de manifiesto en el estudio de las aplicaciones

Más detalles

Espacios de Hilbert. 10.1. Producto Escalar y Norma. Tema 10

Espacios de Hilbert. 10.1. Producto Escalar y Norma. Tema 10 Tema 10 Espacios de Hilbert Vamos a desarrollar en lo que sigue los resultados básicos acerca de los espacios de Hilbert, un tipo muy particular de espacios de Banach con propiedades especiales que están

Más detalles

Subconjuntos destacados en la

Subconjuntos destacados en la 2 Subconjuntos destacados en la topología métrica En este capítulo, introducimos una serie de conceptos ligados a los puntos y a conjuntos que por el importante papel que juegan en la topología métrica,

Más detalles