Fundamentos de espectroscopia: Vibraciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fundamentos de espectroscopia: Vibraciones"

Transcripción

1 Fundamentos de espectroscopia: Vibraciones Jesús Hernández Trujillo Facultad de Química, UNAM Agosto de 2017 Vibraciones/JHT 1 / 28

2 Oscilador armónico Movimiento oscilatorio: Una partícula describe un movimiento oscilatorio (vibratorio) cuando se mueve alrededor de una posición de equilibrio. Vibraciones/JHT 2 / 28

3 Oscilador armónico Movimiento oscilatorio: Una partícula describe un movimiento oscilatorio (vibratorio) cuando se mueve alrededor de una posición de equilibrio. Un cuerpo elástico se deforma cuando se le aplica una fuerza. F aplicada l x deformación longitud de equilibrio Vibraciones/JHT 2 / 28

4 Oscilador armónico Movimiento oscilatorio: Una partícula describe un movimiento oscilatorio (vibratorio) cuando se mueve alrededor de una posición de equilibrio. Un cuerpo elástico se deforma cuando se le aplica una fuerza. F aplicada l x deformación longitud de equilibrio Fuerza de restitución: La fuerza con que el material se opone a la deformación. Vibraciones/JHT 2 / 28

5 Relación entre las fuerzas de restitución y aplicada: F F restitucion = F aplicada Vibraciones/JHT 3 / 28

6 Relación entre las fuerzas de restitución y aplicada: F F restitucion = F aplicada Ley de Hooke: La magnitud de la fuerza de restitución es proporcional a la deformación Vibraciones/JHT 3 / 28

7 Relación entre las fuerzas de restitución y aplicada: F F restitucion = F aplicada Ley de Hooke: La magnitud de la fuerza de restitución es proporcional a la deformación Matemáticamente: donde: F = kx, k > 0 k es la constante de rigidez del material x < 0 compresión F > 0 x > 0 extensión F < 0 Vibraciones/JHT 3 / 28

8 Intervalo de validez de la ley de Hooke: F F x deformaciones pequeñas (depende la naturaleza del material, la temperatura,....) Vibraciones/JHT 4 / 28

9 Movimiento armónico simple: l k m O longitud de equilibrio x Vibraciones/JHT 5 / 28

10 Movimiento armónico simple: l k m O A partir de la segunda ley de Newton F = m d2 x dt 2 longitud de equilibrio x y de la ley de Hooke: F = kx se obtiene m d2 x dt = kx 2 Vibraciones/JHT 5 / 28

11 Por lo tanto: m d2 x dt 2 + kx = 0 donde d 2 x dt 2 + ω2 x = 0 (1) ω 2 = k m ω: Frecuencia circular La solución de (1) (o sus formas equivalentes anteriores) describe el movimiento armónico simple. Vibraciones/JHT 6 / 28

12 Las soluciones de (1) son de la forma x(t) = Asen(ωt + φ) (2) A: Amplitud φ: ángulo de fase Vibraciones/JHT 7 / 28

13 Las soluciones de (1) son de la forma x(t) = Asen(ωt + φ) (2) A: Amplitud φ: ángulo de fase {A,φ} son las constantes de integración de la solución general de (1) = Demuestra que (2) es solución de (1) Vibraciones/JHT 7 / 28

14 Resumen: Cinemática del oscilador armónico posición: x(t) = Asen(ωt + φ) velocidad: v(t) = Aω cos(ωt + φ) aceleración: a(t) = Aω 2 sen(ωt + φ) Vibraciones/JHT 8 / 28

15 φ x(t) = Asen(ωt + φ) A A τ t 1 t 2 t 3 t 4 t 5 t v(t) = Aωcos(ωt + φ) t 1 t 2 t 3 t 4 t 5 t a(t) = Aω 2 sen(ωt + φ) (a x) t 1 t 2 t 3 t 4 t 5 t Vibraciones/JHT 9 / 28

16 Definiciones: Periodo: τ = 2π ω Frecuencia: ν = 1 τ = ω 2π = 1 2π k m Vibraciones/JHT 10 / 28

17 Energía mecánica del oscilador armónico Energía cinética: T = 1 2 mv2 = 1 2 ma2 ω 2 cos 2 (ωt + φ) (4) Vibraciones/JHT 11 / 28

