4 Aplicaciones lineales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4 Aplicaciones lineales"

Transcripción

1 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 4 Aplicaciones lineales 4. Aplicación lineal Sean V y W dos espacios vectoriales sobre el mismo cuerpo K (en general, R o C. Una aplicación f : V W se llama aplicación lineal u homomorfismo si f(u + v = f(u + f(v, u, v V. f(αu = αf(u, u V, α K. Estas dos condiciones son equivalentes a la única condición: f(αu + βv = αf(u + βf(v, u, v V, α, β K 4.2 Ejemplos. Las siguientes aplicaciones, f : R 2 R 2, son aplicaciones lineales: (a Homotecia: f(u = λu, con λ R. (b Proyección: f(x, y = (x, 0. (c Simetría: f(x, y = (x, y 2. Si A M m n (R, la aplicación f : R n R m definida por f(u = Au es una aplicación lineal (asociada a la matriz A. Obviamente, para que tenga sentido el producto Au, se entiende que el vector u se escribe en columna, como se hará siempre que esté implicado en operaciones matriciales. 3. La aplicación lineal asociada a la matriz A = 0 es f : R 2 R 3 definida por: Propiedades f(x, y = 0 2 ( x = y Si f : V W es una aplicación lineal, se cumple:. f(0 = f( u = f(u. x y x x + 2y = 3. S subespacio vectorial de V = f(s es subespacio vectorial de W. x = x y y = x z = x + 2y 4. T subespacio vectorial de W = f (T es subespacio vectorial de V. 4.4 Núcleo e imagen de una aplicación lineal Si f : V W es una aplicación lineal, se llama imagen al subespacio vectorial Im f = f(v, y núcleo al subespacio vectorial Ker f = f ({0}.

2 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM Definiciones Una aplicación lineal (homomorfismo se llama monomorfismo si es inyectiva, epimorfismo si es sobreyectiva, e isomorfismo si es biyectiva. Cuando los espacios inicial y final coinciden, la aplicación lineal y el isomorfismo se suelen llamar endomorfismo y automorfismo, respectivamente. 4.6 Condición necesaria y suficiente de monomorfismo Sea f : V W es una aplicación lineal. Entonces Demostración: ( Si f es inyectiva, entonces: luego Ker f = {0}. ( Inversamente, si Ker f = {0}, entonces luego f es inyectiva. f es monomorfismo Ker f = {0} f(u = 0 = f(u = f(0 = u = 0 f(u = f(v = f(u v = 0 = u v = 0 = u = v 4.7 Dimensión del subespacio imagen Sea f : V W es una aplicación lineal. Si B = {v, v 2,..., v n } es una base de V, entonces Im f = L ({f(v, f(v 2,..., f(v n } y, en consecuencia dim Im f dim V Demostración: Si w Im f, existe v = (x, x 2,..., x n B V tal que ( w = f(v = f x i v i = x i f (v i luego w L ({f(v, f(v 2,..., f(v n }. Inversamente, si w L ({f(v, f(v 2,..., f(v n }, entonces ( w = α i f(v i = f α i v i y v = α i v i V luego w Im f. 4.8 Determinación de una aplicación lineal Si B = {v, v 2,..., v n } es una base de V y {w, w 2,..., w n } son n vectores cualesquiera de W, entonces existe una única aplicación lineal f : V W tal que f(v i = w i, para i n

3 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 3 Demostración: Para cada v = n x iv i V se define f(v = x i w i Es fácil ver que f es aplicación lineal y que f(v i = w i, para i n. Además es única, pues si g : V W verifica la misma condición, entonces ( g(v = g x i v i = x i g(v i = x i w i = f(v 4.9 Observaciones Si f : R n R m viene definida por f(u = Au, A M m n (R, entonces Ker f son las soluciones del sistema homogéneo Au = 0. Si B = {e, e 2,..., e n } es la base canónica de R n, entonces Im f = L ({f(e, f(e 2,..., f(e n } = L ({c, c 2,..., c n } donde c i es la columna i-ésima de la matriz A. 4.0 Ejemplo 0 Si f : R 3 R 3 es la aplicación lineal asociada a la matriz A = 0 0, entonces Im f = L ({(, 0,, (0,,, (, 0, } = L ({(, 0,, (0,, } Ker f = {u : Au = 0} = L ({(, 0, } ya que 0 0 x = λ = y = z = λ, λ R 4. Matriz de una aplicación lineal Como se ha visto, una áplicación lineal f : V W queda unívocamente determinada por las imágenes de los elementos de una base B V = {v, v 2,..., v n } de V. Si B W = {w, w 2,..., w m } es una base de W, y m f(v j = a ij w i, j n

4 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 4 entonces la imagen de cualquier u = (x, x 2,..., x n BV V, expresada en la base B W de W, es m m f(u = f x j v j = x j f(v j = x j a ij w i = a ij x j w i j= j= j= n j= a jx j a a 2 a n x n j= = a 2jx j. = a 2 a 22 a 2n x = Au n j= a mjx j a m a m2 a mn x n donde las columnas de la matriz A M m n (R, llamada matriz de la aplicación respecto de las bases B V y B W, son las coordenadas en la base B W de las imágenes de los vectores de la base B V. Se suele indicar A = M (f, B V, B W. Fijadas las bases B V y B W, a cada aplicación lineal le corresponde una matriz y viceversa. En el caso particular de que V = W y que la base B en ambos es la misma, se indica simplemente A = M(f, B. 4.2 Ejemplo La expresión matricial de la aplicación lineal f : R 4 R 3 definida, respecto de las bases canónicas, por f (x, x 2, x 3, x 4 = (x + x 4, x + x 2 + x 3, x + x 2 + x 3 es Para hallar el núcleo, se resuelve el sistema: f(u = Au = 0 = x 0 0 f (x, x 2, x 3, x 4 = 0 x 2 x 0 3 x 4 { x + x 4 = 0 x + x 2 + x 3 = 0 = de donde Ker f = {(, 0,,, (0,,, 0}. La imagen es x = α x 2 = β x 3 = α β x 4 = α Im f = {(,,, (0,,, (0,,, (, 0, 0} = {(, 0, 0, (0,, } 4.3 Dimensiones de la imagen y el núcleo Si f : V W es una aplicación lineal, entonces dim(ker f + dim(im f = dim V Demostración: Sean dim V = n, dim(ker f = r n, y B = {v,..., v r } una base del Ker f B = {v,..., v r, v r+,..., v n } una base de V Entonces B 2 = {f(v r+,..., f(v n } es una base de Im f, ya que j=, α, β R

5 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 5 B 2 es un sistema de generadores: w Im f = w = f(v con v = x i v i V ( = w = f(v = f x i v i = B 2 es linealmente independiente: ( α i f(v i = f α i v i = 0 = i=r+ = i=r+ i=r+ x i f(v i = α i v i Ker f = i=r+ i=r+ x i f(v i α i v i = α i v i = 0 = α i = 0, i n = α i = 0, r + i n Por lo tanto dim(ker f + dim(im f = dim V. 4.4 Rango de una aplicación lineal r ( α i v i Si A es la matriz asociada a una aplicación lineal f : V W, respecto de las bases B V y B W, entonces, puesto que el núcleo es el espacio de soluciones del sistema Au = 0, se ha de cumplir que dim(ker f = dim V rg A = dim(im f = rg A Luego el rango de cualquier matriz asociada a f (respecto de bases cualesquiera, que se llama rango de la aplicación lineal, ha de ser constante e igual a la dimensión de la imagen. 4.5 Proposición Si f : V W es una aplicación lineal con dim V = dim W = n <, entonces Demostración: f es isomorfismo f es monomorfismo f es epimorfismo f es epimorfismo dim(im f = dim W = n dim(ker f = 0 f es monomorfismo 4.6 Composición de aplicaciones lineales Si f : U V y g : V W son aplicaciones lineales, entonces g f : U W es aplicación lineal, y M(g f, B U, B W = M(g, B V, B W M(f, B U, B V Demostración: Sean A = M(g f, B U, B W, B = M(g, B V, B W y C = M(f, B U, B V. Entonces (g f (u BU = g (f (u BU = g ((Cu BV = (BCu BW = A = BC