18 Energía mecánica del oscilador armónico Energía cinética: T = 1 2 mv2 = 1 2 ma2 ω 2 cos 2 (ωt + φ) (4) Energía potencial: La fuerza del oscilador armónico es conservativa: V (x) tal que dv (x) F(x) = dx Por lo tanto: V (x) = F(x)dx = Vibraciones/JHT 11 / 28 kxdx = kx2 2 + c

19 Al hacerv(0) = 0 se obtiene: c = 0 Por lo tanto: V (x) = 1 2 kx2 = 1 2 ka2 sen 2 (ωt + φ) (5) Vibraciones/JHT 12 / 28

20 Al hacerv(0) = 0 se obtiene: c = 0 Por lo tanto: V (x) = 1 2 kx2 = 1 2 ka2 sen 2 (ωt + φ) (5) Energía mecánica: E = T + V Ejercicio: Utiliza (4) y (5) para obtener: E = 1 2 ka2 (6) Es decir,e es constante en el tiempo Vibraciones/JHT 12 / 28

21 Gráficamente: E=T+V V T energía t Vibraciones/JHT 13 / 28

22 Movimiento armónico simple vs movimiento circular R r(t) = Rcosωtı + Rsenωtj F(t) = ω 2 r(t) F y y sombra ω y Movimiento armónico: y = Rsenωt, φ = 0 luz placa Vibraciones/JHT 14 / 28

23 Oscilador armónico Observación experimental: En un movimiento amortiguado, la amplitud de la oscilación disminuye gradualmente en el tiempo La fricción afecta el movimiento Vibraciones/JHT 15 / 28

24 Oscilador armónico Observación experimental: En un movimiento amortiguado, la amplitud de la oscilación disminuye gradualmente en el tiempo La fricción afecta el movimiento Ejemplo: Aproximación: La fuerza de fricción es proporcional a la velocidad: líquido F fric v Funciona bien a velocidades pequeñas Vibraciones/JHT 15 / 28

25 Ejemplo: Ley de Stokes: F fric = 6πηrv η: viscosidad r: radio de la esfera v velocidad Esfera en un fluido viscoso η constante, fluido Newtoniano En contraste, en la salsa catsup:η fuerza Vibraciones/JHT 16 / 28

26 Segunda ley de Newton para una partícula sujeta a la acción de una fuerza armónica y a una de amortiguamiento lineal m d2 x = kx λdx dt2 dt Vibraciones/JHT 17 / 28

27 Segunda ley de Newton para una partícula sujeta a la acción de una fuerza armónica y a una de amortiguamiento lineal m d2 x = kx λdx dt2 dt Al reordenar: donde d 2 x dt 2 + 2γdx dt + ω2 x = 0 (7) ω 2 = k/m 2γ = λ/m Ecuación diferencial homogenea de coeficientes constantes Vibraciones/JHT 17 / 28

28 Ejercicio Verifica que la ecuación característica r 2 + 2γr + ω 2 = 0 tiene por raíces: r 1 = γ + γ 2 ω 2 r 2 = γ γ 2 ω 2 Vibraciones/JHT 18 / 28

29 Ejercicio Verifica que la ecuación característica r 2 + 2γr + ω 2 = 0 tiene por raíces: r 1 = γ + γ 2 ω 2 r 2 = γ γ 2 ω 2 Analizar las situaciones posibles: subamortiguamiento: γ < ω. amortiguamiento crítico: γ = ω. sobreamortiguamiento: γ > ω. Vibraciones/JHT 18 / 28

30 Resumen: x sobreamortiguado amortiguamiento crítico t subamortiguado Vibraciones/JHT 19 / 28

31 Oscilador armónico Considerar ahora un oscilador armónico amortiguado sujeto a una fuerza externaf ext : k m ω 2 0 = k/m F ext x Frecuencia natural del sistema masa-resorte Vibraciones/JHT 20 / 28