6 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM Ejemplo Si f : R 2 R 3 y g : R 3 R 2 vienen definidas por ( f(x, y = 0 x g(x, y, z = y ( x y z respecto de las bases canónicas, entonces g f : R 2 R 2 y f g : R 3 R 3 vienen definidas por ( ( ( ( ( 0 g f(x, y = 0 x 0 0 x 0 = = 0 0 y 0 y y ( x x y + z f g(x, y, z = 0 0 x y = 0 0 y = y 0 0 z z x + y z respecto de las bases canónicas. 4.8 Matriz de un cambio de base Sea V un espacio vectorial de dimensión n y sean B = {v,..., v n } y B = { v,..., v n } dos bases de V. La aplicación que hace corresponder a cada vector u V en la base B el mismo vector expresado en la base B es la apl8icación identidad: Id : V B V B u B u B = Au B donde A M n n (R es la matriz cuya columna i-ésima es la imagen de v i, es decir las coordenadas de v i en la base B. Puesto que esta aplicación es un isomorfismo, rg A = n y la matriz A es regular. Su inversa A es la que pasa de las coordenadas respecto de B a las coordenadas respecto de B. Resumiendo: A = M(Id, B, B = ((v B,..., (v n B y Au B = u B A = M(Id, B, B = ( (v B,..., (v n B y A u B = u B 4.9 Ejemplo Si en R 3 se considera la base canónica B c = {e, e 2, e 3 } y la base B = {v = (, 0,, v 2 = (0,, 2, v 3 = (,, 0} entonces 0 A = M(Id, B, B c = 0 y u Bc = Au B 2 0

7 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 7 De esta manera, si u = (3, 2, B, entonces u Bc = 0 2 = 2 0 es decir u = (2,, Bc = (2,,. Además: 2 2 A = M(Id, B c, B = y u B = A u Bc 2 de donde e = (2,, B, e 2 = (,, B y e 3 = (, 2, B Cambios de base en una aplicación lineal Sea f : V W una aplicación lineal cuya matriz, respecto de las bases B V en V y B W en W, es A. Cuál es la matriz de f respecto de nuevas bases B V en V y B W en W? Sean P = M(Id V, B V, B V y Q = M(Id W, B W, B W las matrices del cambio de base en V y W, respectivamente. Observando el diagrama se deduce que V B V P V B V A W B W Q C W B W C = M ( f, B V, B W = Q AP 4.2 Ejemplo Sea f : R 3 R 3 la aplicación lineal que respecto de la base canónica B c tiene asociada la matriz x A = M (f, B c, B c = M (f, B c = 3, es decir f(x, y, z = 3 y z. Cuál es la matriz de f respecto de la base Se construye el diagrama y entonces B = {v = (, 0,, v 2 = (0,, 2, v 3 = (,, 0}? A (R 3 B c (R 3 B c P P (R 3 B C (R 3 B 0 donde P = M (Id, B, B c = C = M(f, B, B = M(f, B = P AP =

8 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 8 es decir, que si u = (x, y, z B entonces su imagen, también expresada en la base B, es 2 4 x f(x, y, z = 2 3 y z 2. Cuál es la matriz de f respecto de la base B en el espacio inicial y la base canónica en el espacio final? Siendo I la matriz identidad, el nuevo diagrama, y la matriz buscada, son A (R 3 B c (R 3 B c P I (R 3 B D (R 3 Bc 4 de donde D = M(f, B, B c = IAP = AP =

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

1. APLICACIONES LINEALES

1. APLICACIONES LINEALES 1 1 APLICACIONES LINEALES El objetivo de este capítulo es el estudio de las aplicaciones lineales u homomorfismos entre espacios vectoriales Este tipo de aplicaciones respeta la estructura de espacio vectorial

Más detalles

4 Aplicaciones Lineales

4 Aplicaciones Lineales Prof Susana López 41 4 Aplicaciones Lineales 41 Definición de aplicación lineal Definición 23 Sean V y W dos espacios vectoriales; una aplicación lineal f de V a W es una aplicación f : V W tal que: 1

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

ÁLGEBRA LINEAL I Soluciones a la Práctica 6

ÁLGEBRA LINEAL I Soluciones a la Práctica 6 ÁLGEBRA LINEAL I Soluciones a la Práctica 6 Aplicaciones lineales (Curso 2009 2010) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos,

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

La aplicación derivada sobre el espacio E de los polinomios en una variable, E D E, es

La aplicación derivada sobre el espacio E de los polinomios en una variable, E D E, es Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS 1 Aplicaciones lineales Núcleo e Imagen Tipos de aplicaciones lineales Sean E y E k-espacios vectoriales Definición 11 Una

Más detalles

CAPÍTULO II. 3 El grupo lineal

CAPÍTULO II. 3 El grupo lineal CAPÍTULO II 3 El grupo lineal Como ya se advirtió en el capítulo precedente, los grupos de transformaciones juegan un importante papel en el estudio de la geometría. En esta sección nos ocuparemos de aquellas

Más detalles

Tema 3. Aplicaciones lineales. 3.1. Introducción

Tema 3. Aplicaciones lineales. 3.1. Introducción Tema 3 Aplicaciones lineales 3.1. Introducción Una vez que sabemos lo que es un espacio vectorial y un subespacio, vamos a estudiar en este tema un tipo especial de funciones (a las que llamaremos aplicaciones

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

Espacios vectoriales y Aplicaciones lineales

Espacios vectoriales y Aplicaciones lineales Espacios vectoriales y Aplicaciones lineales Espacios vectoriales. Subespacios vectoriales Espacios vectoriales Definición Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea

Más detalles

Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009)

Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009) ÁLGEBRA Solución a los problemas adicionales Aplicaciones lineales (Curso 2008 2009) I. Se considera el homomorfismo f : P 2 (IR) P 2 (IR) definido por las siguientes condiciones: (1) Los polinomios sin

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide:

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide: .- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax, así como los subespacios vectoriales N(f) e Im(f) a) f(x,y) = (x,-y) b) f(x,y)

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Tema 4: Aplicaciones lineales Definición, primeras propiedades y ejemplos Definición. Sean V y W dos espacios vectoriales sobre un cuerpo K. Una función f : V W se dice que es una aplicación lineal si

Más detalles

4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES

4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES Espacios Vectoriales y Aplicaciones Lineales 4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA 1.- Espacios Vectoriales..- Propiedades de un Espacio Vectorial..-

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS 2 Í N D I C E CAPÍTULO MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES. MATRIZ. DEFINICIÓN 2. ALGUNOS

Más detalles

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES.

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. Prácticas de Matemáticas I y Matemáticas II con DERIVE 8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. 8.. DEPENDENCIA E INDEPENDENCIA LINEAL DE VECTORES. COMBINACIÓN LINEAL. EJEMPLO 8.. Estudiar si el

Más detalles

Espacios vectoriales y aplicaciones lineales.

Espacios vectoriales y aplicaciones lineales. Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en

Más detalles

1. Cambios de base en R n.

1. Cambios de base en R n. er Curso de Ingeniero de Telecomunicación. Álgebra. Curso 8-9. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 5. Cambios de Base. Aplicaciones Lineales. Teoría y Ejercicios Resueltos..

Más detalles

Problemas y Ejercicios Resueltos. Tema 3: Aplicaciones Lineales.

Problemas y Ejercicios Resueltos. Tema 3: Aplicaciones Lineales. Problemas y Ejercicios Resueltos. Tema : Aplicaciones Lineales. Ejercicios 1.- Determinar cuáles de las siguientes aplicaciones son lineales: (i) f : R R 2 definida por f((x, y, z)) = (x y, y + 2z). (ii)

Más detalles

Aplicaciones lineales

Aplicaciones lineales Capítulo 4 Aplicaciones lineales 4.1. Introduccción a las aplicaciones lineales En el capítulo anterior encontramos la aplicación de coordenadas x [x] B que asignaba, dada una base del espacio vectorial,

Más detalles

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios Sonia L. Rueda ETS Arquitectura. UPM Curso 2007-2008. 1 MATEMÁTICAS I TEMA 1: Espacios Vectoriales 1 Definición de espacio vectorial. Subespacios Dados dos conjuntos V y K se llama ley de composición externa

Más detalles

Algebra Lineal: Aplicaciones a la Física, Curso 2012

Algebra Lineal: Aplicaciones a la Física, Curso 2012 Algebra Lineal: Aplicaciones a la Física, Curso 2012 5. Transformaciones lineales Una transformación lineal (TL es una función F : V V entre dos espacios vectoriales V,V sobre el mismo cuerpo K que satisface