32 Oscilador armónico Considerar ahora un oscilador armónico amortiguado sujeto a una fuerza externaf ext : k Segunda ley de Newton: m d2 x = kx λdx dt2 dt + F ext m ω 2 0 = k/m F ext x Frecuencia natural del sistema masa-resorte Vibraciones/JHT 20 / 28

33 Oscilador armónico Considerar ahora un oscilador armónico amortiguado sujeto a una fuerza externaf ext : k m Segunda ley de Newton: m d2 x = kx λdx dt2 dt + F ext En el caso: F ext = F 0 cosω f t fuerza externa periódica con frecuencia circularω f ω 2 0 = k/m F ext x Frecuencia natural del sistema masa-resorte Vibraciones/JHT 20 / 28

34 Oscilador armónico Considerar ahora un oscilador armónico amortiguado sujeto a una fuerza externaf ext : k m Segunda ley de Newton: m d2 x = kx λdx dt2 dt + F ext En el caso: F ext = F 0 cosω f t fuerza externa periódica con frecuencia circularω f ω 2 0 = k/m F ext x Se tiene m d2 x + kx + λdx dt2 dt = F 0cosω f t (11) Frecuencia natural del sistema masa-resorte Vibraciones/JHT 20 / 28

35 Oscilador armónico Considerar ahora un oscilador armónico amortiguado sujeto a una fuerza externaf ext : k m Segunda ley de Newton: m d2 x = kx λdx dt2 dt + F ext En el caso: F ext = F 0 cosω f t fuerza externa periódica con frecuencia circularω f ω 2 0 = k/m F ext x Se tiene m d2 x + kx + λdx dt2 dt = F 0cosω f t (11) Frecuencia natural del sistema masa-resorte Ecuación diferencial no homogénea de coeficientes constantes Vibraciones/JHT 20 / 28

36 Solución de la forma x(t) = x amort (t) + x f (t) donde x amort (t): solución de la ecuación de movimiento amortiguado x f (t): solución particular del movimiento Vibraciones/JHT 21 / 28

37 Solución de la forma x(t) = x amort (t) + x f (t) donde x amort (t): solución de la ecuación de movimiento amortiguado x f (t): solución particular del movimiento Mediante el método de los multiplicadores indeterminados: x f (t) = c 1 cosω f t + c 2 senω f t (12) Vibraciones/JHT 21 / 28

38 Gráficamente: x x amort (t)+x f (t) x f (t) t El sistema amortiguado se mantiene en movimiento si se le suministra energía Vibraciones/JHT 22 / 28

39 Gráficamente: x x amort (t)+x f (t) x f (t) t El sistema amortiguado se mantiene en movimiento si se le suministra energía Dado que entonces lím x amort(t) = 0 t lím x(t) = x f(t) t Vibraciones/JHT 22 / 28

40 Ejercicio: Obtener los valores dec 1 yc 2 dex f (t), ec.(12): c 1 = c 2 = F 0 (k ω 2 f m) (k ω 2 f m)2 + ω 2 f λ2 (13) F 0 ω f λ (k ω 2 f m)2 + ω 2 f λ2 (14) Vibraciones/JHT 23 / 28

41 Al sustituir (13) y (14) en (12): x f (t) = F 0 (k ωf 2m)2 + ωf 2λ2 [ ] (k ω 2 f m)cosω ft + ω f λsenω f t Además, el término entre corchetes es [ ] = asen(ω f t + α) donde a = (k ω 2 f m)2 + ω 2 f λ2 Vibraciones/JHT 24 / 28

42 Por lo tanto, la solución particular de (11) es: x f (t) = Asen(ω f t + α) (19) donde α = arctan k ω2 f m ω f λ = arctan (ω2 0 ω2 f )m λω f (20) y A(ω f ) = F 0 (k/m ω 2f )2 m 2 + ω 2f λ2 (21) ω 0 es la frecuencia natural (frecuencia de resonancia) del oscilador. Vibraciones/JHT 25 / 28