Más detalles

TEST DE ÁLGEBRA. 6.- Sea el subespacio de R 3 S = { (x,,y,z) / x +y+z = 0} a) es de dimensión 1 b) es de dimensión 2 c) es R 3 d) NDLA

TEST DE ÁLGEBRA. 6.- Sea el subespacio de R 3 S = { (x,,y,z) / x +y+z = 0} a) es de dimensión 1 b) es de dimensión 2 c) es R 3 d) NDLA TEST DE ÁLGEBRA 1.- Sea f:r 4 -----> R 5 una apli. lineal a) Dim ker(f) tiene que ser 3 b) Dim ker(f) será 4 c) Dim ker(f) es 5 2.- El sistema homogéneo 3 x % 8 y % ð z 0 y & z 0 a) tiene soluciones no

Más detalles

APLICACIONES LINEALES. DIAGONALIZACIÓN

APLICACIONES LINEALES. DIAGONALIZACIÓN I.- Sea f una transformación lineal de un espacio vectorial V de dimensión n. Sea B una base de V. Sea A la matriz asociada a f respecto de la base B. Señala, sin demostrar, cuáles de las siguientes afirmaciones

Más detalles

Formas bilineales y cuadráticas.

Formas bilineales y cuadráticas. Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

1 El espacio vectorial R n.

1 El espacio vectorial R n. Manuel Gutiérrez Departamento de Álgebra, Geometría y Topología Universidad de Málaga February 26, 2009 1 El espacio vectorial R n. La estructura de espacio vectorial es posiblemente la estructura más

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Capítulo 8 Espacios vectoriales con producto interno En este capítulo, se generalizarán las nociones geométricas de distancia y perpendicularidad, conocidas en R y en R 3, a otros espacios vectoriales.

Más detalles

Espacio afín. Transformaciones afines y movimientos

Espacio afín. Transformaciones afines y movimientos Capítulo Espacio afín. Transformaciones afines y movimientos. Espacio afín y espacio afín métrico Definición. El espacio afín (tridimensional) está constituido por los siguientes elementos. El espacio

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Concepto de espacio vectorial y propiedades 1.1 Definición Se llama espacio vectorial sobre K (IR o C a toda terna

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

(Ec.1) 2α + β = b (Ec.4) (Ec.3)

(Ec.1) 2α + β = b (Ec.4) (Ec.3) Problema 1. Hallar t R para que el vector x = (3, 8, t) pertenezca al subespacio engendrado por los vectores u = (1, 2, 3) y v = (1, 3, 1). Solución del problema 1. x L{ u, v} si, y sólo si, existen α,

Más detalles

Clase 15 Espacios vectoriales Álgebra Lineal

Clase 15 Espacios vectoriales Álgebra Lineal Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos

Más detalles

Sección 4.5: Transformaciones del plano y del espacio. Sección 4.6: Problema de mínimos cuadrados y aplicaciones.

Sección 4.5: Transformaciones del plano y del espacio. Sección 4.6: Problema de mínimos cuadrados y aplicaciones. Tema 4 Producto escalar En bachiller habéis visto los conceptos de producto escalar, longitud, distancia y perpendicularidad en R y R 3 En este tema del curso se generalizan estos conceptos a R n, junto

Más detalles

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires Fascículo 2 Cursos de grado ISSN 1851-1317 Gabriela Jeronimo Juan Sabia Susana Tesauri Álgebra Lineal Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2008

Más detalles

4.- Para los siguientes conjuntos de vectores, probar si son o no subespacios vectoriales de R 4 : 2d + 1 : b, d reales. d

4.- Para los siguientes conjuntos de vectores, probar si son o no subespacios vectoriales de R 4 : 2d + 1 : b, d reales. d GRADO EN I. TELEMÁTICA. HOJA : ESPACIOS VECTORIALES. ESPACIOS NULO Y COLUMNA.- Sea W el conjunto de todos los vectores de R de la forma subespacio de R. s + t s t s t t, con s, t R. Probar que W es un.-

Más detalles

Tema 8: APLICACIONES AFINES

Tema 8: APLICACIONES AFINES Tema 8: APLICACIONES AFINES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura: Matemáticas

Más detalles

Algebra Lineal y Geometría.

Algebra Lineal y Geometría. Algebra Lineal y Geometría. Unidad nº7: Transformaciones Lineales. Algebra Lineal y Geometría Esp. Liliana Eva Mata 1 Contenidos. Transformación lineal entre dos espacios vectoriales. Teorema fundamental

Más detalles

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2

Más detalles

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades 5- ransformaciones Lineales 5Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal sus propiedades Se denomina transformación lineal a toda función,, cuo dominio codominio

Más detalles

4.1 El espacio dual de un espacio vectorial

4.1 El espacio dual de un espacio vectorial Capítulo 4 Espacio dual Una de las situaciones en donde se aplica la teoría de espacios vectoriales es cuando se trabaja con espacios de funciones, como vimos al final del capítulo anterior. En este capítulo

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0).

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). a) Demostrad que (1,3,4), (1,1,1) i (0,1,1) son una base de R³. b) Decid

Más detalles

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V.

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V. Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL x x x1 n θ y y ȳ1 n 1 n x1 n ȳ1 n Carlos Arce S. William Castillo E. Jorge González V. 2003 Algebra Lineal Carlos Arce S., William Castillo

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

Problemas de Álgebra Lineal Espacios Vectoriales

Problemas de Álgebra Lineal Espacios Vectoriales Problemas de Álgebra Lineal Espacios Vectoriales 1. Estudia cuáles de los siguientes subconjuntos son subespacios de R n para el n que corresponda: i) S 1 = {(x, y, z, t) R 4 x + y + z + t = b} siendo

Más detalles

1. APLICACIONES LINEALES

1. APLICACIONES LINEALES 1 1. APLICACIONES LINEALES 1. Estudiar si las siguientes aplicaciones son lineales: a) f : R 2 R 3, f(x, y) = (x + y, y, x 2y). Sí es lineal. b) f : R 2 R, f(x, y) = xy. No es lineal. Basta observar que

Más detalles

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid Grado en Ingeniería en Tecnologías Industriales Grado en Ingeniería Química Apuntes de Álgebra ( Curso 2014/15) Departamento de Matemática

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 1 Estructuras algebraicas 1.1 Álgebras binarias Sea A un conjunto no vacío, una operación binaria (u operación interna) en A es una aplicación *: A A A (x, y) x * y es decir, una regla que a cada

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Transformaciones lineales invertibles (no singulares)

Transformaciones lineales invertibles (no singulares) Transformaciones lineales invertibles (no singulares) Objetivos. Estudiar la definición y los criterios de invertibilidad de una transformación lineal. Requisitos. Funciones inyectivas, suprayectivas e

Más detalles

CAPÍTULO II. 2 El espacio vectorial R n

CAPÍTULO II. 2 El espacio vectorial R n CAPÍTULO II 2 El espacio vectorial R n A una n upla (x 1, x 2,..., x n ) de números reales se le denomina vector de n coordenadas o, simplemente, vector. Por ejemplo, el par ( 3, 2) es un vector de R 2,

Más detalles

CAPÍTULO II. 4 El grupo afín

CAPÍTULO II. 4 El grupo afín CAPÍTULO II 4 El grupo afín En geometría clásica, antes de la aparición de los espacios vectoriales, se hablaba de puntos en lugar de vectores. Para nosotros serán términos sinónimos salvo que, cuando

Más detalles

Vectores y Valores Propios

Vectores y Valores Propios Capítulo 11 Vectores y Valores Propios Las ideas de vector y valor propio constituyen conceptos centrales del álgebra lineal y resultan una valiosa herramienta en la solución de numerosos problemas de

Más detalles

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1;

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1; 3. Espacios Vectoriales 3.1. Definición de espacio vectorial Un cuerpo es una estructura algebraica (K, +, ) formada por un conjunto K no vacio y dos operaciones internas + y que verifican las siguientes

Más detalles

Construcción de bases en el núcleo e imagen de una transformación lineal

Construcción de bases en el núcleo e imagen de una transformación lineal Construcción de bases en el núcleo e imagen de una transformación lineal Objetivos. Estudiar el algoritmo para construir una base del núcleo y una base de la imagen de una transformación lineal. Requisitos.

Más detalles

TEMA 2: Grupos. El grupo Simétrico.