43 A(ω) λ 1 λ 2 λ 3 λ 3 >λ 2 >λ 1 =0 ω 0 ω f Vibraciones/JHT 26 / 28

44 A(ω) λ 1 λ 2 λ 3 λ 3 >λ 2 >λ 1 =0 ω 0 ω f A(ω f ) = F 0 (ω 2 0 ω2 f )2 m 2 + ω 2 f λ2 A max enω f = ω 2 0 2γ2 Vibraciones/JHT 26 / 28

45 A(ω) λ 1 λ 2 λ 3 λ 3 >λ 2 >λ 1 =0 }{{} A max ω 0 ω f A(ω f ) = F 0 (ω 2 0 ω2 f )2 m 2 + ω 2 f λ2 A max enω f = ω 2 0 2γ2 Vibraciones/JHT 26 / 28

46 A(ω) λ 1 λ 2 λ 3 λ 3 >λ 2 >λ 1 =0 }{{} A max ω 0 A es grande cuando ω f ω 0 (resonancia) ω f A(ω f ) = F 0 (ω 2 0 ω2 f )2 m 2 + ω 2 f λ2 A max enω f = ω 2 0 2γ2 Vibraciones/JHT 26 / 28

47 Observaciones: La velocidad máxima del oscilador es v max = ω f A = F 0 (ω 2 0 ω2 f ω f ) 2m2 + λ 2 Vibraciones/JHT 27 / 28

48 Observaciones: La velocidad máxima del oscilador es v max = ω f A = F 0 (ω 2 0 ω2 f ω f ) 2m2 + λ 2 Cuandoω f = ω 0 la velocidad y la energía cinética son máximos cuandoλ = 0. Vibraciones/JHT 27 / 28

49 Observaciones: La velocidad máxima del oscilador es v max = ω f A = F 0 (ω 2 0 ω2 f ω f ) 2m2 + λ 2 Cuandoω f = ω 0 la velocidad y la energía cinética son máximos cuandoλ = 0. La gran amplitud en la frecuencia de resonancia se debe a la favorable transferencia de energía hacia el oscilador cuando F ext está en fase con él. Vibraciones/JHT 27 / 28

50 Ejemplos: El movimiento de un columpio en fase con la fuerza aplicada. Vibraciones/JHT 28 / 28

51 Ejemplos: El movimiento de un columpio en fase con la fuerza aplicada. Las ondas captadas por el sintonizador de un radio. Vibraciones/JHT 28 / 28

52 Ejemplos: El movimiento de un columpio en fase con la fuerza aplicada. Las ondas captadas por el sintonizador de un radio. Un cantante que destruye una copa con su voz. Vibraciones/JHT 28 / 28

53 Ejemplos: El movimiento de un columpio en fase con la fuerza aplicada. Las ondas captadas por el sintonizador de un radio. Un cantante que destruye una copa con su voz. Espectroscopia atómica y molecular. Vibraciones/JHT 28 / 28

Tema 1: Oscilaciones

Tema 1: Oscilaciones 1/42 Fátima Masot Conde Ing. Industrial 2006/07 2/42 Índice: 1.. Características. Representación Matemática. 2. Energía del M.A.S. 3. Algunos Sistemas Oscilantes. Péndulo Simple. Péndulo Físico. Masa+Muelle

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

TEMA 1 Parte I Vibraciones libres y amortiguadas

TEMA 1 Parte I Vibraciones libres y amortiguadas TEMA 1 Parte I Vibraciones libres y aortiguadas 1.1. Introducción: grados de libertad y agnitudes características VIBRACIÓN MECÁNICA: Oscilación repetida en torno a una posición de equilibrio - Vibraciones

Más detalles

Tema 1: Oscilaciones

Tema 1: Oscilaciones 1/45 Fátima Masot Conde Ing. Industrial 2007/08 2/45 Índice: 1. Movimiento Armónico Simple. Características. Representación Matemática. 2. Energía del M.A.S. 3. Algunos Sistemas Oscilantes. Péndulo Simple.

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.)

MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.) Clase 2-1 Clase 2-2 MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.) Cinemática de la Partícula - 1 Clase 2-3 MOVIMIENTOS PERIÓDICOS En la naturaleza hay ciertos movimientos que se producen con asiduidad. Entre ellos

Más detalles

Unidad 12: Oscilaciones

Unidad 12: Oscilaciones Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 12: Oscilaciones Movimiento armónico simple: x(t), v(t) y a(t) 10,0 x(t) a(t) 8,0 6,0

Más detalles

Movimiento Oscilatorio

Movimiento Oscilatorio Movimiento Oscilatorio 1. Introducción.. El Movimiento Armónico Simple. a) Estudio cinemático. b) Estudio dinámico. c) Estudio energético. 3. Péndulos. a) Péndulo simple. b) Péndulo físico. 4. Oscilaciones

Más detalles

Problemas Movimiento Armónico Simple

Problemas Movimiento Armónico Simple Problemas Movimiento Armónico Simple 1. Una partícula describe un M.A.S de pulsación w=π rad/s. En un instante dado se activa el cronómetro. En ese momento la elongación que tiene un sentido de recorrido

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Bases Físicas del Medio Ambiente. Oscilaciones

Bases Físicas del Medio Ambiente. Oscilaciones Bases Físicas del Medio Ambiente Oscilaciones Programa V. OSCILACIONES. (3h) Introducción. Movimiento armónico simple. Energía del oscilador armónico. Aplicaciones del movimiento armónico. Péndulos. Movimiento

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 007/008 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 )

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 ) ONDAS. M.A.S: Tipo de movimiento oscilatorio que tienen los cuerpos que se mueven por acción de una fuerza restauradora: F=-k x OSCILADOR ARMONICO: partícula con M.A.S ECUACION DEL M.A.S: x = A sen (ω

Más detalles

FISICA 2º BACHILLERATO

FISICA 2º BACHILLERATO A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio

Más detalles

Movimiento Armónico Simple (M.A.S.)

Movimiento Armónico Simple (M.A.S.) Anexo: Movimiento Armónico Simple (M.A.S.) 1.- Oscilaciones armónicas Los movimientos periódicos que se producen siempre sobre la misma trayectoria los vamos a denominar movimientos oscilatorios o vibratorios.

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

1. Introducción: Movimiento Circular Uniforme

1. Introducción: Movimiento Circular Uniforme FI1A2 - SISTEMAS NEWTONIANOS GUIA TEORICA Departamento de Física Unidad 5A: Oscilaciones Facultad de Ciencias Físicas y Matemáticas Profs: H. Arellano, D. Mardones, N. Mujica Universidad de Chile Semestre

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

(Lógico si la amplitud disminuyó a la mitad en 2.4 minutos tardará otros 2.4 minutos en reducirse de nuevo a la mitad)

(Lógico si la amplitud disminuyó a la mitad en 2.4 minutos tardará otros 2.4 minutos en reducirse de nuevo a la mitad) M.A.S. AMORTIGUADO Un bloque suspendido de un muelle se pone a oscilar con una amplitud inicial de 120 mm. Después de 2.4 minutos la amplitud ha disminuido hasta 60 mm. a) Cuándo será la amplitud de 30

Más detalles

AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA

AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA Las vibraciones forzadas son aquellas que se originan y mantienen mediante fuerzas aplicadas exteriormente y que no dependen de la posición ni del movimiento

Más detalles

MOVIMIENTO OSCILATORIO. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física

MOVIMIENTO OSCILATORIO. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física MOVIMIENTO OSCILATORIO BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física 2017 Índice general 5. Movimiento oscilatorio 1 5.1. Introducción..........................................

Más detalles

Movimiento oscilatorios: libre, amortiguado, forzado.

Movimiento oscilatorios: libre, amortiguado, forzado. Movimiento oscilatorios: libre, amortiguado, forzado. Masa sujeta a un resorte Ley de Hooke: F = kx Segunda Ley de Newton: ma = kx; a = ω x; ω = k m Conservación de la energía: E = 1 m ẋ + 1 mω x ẋ = E

Más detalles

VIBRACIONES AMORTIGUADAS

VIBRACIONES AMORTIGUADAS VIBRACIONES AMORTIGUADAS OBJETIVOS: Al finalizar el tema el estudiante ha de estar en capacidad de determinar la solución de movimiento vibratorios libres que presentan amortiguación viscosa. Para ello

Más detalles

Oscilaciones amortiguadas.

Oscilaciones amortiguadas. PROBLEMAS DE OSCILACIONES. Oscilaciones amortiguadas. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons 3.0, BY-SA (Atribución-CompartirIgual) Problema 1 Un oscilador armónico amortiguado,

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m] Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 1. En un movimiento oscilatorio, Qué se entiende por periodo? Y por frecuencia? Qué relación existe entre ambas magnitudes? 2. Una partícula

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 013/014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción: movimiento

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio Tema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 9/1 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento 1 Bárbara Cánovas Conesa 637 70 113 www.clasesalacarta.com 1 Cinemática Posición de un Cuerpo Coordenadas Cartesianas Coordenadas Polares Vector de Posición (,, z) r, q r Elementos para la descripción

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

II. Vibración libre de un sistema de un grado de libertad

II. Vibración libre de un sistema de un grado de libertad Objetivos: 1. Definir que es vibración libre. 2. Recordar el método de diagrama de cuerpo libre para deducir las ecuaciones de movimiento. 3. Introducir el método de conservación de energía para deducir

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..3 Vibraciones forzadas Los sistemas estudiados hasta ahora exhiben una dinámica que depende de ciertas constantes intrínsecas al sistema, es decir, las únicas

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

Universidad de Chile Facultad de Ciencias Departamento de Física Mecánica II Ciencias Exactas

Universidad de Chile Facultad de Ciencias Departamento de Física Mecánica II Ciencias Exactas Universidad de Chile Facultad de Ciencias Departamento de Física Mecánica II Ciencias Exactas Profesor : Eduardo Menéndez Ayudantes : Patricio Figueroa Carolina Gálvez Gabriel Paredes Guía N 5. Movimiento

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Mecánica y Ondas. Planteamiento y resolución de problemas tipo

Mecánica y Ondas. Planteamiento y resolución de problemas tipo Mecánica y Ondas. Planteamiento y resolución de problemas tipo Alvaro Perea Covarrubias Doctor en Ciencias Físicas Universidad Nacional de Educación a Distancia Madrid, Enero 2005 Capítulo 1. Leyes de

Más detalles

Bárbara Cánovas Conesa. Concepto de Onda

Bárbara Cánovas Conesa. Concepto de Onda Bárbara Cánovas Conesa 637 720 113 www.clasesalacarta.com 1 Movimientos Armónicos. El Oscilador Armónico Concepto de Onda Una onda es una forma de transmisión de la energía. Es la propagación de una perturbación

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 7 PROYECTO FÍSICA OSCILACIONES JUAN PEDRO BARREIRA ENZO FROGONI MARCELO SANGUINETTI INTRODUCCIÓN En este informe presentamos el estudio de un sistema físico relacionado

Más detalles

Tema 8 Trabajo potencia y energía

Tema 8 Trabajo potencia y energía 1. Trabajo Tema 8 Trabajo potencia y energía En física, decimos que hay trabajo cuando una fuerza provoca un desplazamiento En la naturaleza se produce transferencia de energía entre unos sistemas y otros.

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Fundamentos de acústica

Fundamentos de acústica Tema 1 Fundamentos de acústica 1.1 Introducción Definición del sonido El sonido es una vibración mecánica que se transmite a través de un medio elástico, capaz de producir una sensación auditiva debido

Más detalles

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso José Manuel Alcaraz Pelegrina Curso 007-008 1. Introducción En el presente capítulo vamos a estudiar el movimiento en torno a una posición de equilibrio estable, concretamente estudiaremos las oscilaciones

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Curso de Física I Introducción a la mecánica

Curso de Física I Introducción a la mecánica Curso de Física I Introducción a la mecánica Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Introducción a la mecánica/jesús HT p. 1 Campo de estudio de la Física Definición: La Física es la

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: FENÓMENOS ONDULATORIOS GUÍA: 1201 ESTUDIANTE: E-MAIL: FECHA: MOVIMIENTO ARMÓNICO SIMPLE En las preguntas 1 a 10, el enunciado es una afirmación seguida de la palabra

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTO ARMÓNICO SIMPLE. MOVIMIENTO ARMÓNICO SIMPLE. JUNIO 1997. 1.- Un cuerpo de masa m = 10 kg describe un movimiento armónico simple de amplitud A = 30 mm y con un periodo de T = 4 s. Calcula la energía cinética máxima de dicho

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO 1 INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO ONCE MATERIAL DE APOYO MOVIMIENTO ONDULATORIO CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través

Más detalles

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2.

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2. MAS. EJERCICIOS Ejercicio 1.-Un oscilador consta de un bloque de 512 g de masa unido a un resorte. En t = 0, se estira 34,7 cm respecto a la posición de equilibrio y se observa que repite su movimiento

Más detalles

PROGRAMA DE FÍSICA I TEORÍA

PROGRAMA DE FÍSICA I TEORÍA Pág. 1/5 UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA PROGRAMA DE FÍSICA I TEORÍA Código: 0846203T Teoría: 4 horas/semana

Más detalles

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia:

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia: y : posición vertical www.clasesalacarta.com 1 Concepto de Onda ema 8.- Movimiento Ondulatorio. Ondas Mecánicas Onda es una forma de transmisión de la energía. Es la propagación de una perturbación en

Más detalles

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos

Más detalles

III. Vibración con excitación armónica

III. Vibración con excitación armónica Objetivos: 1. Definir que es vibración con excitación.. Analizar la respuesta de un sistema no amortiguado con excitación. 3. Analizar la respuesta de un sistema amortiguado con excitación. 4. Analizar

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Movimiento armónico simple M.A.S. y movimiento circular Slide 2 / 53 Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

GL: No. de Mesa: Fecha: CARNET INTEGRANTES (Apellidos, nombres) FIRMA SECCION NOTA

GL: No. de Mesa: Fecha: CARNET INTEGRANTES (Apellidos, nombres) FIRMA SECCION NOTA UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR FACULTAD DE INFORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADAS DEPARTAMENTO DE MATEMATICA Y CIENCIAS CATEDRA DE FISICA FISICA II, CICLO 02-2015 LABORATORIO

Más detalles

1. MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE.

1. MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. Vibraciones y ondas 3 1. MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. Desarrollamos la unidad de acuerdo con el siguiente hilo conductor: 1. Por qué se producen los movimientos periódicos vibratorios?.

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Serie 1 Fundamentos de Espectroscopia

Serie 1 Fundamentos de Espectroscopia Serie 1 Fundamentos de Espectroscopia 1) Un resorte se estira 3 cm cuando se le cuelga una masa de 10 kg. A continuación se hace oscilar la masa con una amplitud de 5 cm. Determinar: (a) la constante de

Más detalles

VI. Sistemas de dos grados de libertad

VI. Sistemas de dos grados de libertad Objetivos: 1. Describir que es un sistema de dos grados de.. Deducir las ecuaciones diferenciales de movimiento para un sistema de dos grados de masa-resorte-amortiguador, con amortiguamiento viscoso y

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

El oscilador armónico (I): Ecuación de oscilador Armónico

El oscilador armónico (I): Ecuación de oscilador Armónico Un movimiento que responde a la ecuación x=asen(ωt+ϕ) X es la elongación A= amplitud de la oscilación; es la elongación Máxima ω=pulsación t=tiempo ϕ=fase inicial. El movimiento vibratorio Armónico simple

Más detalles

MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. FÍSICA º BACHILLERATO BLOQUE TEMÁTICO: VIBRACIONES Y ONDAS MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. Contenidos: 1) Movimiento periódico. Movimiento oscilatorio. Movimiento vibratorio. ) Movimiento

Más detalles

Ejemplos de los capítulos I, II, III y IV

Ejemplos de los capítulos I, II, III y IV 1. Considere el péndulo compuesto mostrado a continuación. Dicho péndulo consiste de una barra esbelta de longitud L, masa m, pivotada en el punto O. Utilizando el desplazamiento angular de la barra θ

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 011/01 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción: movimiento

Más detalles

Movimiento armónico simple

Movimiento armónico simple Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA . La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (6 t - 0 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud, periodo, longitud de onda y velocidad

Más detalles

Introducción. La masa intrínseca ( m ) y el factor frecuencia ( f ) de una partícula masiva están dados por: . = m o

Introducción. La masa intrínseca ( m ) y el factor frecuencia ( f ) de una partícula masiva están dados por: . = m o UNA FORMULACIÓN INVARIANTE DE LA RELATIVIDAD ESPECIAL A. Blato Licencia Creative Commons Atribución 3.0 (207) Buenos Aires Argentina Este artículo presenta una formulación invariante de la relatividad

Más detalles

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs

TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs TAREA 8, [ completa: incisos a), b), c), d), e) f) y g) ] CURSO FISICA I Resolver INDIVIDUALMENTE. Entregar el Martes 19 de noviembre, de 9 a 11 hrs 1) EL PÉNDULO BALÍSTICO Se muestra un péndulo balístico,

Más detalles

Y B. F m R X = = = ( ) 10 R = = m = = ( ) 2. m v = R. m v q m v v m q. Modelo 3A/ Problema 1/ 2012

Y B. F m R X = = = ( ) 10 R = = m = = ( ) 2. m v = R. m v q m v v m q. Modelo 3A/ Problema 1/ 2012 Modelo 3A/ Problema 1/ 01 Un protón y una partícula alfa, previamente acelerados desde el reposo mediante diferencias de potencial distintas, entran en una región del espacio donde existe un campo magnético

Más detalles

Estudio del comportamiento de un muelle ideal

Estudio del comportamiento de un muelle ideal Estudio del comportamiento de un muelle ideal Experiment lesson Created by: Marisa Amieva Rodríguez Introduction Activities Evaluation Conclusion Introduction La ley que explica el comportamiento elástico

Más detalles

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas.

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas. Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. IFA6. Prof. M. RAMOS Tema 6.- Ondas Mecánicas. Ondas periódicas: Definiciones. Descripción matemática. Ondas armónicas. Ecuación de ondas. Velocidad

Más detalles

Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos:

Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos: Unidad 3 - Modos Normales de una barra y Análisis de Fourier Conceptos: 1. Tensión y deformación 2. Movimiento ondulatorio simple 3. Ondas periódicas 4. Ondas estacionarias Tensión y deformación Objeto

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio a ma t v a K U θ ma 0 A 0 ωω 2 A 0 1 2 ka2 v ma T/4 0 ωaω 0 1 0 2 ka2 a ma θ ma T/2 A 0 ω 2 A 0 1 2 ka2 v ma 1 3T/4 0 ωaω 0 0 2 ka2 a ma θ ma T A 0 ωω 2 A 0 1 2 ka2 Javier Junquera

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II LABORATORIO DE FÍSICA CICLO: AÑO: Laboratorio: 01 Laboratorio 01: OSCILACIONES MECÁNICAS EN UN SISTEMA MASA-RESORTE I. OBJETIVOS

Más detalles

Tema 9: Movimiento oscilatorio

Tema 9: Movimiento oscilatorio Tema 9: Movimiento oscilatorio FISICA I, 1º, Grado en Ingeniería Civil Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Introducción Representación

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Slide 1 / 71 Slide 2 / 71 MS y Movimiento ircular Movimiento rmónico Simple Hay una profunda conexión entre el Movimiento armónico simple (MS) y el Movimiento ircular Uniforme (MU). Movimiento armónico

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

(99-R) Un movimiento armónico simple viene descrito por la expresión:

(99-R) Un movimiento armónico simple viene descrito por la expresión: Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Función de onda: f x, t

Función de onda: f x, t DE LAS OSCILACIONES A LAS ONDAS CÁTEDRA DE FÍSICA FFyB - UBA Los fenómenos ondulatorios están relacionados con innumerables fenómenos físicos: -Hablar -Escuchar la radio -Tocar un instrumento -Tirar una

Más detalles

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO 11 PROFESOR: ELVER RIVAS

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO 11 PROFESOR: ELVER RIVAS INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO PROFESOR: ELVER RIVAS PRIMER PERIODO MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.).- Movimiento osciatorio..- Cinemática de movimiento armónico simpe. 3.- Dinámica

Más detalles