TEMA 2: Grupos. El grupo Simétrico. Álgebra y Estructuras Discretas Grupo B de la Ingeniería Técnica de Sistemas TEMA 2: Grupos. El grupo Simétrico. 1. Definición de Grupo. Propiedades Básicas. Definición 1. Dado un conjunto no vacío G,

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

Notas del curso de Algebra Moderna III

Notas del curso de Algebra Moderna III Notas del curso de Algebra Moderna III Luis Valero Elizondo 01 de Marzo del 2005 Índice general 1. Anillos. 5 1.1. Anillos............................... 5 1.2. Ideales................................

Más detalles

Matemáticas I: Hoja 4 Aplicaciones lineales y diagonalización

Matemáticas I: Hoja 4 Aplicaciones lineales y diagonalización Matemáticas I: Hoja 4 Aplicaciones lineales y diagonalización Ejercicio. Decidir cuáles de las siguientes aplicaciones son lineales. Cuál es la dimensión del espacio imagen? a f(x, x 2, x 3 = (x 2 + x

Más detalles

Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Transformaciones Lineales Definiciones básicas de Transformaciones Lineales wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 007-009 Contenido 1 Transformaciones Lineales 11 Núcleo e imagen

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

Variedades Diferenciables. Extremos Condicionados

Variedades Diferenciables. Extremos Condicionados Capítulo 16 Variedades Diferenciables. Extremos Condicionados Vamos a completar lo visto en los capítulos anteriores sobre el teorema de las Funciones Implícitas y Funciones Inversas con un tema de iniciación

Más detalles

TABLA DE CONTENIDO SÍMBOLOS PROPOSICIONALES. CUANTIFICADORAS SUBCONJUNTOS. INTERSECCIÓN Y REUNIÓN APLICACIÓN. NOMENCLATURA Y NOTACIONES

TABLA DE CONTENIDO SÍMBOLOS PROPOSICIONALES. CUANTIFICADORAS SUBCONJUNTOS. INTERSECCIÓN Y REUNIÓN APLICACIÓN. NOMENCLATURA Y NOTACIONES TABLA DE CONTENIDO LECCIÓN 1 CAP. I. - CONJUNTO. NOTACIONES SÍMBOLOS PROPOSICIONALES. CUANTIFICADORAS SUBCONJUNTOS. INTERSECCIÓN Y REUNIÓN CONJUNTO PRODUCTO LECCIÓN 2 APLICACIÓN. NOMENCLATURA Y NOTACIONES

Más detalles

Álgebra Lineal y Geometría Grupo A Curso 2009/10. Sistemas de ecuaciones lineales

Álgebra Lineal y Geometría Grupo A Curso 2009/10. Sistemas de ecuaciones lineales Álgebra Lineal y Geometría Grupo A Curso 2009/10 Sistemas de ecuaciones lineales NOTA: Los problemas con asterisco, (*), tienen un grado mayor de dificultad. 1) Resolver los tres sistemas de ecuaciones

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

4.1 De nici on de aplicaci on lineal,ejemplos y propiedades 4.2 N ucleo e imagen de una aplicaci on lineal

4.1 De nici on de aplicaci on lineal,ejemplos y propiedades 4.2 N ucleo e imagen de una aplicaci on lineal 52 Tema 4. APLICACIONES LINEALES 4.1 De nici on de aplicaci on lineal,ejemplos y propiedades 4.2 N ucleo e imagen de una aplicaci on lineal 4.3Operacioneselementalesconaplicacioneslineales 4.4Matricesasociadasaunaaplicaci

Más detalles

Conjuntos, Relaciones y Grupos. Problemas de examen.

Conjuntos, Relaciones y Grupos. Problemas de examen. Conjuntos, Relaciones y Grupos. Problemas de examen. Mayo 2006 1. La función f es definida por (a) Halle el recorrido exacto, A, de f. f : R R donde f(x) = e senx 1. (b) (i) Explique por qué f no es inyectiva.

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

A L G E B R A M U L T I L I N E A L K - T E O R I A A L G E B R A I C A C L A S I C A E M I L I O L L U I S - P U E B L A

A L G E B R A M U L T I L I N E A L K - T E O R I A A L G E B R A I C A C L A S I C A E M I L I O L L U I S - P U E B L A A L G E B R A L I N E A L, A L G E B R A M U L T I L I N E A L Y K - T E O R I A A L G E B R A I C A C L A S I C A E M I L I O L L U I S - P U E B L A Universidad Nacional Autónoma de México 2008 Segunda

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones

Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones Tema 13.- Teorema de estructura de los módulos finitamente generados sobre un D.I.P.. Aplicaciones 13.1 Teorema de estructura de los módulos finitamente generados sobre un D.I.P. En lo que sigue A denotará

Más detalles

1. Introducción. 2. Prerrequisitos. 2.1. Teoría de grupos.

1. Introducción. 2. Prerrequisitos. 2.1. Teoría de grupos. 1. Introducción. Estas son las notas del curso Matrices Gruperas: una introducción a la Teoría de Representaciones de Grupos, impartido por Luis Valero Elizondo en la I Escuela de Algebra del CIMAT, del

Más detalles

Física, Matemáticas y Estadística Primer Curso ÁLGEBRA LINEAL I. Juan A. Navarro González

Física, Matemáticas y Estadística Primer Curso ÁLGEBRA LINEAL I. Juan A. Navarro González Física, Matemáticas y Estadística Primer Curso ÁLGEBRA LINEAL I Juan A. Navarro González 26 de noviembre de 2015 2 Índice General 1 Preliminares 1 1.1 Relaciones de Equivalencia............................

Más detalles

Tema 4.- El espacio vectorial R n.

Tema 4.- El espacio vectorial R n. Tema 4- El espacio vectorial R n Subespacios vectoriales de R n Bases de un subespacio Rango de una matriz 4 Bases de R n Cambios de base 5 Ejercicios En este tema estudiamos la estructura vectorial del

Más detalles

Una relación R de un conjunto A en un conjunto B es un subconjunto R de A x B.

Una relación R de un conjunto A en un conjunto B es un subconjunto R de A x B. Una relación R de un conjunto A en un conjunto B es un subconjunto R de A x B. Sea R una relación de un conjunto A en un conjunto B. Se dice que un elemento a de A está relacionado con un elemento b de

Más detalles

Álgebra II. Tijani Pakhrou

Álgebra II. Tijani Pakhrou Álgebra II Tijani Pakhrou Índice general 1. Teoría de conjuntos 1 1.1. Conjuntos................................. 1 1.2. Productos cartesianos........................... 6 1.3. Relaciones de equivalencia........................

Más detalles

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3.

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3. ÍNDICE 13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL............. 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL...... 275 13.3. REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN

Más detalles

No. 2 Anillos. Oswaldo Lezama. Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá

No. 2 Anillos. Oswaldo Lezama. Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá CUADERNOS DE ÁLGEBRA No. 2 Anillos Oswaldo Lezama Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede de Bogotá 30 de junio de 2014 ii Cuaderno dedicado a Lukas, mi hijo.

Más detalles

Funciones uno-uno, sobre y biunívocas

Funciones uno-uno, sobre y biunívocas Funciones uno-uno, sobre y biunívocas La inversa (biunívocas) de una función es una regla que actúa en la salida de la función y produce la entrada correspondiente. Así, la inversa deshace o invierte lo

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Práctica de Aplicaciones Lineales

Práctica de Aplicaciones Lineales practica5.nb 1 Práctica de Aplicaciones Lineales Aplicaciones lineales y matrices Las matrices también desempeñan un papel muy destacado en el estudio de las aplicaciones lineales entre espacios vectoriales

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

Álgebra lineal y matricial

Álgebra lineal y matricial Capítulo Álgebra lineal y matricial.. Vectores y álgebra lineal Unconjuntodennúmerosreales(a,,a n )sepuederepresentar: como un punto en el espacio n-dimensional; como un vector con punto inicial el origen

Más detalles

Espacios vectoriales lorentzianos. Relatividad Especial

Espacios vectoriales lorentzianos. Relatividad Especial Capítulo 1 Espacios vectoriales lorentzianos. Relatividad Especial A lo largo de este capítulo, V = V (R) denotará un espacio vectorial real de dimensión n. 1.1. Espacios vectoriales con un producto escalar

Más detalles

Cambio de representaciones para variedades lineales.

Cambio de representaciones para variedades lineales. Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal. Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción

Más detalles

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de 1 (a) f(x 1, x 2, x 3 ) = (x 1 + x 3, x 2 + x 3, x 1 + x 3, x 2 + x 3 ) (b) f(x 1, x 2, x

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles