CÆlculo intgral UdeM March 19, 2015

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CÆlculo intgral UdeM March 19, 2015"

Transcripción

1 1 1. (a) Dada la función z = 4 (x+y) 2, graficar en un plano cartesiano la curva de nivel para z = 2 (b) Sea z = y 2 e y x comprobar que xz x +yz y = 2z 2. (a) Hallar el límite de la función, si existe lim (x,y) (0,0) x 2 +y 2 x 2 +y (b) Utilizar la regla de la cadena para calcular z s ó z t de z = x 2 sinxy, x = s 2 +t 2, y = 2st 3. Las ecuaciones de demanda para los productos relacionados A y B son y q A = P A 0.005P B q B = P A P B +2 analizar si los productos son sustitutos ó complementarios (o ninguno de estos). 4. Un fabricante tiene $90000 para invertir en desarrollo y promoción de un nuevo producto. Se estima que si se invierten x miles de dólares en desarrollo y y miles en promoción, las ventas serán aproximadamente f (x,y) = 90x 1 3y 2 3 unidades. Cuánto dinero debería asignar el fabricante a desarrollo y cuánto a promoción para maximizar las ventas? 5. Si U (x,y,z) = xyz es una función de utilidad donde x,y y z representan el número de unidades de los artículos A, B y C,respectivamente, los cuales son consumidos semanalmente por una persona particular. Además si los precios unitarios de A,B y C son $2, $3 y $4, respectivamente, y que el gasto total semanal para estos artículos se ha presupuestado en $90, cuántas unidades de cada artículo deben comprarse semanalmente para maximizar el índice de utilidad de la persona?

2 2 1. Hacer algunas trazas y graficar z = f (x,y) = 16 4x 2 y 2 2. Trazar la curva de nivel indicada f (x,y) = c para cada valor dado de la constante f (x,y) = xe y ; c = 1,c = e 3. Demuestre que u(x,y) = ln ( x 2 +y 2) satisface la ecuación 2 u x u y 2 = 0 4. Usando L unidades del insumo mano de obra y K unidades del mismo capital, una emptresa fabrica cierta producción de su artículo cuyo costo total T (en millones de dólares) está dado por T = 40 5K 3L 2KL+1.5K 2 +L 2. Determinar la cantidad de cada insumo que debería de utilizarse con el proposito de mínimizar el costo de la empresa. cuál es el costo mínimo? 5. Un fabricante tiene $8000 para gastar en el desarrollo y promoción de un nuevo producto. Se estima que si x miles de dólares se gastan en el desarrollo y y miles de dólares se gastan en la promoción, las ventas serán aproximadamente de f (x,y) = 50x 1 2y 3 2 unidades. Cuánto dinero debe asignar el fabricante a desarrollo y cuánto a promoción para maximizar ventas?

3 3 1. (a) Halle el límite, si existe, o muestre que no existe lim (x,y) (2,2) x 3 +x 2 y 2xy 2 3x 3 +xy 2 3x 2 y y 3 (b) Utilizar la regla de la cadena para calcular z s ó z t si z = xe y +ye x, x = e t, y = st 2 2. Suponga que la utilidad obtenida por un consumidor de x unidades de un artículo y y unidades de un segundo artículo está dada por la función de utilidad U(x,y) = 2x 3 y 2. Si el consumidor posee x = 5 unidades del primer articulo y y = 4 unidades del segundo, halle el nivel de utilidad actual del consumidor y trace la curva de indiferencia correspondiente. 3. Una empresa produce Q(K,L) = 15K 4 5L 1 5 arandelas de acero, donde k es el capital invertido en millones de dólares y L el tamaño de la fuerza laboral medida en horas-trabajador. Suponga que la inversión de capital actual es de millones de dólares y que se dispone de horas trabajador de mano de obra. En cuanto cambia la producción si se adicionan a la fuerza laboral 1 hora por trabajador y al capital $ ? 4. Dada la función z = f (x,y) = x 2 y 2x 2 4y 2 determinar los puntos críticos y clasificarlos como máximos, mínimos o puntos silla 5. Si se invierten x miles de dólares en mano de obra y y miles de dólares en equipo, la producción de cierta fábrica será Q(x,y) = 60x 1 3y 2 3 unidades. Si hay $ disponibles; como debería asignarse el dinero entre mano de obra y equipos para generar la máxima producción?. Utilice el multiplicador de Lagrange λ para estimar el cambio presentado en la producción máxima de la fábrica, si el dinero disponible para mano de obra y equipos aumenta en $1000

4 4 1. (a) Hallar el límite de la función, si existe lim (x,y) (0,0) 5xy x 2 +y 2 (b) Las ecuaciones de demanda para los productos relacionados A y B son: q A = 3e p A pb y q B = 6 Analizar la relación entre los productos. p A p 2 B 2. (a) Hallar dy dx de la relación x2 e xy2 +ln ( x 2 +y 2) +cosx = 0 (b) Si z = f (x,y) = x 2 e x y compruebe que xz x +yz y = 2z 3. Una empresa produce Q(K,L) = 15K 4 5L 1 5 arandelas, donde K es el capital invertido en millones de dólares y L el tamaño de la fuerza laboral medida en horas-trabajador. Suponga que la inversión de capital actual es de millones de dólares y que se dispone de horas trabajador de mano de obra. Estimar en cuánto cambia la producción si se reduce la fuerza laboral en 1 hora por trabajador y se adicionan al capital $ El costo total C por serie de producción (en miles de dólares), de cierta industria está dado por C(x,y) = 3x 2 +4y 2 5xy +3x 14y +20 en dondexdenota el númerode horas hombre (en cientos) y y el númerode unidades (en miles) del producto elaborado por serie. Qué valores de x y y darán como resultado el costo total mínimo por serie de producción? 5. Empleando L unidades de mano de obra y K unidades de capital una empresa puede elaborar P unidades de su producto con P (L,K) = 60L 2 3K 1 3 Le cuesta a la empresa $200 por cada unidad de mano de obra y $300 por cada unidad de capital empleado. La empresa dispone de una suma de $45000 para propósitos de producción. Determinar las unidades de mano de obra y de capital que la empresa debería utilizar con objeto de maximizar su producción.

5 5 1. Una empresa puede elaborar su producto en dos de sus plantas; el costo de producir x unidades en su primera planta e y unidades en la segunda está dada por C(x,y) = x 2 +2y 2 +5xy +700 Si la empresa tiene una orden de suministrar 500 unidades Cuántas unidades debe producir en cada planta con el fin de minimizar el costo total? 2. A un editor se le han asignado para gastar en el desarrollo y promoción de un nuevo libro. Se estima que si x miles de dólares se gastan en el desarrollo y y miles en la promoción, se venderán aproximadamente f(x,y) = 20x 3 2y ejemplares del libro. Cuánto dinero debe asignar el editor al desarrollo y cuánto a la promoción para maximizar las ventas? ( ) 3. Dada la función f(x,y) = xln y 2 x +3x xy 2, encontrar los puntos críticos y clasificarlos como máximo relativo, mínimo relativo o punto de silla 4. Una empresa vende dos tipos de vehículos, se calcula que si el tipo A se valora en x millones de pesos y el tipo B en y millones depesos, aproximadamente (2y 3x+80) consumidores comprarán el tipo A y (90+5x 6y) comprarán el tipo B. Si el costo de fabricación de los dos tipos de autos es de de pesos. Qué precio debe fijar la empresa para generar la mayor utilidad posible?

6 6 1. (a) Dada la función f (x,y) = x3 +2x 2 +3y 1 5y 2 x 2 hallar el dominio y representarlo gráficamente en el plano xy (b) Dibujar las curvas de nivel para los valores c = 54 y c = 41 de la función 2. (a) Si p = f (x,y) = 3 x xy + 6 y 2 mostrar que f (x,y) = x 2 +y 2 +5 x p x +y p y = 2p (b) Dada la función ze yz +2xe xz 4e xy 3 = 0 encontrar z y 3. Hallar los puntos críticos de la función dada y clasificarlos como máximo relativo, mínimo relativo o punto de silla f (x,y) = y 4 4y 3 +2x 2 +8xy 4. Si se gastan x miles de dólares en mano de obra y y miles de dólares en equipo, la producción de cierta fabricaseráq(x,y) = 60x 1 3y 2 3 unidades. Sihay $ disponibles, cómodebedistribuirse el dinero entre mano de obra y equipo, para generar la mayor producción posible? 5. Empleando L unidades de mano de obra y K unidades de capital una empresa puede elaborar P unidades de su producto con P (L,K) = 50L K 3 Si la empresa dispone de 100 unidades de mano de obra y 300 de capital; estimar el cambio en la producción si se dispone de 1 unidad adicional en la mano de obra pero el capital se mantiene fijo.

7 7 1. Sea f (x) = y 2 x (a) Determinar el dominio de f y dibujarlo como una región de R 2 (b) Determinar y dibujar las curvas de nivel para C = 1 y C = 2 2. Encontrar todos los máximos y mínimos locales y los puntos de silla de f (x,y) = 3y 2 2y 3 3x 2 +6xy 3. La productividad de cierto país está dada por Q(L,K) = 90K 1 3L 2 3 unidades donde, K es el capital en unidades de un millón de dólares y L es la fuerza laboral en miles de horas-trabajador (a) Encuentre la productividad marginal del capital Q K y la productividad marginal del trabajo cuando el capital es 5495 miles de millones de dólares y la fuerza laboral es horas trabajador (b) Debe el gobierno del país estimular la inversión de capital o el incremento de la fuerza laboral para aumentar la productividad tan rápidamente como sea posible? 4. Dada p = f (x,y) = 4 x xy + 6 y 2 (a) Mostrar que x p x +y p y = 2p (b) Hallar las segundas derivadas, incluyendo las derivadas parciales mixtas 5. Una compañía tiene tres fábricas y todas elaboran el mismo producto. Si la fábrica A produce x unidades, la fábrica B produce y unidades y la fábrica C produce z unidades, entonces los respectivos costos de producción son ( 3x ) dólares, ( y ) dólares y ( 2z ) dólares. Si se va a surtir un pedido de 1100 unidades, use multiplicadores de Lagrange para determinar cómo debe distribuirse la produción entre las tres fábricas para minimizar el costo total de la producción.

8 8 1. La producción de cierta planta es Q(x,y) = 0.08x xy+0.03y 2 unidades por día, donde x es el número de horas de mano de obra calificada que se utiliza e y es el número de horas de mano de obra no calificada. En la actualidad se emplean 80 horas de mano de obra calificada y 200 horas de mano de obra no calificada todos los días. Utilice la diferencial total de Q para estimar el cambio resultante en la producción si se adicionan 1 2 hora de mano de obra calificada y 2 horas de mano de obra no calificada. 2. Dada la función f (x,y) = ln ( 4x 4y 2 +3 ), determinar el dominio y graficarlo. 3. Si se gasta x miles de dólares en mano de obra e y miles de dólares en equipos, la producción de cierta fabrica será Q(x,y) = 60x 1 3y 2 3 unidades. Si hay $ disponibles, cómo distribuirse el dinero, entre mano de obra y equipo, para generar la mayor producción posible? 4. Hallar los puntos críticos y clasificarlos como máximos, mínimos o puntos silla de la función f (x,y) = x 3 +y 3 +3x 2 18y +8y Dada la función f (x,y) = 2x 3 y 1 +4x 5 y 3 (a) Hallar las segundas derivadas (incluyendo las mixtas) (b) Demostrar que x 2 2 f +2xy 2 f 2 x 2 y x +y2 = 2f (x,y) y 2

9 9 1. (a) Dada la función f (x,y) = ln ( 4y 2 4x 3 ), determinar el dominio y graficarlo. (b) Encontrar el límite, si éste existe, o mostrar que el límite no existe 2. Dada la función f (x,y) = 2x 5 y 2 +4x 3 y 6 lim (x,y) (0,0) xy 2x 2 +2y 2 (a) Hallar las segundas derivadas (incluyendo las mixtas) (b) Demostrar que x 2 2 f +2xy 2 f 2 x 2 y x +y2 = 6f (x,y) y 2 3. La utilidad diaria de un abarrotero por la venta de dos marcas de jugo de manzana es P (x,y) = (70 5x+4y)(x 30) + (80+7x 6y)(y 40) centavos, donde x es el precio por lata de la primera marca y y es el precio por lata de la segunda. actualmente, la primera marca se vende en 50 centavos por lata y la segunda en 52 centavos por lata. utilice el análisis marginal para estimar el cambio en la utilidad diaria que resulta si el abarrotero sube en un centavo por lata el precio de la segunda marca, pero mantiene sin cambio el precio de la primera marca. 4. Determinar los puntos críticos de f (x,y) = x 3 4xy + y 3 y clasificarlos como máximo relativo, mínimo relativo o punto silla. 5. Un fabricante tiene $90000 para invertir en desarrollo y promoción de un nuevo producto. Se estima que si se invierten x miles de dólares en desarrollo y y miles en promoción, las ventas serán aproximadamente f (x,y) = 90x 1 3y 2 3 unidades. Cuánto dinero debería asignar el fabricante a desarrollo y cuánto a promoción para maximizar las ventas?

MAXIMOS Y MINIMOS DE FUNCIONES DE DOS VARIABLES

MAXIMOS Y MINIMOS DE FUNCIONES DE DOS VARIABLES UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS, ADMINISTRATIVAS Y CONTABLES DEPARTAMENTO DE MÉTODOS CUANTITATIVOS Métodos Cuantitativos IV MAXIMOS Y MINIMOS DE FUNCIONES DE DOS

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 1 1. Dada la función f(x, y) = 2x 3 + 6xy 2 6x 2 6y 2 a) Hallar los puntos críticos de f. b) Averiguar si los puntos

Más detalles

EJERCICIOS DE DERIVADAS PARCIALES. ), demostrar que y x = 0. es una solución de + = 0 x. z 7. Si z = f(f(x)+g(y)), demostrar que = 0

EJERCICIOS DE DERIVADAS PARCIALES. ), demostrar que y x = 0. es una solución de + = 0 x. z 7. Si z = f(f(x)+g(y)), demostrar que = 0 EJERCICIOS DE DERIVADAS PARCIALES. z. En cada ejercicio hallar ; de la primera forma comprobar usando la segunda forma: a) z = ln + = [ ln( + ln( + ] e + e e e + b) z = e + e = e ( ) + c) z = ln = [ ln

Más detalles

MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014

MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014 http://www.matematicaaplicada.info 1 de 6 jezasoft@gmail.com MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014

Más detalles

EJERCICIOS APLICACIONES ECONÓMICAS DEL CÁLCULO DIFERENCIAL TEMA 5 (curso )

EJERCICIOS APLICACIONES ECONÓMICAS DEL CÁLCULO DIFERENCIAL TEMA 5 (curso ) 1. Continuidad. Estudiar en función del valor del parámetro la continuidad de la función: x ( xy, ) (0,0) 3 3 f ( x, y) x y 0 ( xy, ) (0,0). Continuidad. Llamemos C(x) el coste por semana que una empresa

Más detalles

= 1 1 UNIVERSIDAD ANDRES BELLO DEPARTAMENTO DE MATEMATICAS CALCULO I FMM 029 GUIA DE EJERCICIOS FUNCIONES

= 1 1 UNIVERSIDAD ANDRES BELLO DEPARTAMENTO DE MATEMATICAS CALCULO I FMM 029 GUIA DE EJERCICIOS FUNCIONES UNIVERSIDAD ANDRES BELLO DEPARTAMENTO DE MATEMATICAS CALCULO I FMM 09 GUIA DE EJERCICIOS FUNCIONES.- Determine el dominio de cada una de las siguientes funciones: a) f ( ) 4 6. Sol: IR. b) 4 t f ( t ).

Más detalles

2 Estudio local de funciones de varias variables.

2 Estudio local de funciones de varias variables. a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 2 Estudio local de funciones de varias variables. 2.1 Derivadas de orden superior. Problema 2.1 Sea

Más detalles

Máximos y mínimos. Mínimo global Máximo global máximo relativo mínimo relativo

Máximos y mínimos. Mínimo global Máximo global máximo relativo mínimo relativo Máximos y mínimos. Anteriormente estudiamos métodos para obtener los extremos de funciones de una variable. Extenderemos esas técnicas a funciones de dos variables. Sea una función de dos variables, definida

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Análisis I Matemática I Análisis II (C) Cuat II - 2009 Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior 1. Calcular las derivadas

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 4

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 4 UNIDAD ACADÉMICA UNIDAD TEMÁTICA DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: CALCULO DIFERENCIAL DERIVADAS Y APLICACIONES COMPETENCIA Interpretar la noción de derivada como razón de cambio y desarrollar

Más detalles

UNIVERSIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas. TALLER III Profesor: H. Fabian Ramirez Maximos- Mínimos y Integrales Multiples

UNIVERSIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas. TALLER III Profesor: H. Fabian Ramirez Maximos- Mínimos y Integrales Multiples UNIVESIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas TALLE III Profesor: H. Fabian amirez Maximos- Mínimos y Integrales Multiples. Porque la función f(x,y) = x x y con dominio D = {(x,y)

Más detalles

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz Cap. Funciones de Varias variables. Definición de Funciones de dos variables. Dominio. Grafica..4 Curvas de nivel. Derivadas Parciales.6 Funciones Homogéneas.7 Funciones Nomotéticas.8 Diferencial Total.9

Más detalles

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica http://www.cidse.itcr.ac.cr 7 de junio de 008 . Para cada una de las funciones que se

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Unidad I (Capítulo 16 del texto) Cálculo de Varias Variables 1.1 Funciones de varias variables. 1.2 Derivadas parciales.

Más detalles

log TIPO PRACTICO: Desarrolle en forma clara y ordenada lo que a continuación se le pide: valor 12.5% c/u total 100% log x 3 x

log TIPO PRACTICO: Desarrolle en forma clara y ordenada lo que a continuación se le pide: valor 12.5% c/u total 100% log x 3 x METODOS CUANTITATIVOS II EXAMEN PARCIAL III 8/07/09 TIPO PRACTICO: Desarrolle en forma clara y ordenada lo que a continuación se le pide: valor 1.5% c/u total 100% 1.- Dada la función f ( x) x 7 3e haga

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

log TIPO PRACTICO: Desarrolle en forma clara y ordenada lo que a continuación se le pide: valor 12.5% c/u total 100% log x 3 x

log TIPO PRACTICO: Desarrolle en forma clara y ordenada lo que a continuación se le pide: valor 12.5% c/u total 100% log x 3 x UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS ADMINISTRATIVAS Y CONTABLES METODOS CUANTITATIVOS II EXAMEN PARCIAL III 8/07/09 Sección: Nombre: # Cuenta: Catedrático: TIPO PRACTICO:

Más detalles

UNIVERSIDAD DEL MAGDALENA FACULTAD DE CIENCIAS EMPRESARIALES Y ECONÓMICAS ACTIVIDAD GRUPAL II CÁLCULO INTEGRAL

UNIVERSIDAD DEL MAGDALENA FACULTAD DE CIENCIAS EMPRESARIALES Y ECONÓMICAS ACTIVIDAD GRUPAL II CÁLCULO INTEGRAL I. Utiliza el método de integración por partes para resolver cada una de las siguientes integrales.. x + e 4x dx. (lnx) 4 dx 3. x 3 e x dx 4. x 5 e x3 dx 5. ln (x + 3)dx 6. (x + ) 4 ln(x + )dx 7. x 4 ln(4x)dx

Más detalles

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial 1 Tema 5. Introducción a las ecuaciones diferenciales ordinarias 1.- Comprobar que la función y = C 1 senx + C 2 x es solución de la ecuación diferencial (1 - x cotgx) d2 y dx 2 - x dy dx + y = 0. 2.-

Más detalles

Contenido Orientativo Matemáticas 21 EE-EA-EC, Libre Escolaridad FACES-ULA

Contenido Orientativo Matemáticas 21 EE-EA-EC, Libre Escolaridad FACES-ULA Contenido Orientativo Matemáticas 1 EE-EA-EC, Libre Escolaridad FACES-ULA El siguiente documento tiene como objetivo proporcionar a los alumnos del curso de matemáticas 1, por la modalidad de libre escolaridad,

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Moisés Villena Muñoz Cap. 3 Aplicaciones de la Integral

Moisés Villena Muñoz Cap. 3 Aplicaciones de la Integral Moisés Villena Muñoz Cap. Aplicaciones de la Integral.1 ÁREAS DE REGIONES PLANAS. APLICACIONES ECONÓMICAS..1. CAMBIO NETO... EXCESO DE UTILIDAD NETA... GANANCIAS NETAS... EXCEDENTES DE CONSUMIDORES Y EXCEDENTE

Más detalles

Guía - Funciones de Varias Variables (II)

Guía - Funciones de Varias Variables (II) Universidad de Talca Cálculo (Contador público y auditor) Instituto de Matemática y Física Mayo de 2015 Guía - Funciones de Varias Variables (II) Regla de la cadena 1. En los siguientes problemas, obtenga

Más detalles

Problemas de aplicación de funciones: Profesor Juan Diego Moreno Febrero 28 de 2.015

Problemas de aplicación de funciones: Profesor Juan Diego Moreno Febrero 28 de 2.015 Problemas de aplicación de funciones: Profesor Juan Diego Moreno Febrero 28 de 2.015 Ejemplo resuelto: 1) Una librería puede obtener un atlas de la editorial a un costo de US$10 por ejemplar y estima que

Más detalles

i j k xy yz xz = = Div Rot F = x y z

i j k xy yz xz = = Div Rot F = x y z Div Rot F, si F = ( xy, yz, xz) 1. Hallar: primero, debemos hallar rotor de la función vectorial. i j k Rot ( F ) = ( xy, yz, xz) =,, ( xy, yz, xz) = x y z xy yz xz ( xz) ( yz) ( xy) ( xz) ( yz) ( xy)

Más detalles

INTERPRETACION GEOMETRICA DE LA DERIVADA

INTERPRETACION GEOMETRICA DE LA DERIVADA INTRODUCCIÓN A LAS DERIVADAS CON ESTA EXPRESIÓN SE CALCULA: a) La pendiente ( m ) de la recta secante a la función al cambiar. b) La velocidad o cambio promedio de la función al cambiar. c) El cociente

Más detalles

Límites a base de tablas y gráficas

Límites a base de tablas y gráficas MECU Límites a base de tablas y gráficas I. Complete las siguientes tablas y use los resultados para estimar los límites indicados. Si no eiste alguno eplique la razón.. f ; lim f f f.9..99..999..9999..

Más detalles

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52 TALLER : Regla de la cadena, derivadas direccionales y vector gradiente Cálculo en varias variables Universidad Nacional de Colombia - Sede Medellín Escuela de matemáticas 1. Use la regla de la cadena

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

Problemas del tema 3

Problemas del tema 3 Problemas del tema 3 y 1. Sea f(, y) = e + e, se pide: a) Eiste algún punto óptimo de f?. b) Si se considera la función f sujeta a la restricción + y =, eiste algún punto óptimo?.. Sea f(, y) = + y : a)

Más detalles

Procedimiento para encontrar fx(x, y) y fy(x, y)

Procedimiento para encontrar fx(x, y) y fy(x, y) Esto proporciona un método mecánico para encontrar derivadas parciales. Procedimiento para encontrar fx(x, ) f(x, ) Para encontrar, trate a como constante diferencie f con respecto a x de la manera usual.

Más detalles

Manual de Ejercicios MECU Pro. Alvilda Vega

Manual de Ejercicios MECU Pro. Alvilda Vega Manual de Ejercicios MECU 0 Pro. Alvilda Vega Tabla de contenido Tema Página Unidad I Límites a base de tablas y gráficas. 6 Límites a base de gráficas.. 7 Propiedades de los límites. Límites al infinito

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx =

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx = Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables 1. Hallar las derivadas parciales primera y segunda de las siguientes funciones: (a) z

Más detalles

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca 1. Hallar f(x, y) si f(x + y, x y) = xy + y. Sean u = x + y y v = x y. Resolviendo este sistema se obtiene Luego, x = u + v f(u, v) = u + v u v e y = u v. ( ) u v + = u uv. Finalmente, volviendo a las

Más detalles

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES Sergio Stive Solano Sabié 1 Mayo de 2013 1 Visita http://sergiosolanosabie.wikispaces.com VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

Unidad II Cálculo Diferencial de Funciones de Varias Variables

Unidad II Cálculo Diferencial de Funciones de Varias Variables UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE QUÍMICA P.E.L: INGENIERO QUÍMICO U.A: CÁLCULO AVANZADO Unidad II Cálculo Diferencial de Funciones de Varias Variables Material didáctico Modalidad:

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II Encuentre la ecuación de la recta que pasa por los siguientes puntos

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 54 CONTENIDO Funciones

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUMÉRICO (58) Tema 5. Diferenciación e Integración Numérica Enero 5. Utilice la fórmula para calcular la derivada de f(x) = cos(x) en utilizar la fórmula. f(x + ) f(x) f'(x) x = y con =.. Estime

Más detalles

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1 UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-1005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA II Ciclo del 2017 Lista de ejercicios # 1 Ecuaciones diferenciales ordinarias de orden 1 Soluciones

Más detalles

MATEMÁTICAS 9. TALLER DE FUNCIONES No 1

MATEMÁTICAS 9. TALLER DE FUNCIONES No 1 MATEMÁTICAS 9 TALLER DE FUNCIONES No 1 1. elabora una tabla de valores para cada función y traza su respectiva gráfica. Dar los valores a x desde -3 hasta 3. a. f(x) = x 5 b. f(x) = 9x + 4 2. determina

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

FUNCIÓN CUADRÁTICA. 3ro. Medio Plan Común. 1. Dadas las siguientes ecuaciones, identifica los coeficientes numéricos de la función. = c.

FUNCIÓN CUADRÁTICA. 3ro. Medio Plan Común. 1. Dadas las siguientes ecuaciones, identifica los coeficientes numéricos de la función. = c. FUNCIÓN CUADRÁTICA. ro. Medio Plan Común. Dadas las siguientes ecuaciones, identifica los coeficientes numéricos de la función. a. f( x) = 6x + x+ b. gx ( ) = ( x ) c. hx ( ) = x + x 4. Dados los siguientes

Más detalles

INGENIERÍA VESPERTINA EN AUTOMATIZACIÓN INDUSTRIAL. APUNTE N o 1 CÁLCULO EN VARIAS VARIABLES PROFESOR RICARDO SANTANDER BAEZA

INGENIERÍA VESPERTINA EN AUTOMATIZACIÓN INDUSTRIAL. APUNTE N o 1 CÁLCULO EN VARIAS VARIABLES PROFESOR RICARDO SANTANDER BAEZA INGENIERÍA VESPERTINA EN AUTOMATIZACIÓN INDUSTRIAL APUNTE N o 1 CÁLCULO EN VARIAS VARIABLES MATEMÁTICA II PROFESOR RICARDO SANTANDER BAEZA 2004 Ricardo Santander Baeza Universidad de Santiago de Chile

Más detalles

Guía - Funciones de Varias Variables

Guía - Funciones de Varias Variables Universidad de Talca Cálculo (Contador público y auditor) Instituto de Matemática y Física 26 de septiembre de 2012 Guía - Funciones de Varias Variables Funciones de varias variables 1. Calcule el valor

Más detalles

PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS

PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS PROBLEMAS DE PLANTEO CON INTEGRALES INDEFINIDAS Ejemplo: Un minorista recibe un cargamento de 10.000 Kg. De arroz que se consumirán en un período de 5 meses a una razón constante de 2.000 kg. Por mes.

Más detalles

DERIVADAS PARCIALES. El conjunto D es llamado el dominio de la función y el conjunto de todos los valores de la función es el rango de la función.

DERIVADAS PARCIALES. El conjunto D es llamado el dominio de la función y el conjunto de todos los valores de la función es el rango de la función. Funciones de dos o más Variables DERIVADAS PARCIALES Existen magnitudes que dependen de dos o más variables independientes por ejemplo el área del rectángulo depende de la longitud de cada uno de sus lados,

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II

UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II Función Lineal Una función lineal es una función de la forma: Se

Más detalles

ECONOMÍA FI (CURSADO 2018) TRABAJO PRÁCTICO No. 2

ECONOMÍA FI (CURSADO 2018) TRABAJO PRÁCTICO No. 2 ECONOMÍA FI (CURSADO 2018) TRABAJO PRÁCTICO No. 2 EJERCICIO 1.- (a) Explique claramente qué se entiende por la "ley de rendimientos marginales decrecientes"; (b) Cuál es la diferencia entre eficiencia

Más detalles

Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados.

Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados. Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión

Más detalles

Razón de Cambio Promedio:

Razón de Cambio Promedio: NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,

Más detalles

1.- Para cada una de las siguientes situaciones, escribir un programa matemático que permita obtener su solución.

1.- Para cada una de las siguientes situaciones, escribir un programa matemático que permita obtener su solución. Tema 1. Programas matemáticos 1.- Para cada una de las siguientes situaciones, escribir un programa matemático que permita obtener su solución. a) Una empresa produce tres bienes cuyos precios de mercado

Más detalles

Valores extremos de una función

Valores extremos de una función Valores extremos de una función Puntos crí5cos Máximos y mínimos Mul5plicadores de Lagrange Lilia Meza Montes Ins5tuto de Física BUAP Una variable: Máximos y mínimos donde la derivada se anula y =0 =0

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal Introducción a la Programación Lineal J. Montealegre I. Flores Febrero de 2015 1. Desigualdades en el plano cartesiano Si en un plano P consideramos una recta L éste queda dividido en tres conjuntos: el

Más detalles

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I DEBE CONTESTAR ÚNICAMENTE A 4 DE LOS SIGUIENTES 5 EJERCICIOS 1. (.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que Sea

Más detalles

SERIE # 1 CÁLCULO VECTORIAL

SERIE # 1 CÁLCULO VECTORIAL SERIE # 1 CÁLCULO VECTORIAL Página 1) Determinar la naturaleza de los puntos críticos de la función f x, y = x y x y. P 1 0,0 máximo relativo, P 1, 1 punto silla, P 1, 1 punto silla, 4 1, 1 silla, P5 1,

Más detalles

CÁLCULO VECTORIAL SEGUNDO EXAMEN LISTA 1

CÁLCULO VECTORIAL SEGUNDO EXAMEN LISTA 1 CÁLCULO VECTORIAL SEGUNDO EXAMEN LISTA 1 III. FUNCIONES DE VARIAS VARIABLES Sección I. En los ejercicios siguientes, hallar el límite (si existe). Si el límite no existe, explicar por qué. ( ) 4. ( ) 5.

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Repaso de límites 4 4 3 NE 6 Aplicaciones de la derivada Encuentre la pendiente de la recta tangente en el punto (9,3) a la curva: f ( x) x La pendiente de la recta tangente

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

Ejercicios recomendados: Cálculo III

Ejercicios recomendados: Cálculo III Ejercicios recomendados: Cálculo III Cátedra de MA 1003 II ciclo 2017 Los ejemplos que siguen están tomados del libro: Claudio Pita Ruiz Cálculo Vectorial Prentice-Hall Hispanoamericana México 1995 Ejemplos

Más detalles

2.4 Ecuaciones diferenciales de Bernoulli

2.4 Ecuaciones diferenciales de Bernoulli .4 Ecuaciones diferenciales de Bernoulli 3 Ejercicios.3. Ecuaciones diferenciales lineales. Soluciones en la página 4 Resolver las siguientes ecuaciones diferenciales lineales.. y 0 C 00y D 0.. x 0 0x

Más detalles

Derivada. lim 5x. Derivada por definición. Sea y = f (x) una función que depende de x. Se define la derivada de dicha función como otra función: lim h

Derivada. lim 5x. Derivada por definición. Sea y = f (x) una función que depende de x. Se define la derivada de dicha función como otra función: lim h S_A._LECV Derivada Derivada por deinición. Sea y = una unción que depende de. Se deine la derivada de dica unción como otra unción: La simbología de la derivada es y y Analíticamente la derivada es un

Más detalles

2.- PUNTO DE EQUILIBRIO INTERNO DE LA EMPRESA

2.- PUNTO DE EQUILIBRIO INTERNO DE LA EMPRESA 2.- PUNTO DE EQUILIBRIO INTERNO DE LA EMPRESA Para poder abordar este tema, se debe de conocer y/o repasar: Costos Fijos ( CF ) Costos variables ( CV ) Costos totales (CT) Ingresos totales ( IT ) Utilidad

Más detalles

Aplicaciones de la línea recta

Aplicaciones de la línea recta 1 FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: 4 SEMESTRE II RESEÑA HISTÓRICA Aplicaciones de la línea recta RESEÑA HISTÓRICA EUCLÍDES Nació: 365 AC en Alejandría,

Más detalles

Cálculo Diferencial Agosto 2015

Cálculo Diferencial Agosto 2015 Laboratorio # 1 Desigualdades I.- Determinar los valores de que satisfacen simultáneamente las dos ecuaciones dadas. 1) 2 3 x 3 < 4 6 y x 1 > 1 3 2) 5x 4 > 1 4 y x + 1 2 1 2 3) 7x 7 1 7 y 4x + 4 > 1 4

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

comprometo a combatir la mediocridad y actuar con honestidad, por eso NO copio ni dejo copiar. NOMBRE FIRMA

comprometo a combatir la mediocridad y actuar con honestidad, por eso NO copio ni dejo copiar. NOMBRE FIRMA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE RECUPERACIÓN DE TEORÍA ECONÓMICA Marzo 25 del 2015 Mediante mi firma, YO como aspirante a una Carrera en ESPOL, me comprometo a combatir la mediocridad

Más detalles

COMPLETACION: Escriba la respuesta correcta. PARTE PRACTICA: Desarrolle en forma clara y ordenada cada uno de los siguientes ejercicios.

COMPLETACION: Escriba la respuesta correcta. PARTE PRACTICA: Desarrolle en forma clara y ordenada cada uno de los siguientes ejercicios. Funciones EXAMEN II PARCIAL /7/4 COMPLETACION: Escriba la respuesta correcta. Valor % c/u ) La pendiente de la ecuación x 5y es: ) El vértice de la función x es: x x ) El punto faltante de la función es

Más detalles

Teorías del Consumidor : La restricción presupuestaria

Teorías del Consumidor : La restricción presupuestaria Microeconomía I AEA214 Escuela de Negocios Teorías del Consumidor : La restricción presupuestaria Clase 2 MATERIAL PROPIEDAD DE UDLA. AUTORIZADA SU UTILIZACIÓN SÓLO PARA FINES ACADÉMICOS. Objetivos Objetivo

Más detalles

Coordinación de Matemática I (MAT021) Taller 10

Coordinación de Matemática I (MAT021) Taller 10 Coordinación de Matemática I MAT01 Taller 10 Primer semestre de 01 Semana 11: Lunes 0 viernes 08 de junio Ejercicios Ejercicio 1 Calcular las derivadas de las siguientes funciones: 1. cos x ln x. x + x

Más detalles

Universidad de Montevideo. Facultad de Ciencias Empresariales y Economía. Microeconomía I. Prof. Marcelo Caffera. Examen Julio 2013 Segundo período

Universidad de Montevideo. Facultad de Ciencias Empresariales y Economía. Microeconomía I. Prof. Marcelo Caffera. Examen Julio 2013 Segundo período Universidad de Montevideo Facultad de Ciencias Empresariales y Economía Microeconomía I Prof. Marcelo Caffera Examen Julio 2013 Segundo período EJERCICIO 1 Una industria perfectamente competitiva tiene

Más detalles

CÁLCULO VECTORIAL SEMESTRE

CÁLCULO VECTORIAL SEMESTRE SERIE # 3 ÁLULO VETORIAL SEMESTRE 009- ÁLULO VETORIAL SEMESTRE: 009-1 Página 1) Sea el campo vectorial F (x, y,z)= ( 3x+ yz)i+( x+ y ) j + ( xz) k F d r. alcular x = + y lo largo de la curva :, del punto

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES X =, siendo 02 M2. tal que AC = B, siendo A =

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES X =, siendo 02 M2. tal que AC = B, siendo A = MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1.- Calcular, si es posible, los productos AB y BA A = ( 1 2 4), B = 5 3 0 2.- Comprobar que la matriz X = 4 2 1 3 verifica la ecuación X 2 7X

Más detalles

gradiente de una función? Para esos valores, calcule la función potencial.

gradiente de una función? Para esos valores, calcule la función potencial. CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible

Más detalles

Cálculo Diferencial Enero 2015

Cálculo Diferencial Enero 2015 Laboratorio # 1 Desigualdades I.- Determinar los valores de que satisfacen simultáneamente las dos ecuaciones dadas. y y y y II. - Determina los valores de que satisfagan al menos una de las condiciones.

Más detalles

Derivación de Funciones

Derivación de Funciones CAPÍTULO 7 Derivación de Funciones Sea f una función definida al menos en un intervalo abierto que incluya al número. Si f( + h) f() lím h 0 h eiste (finito), se llama la derivada de f en, y se denota

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita Sea F : U R p+1 R U abierto F (x 1, x 2,..., x q, y) y un punto a (a 1, a 2,..., a q, b) en U tal que i)f (a 1, a 2,..., a q, b) 0 ii) 0 y continua, existe entonces una

Más detalles

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y

Más detalles

UNIDAD 5 TEORIA DE LA PRODUCCION

UNIDAD 5 TEORIA DE LA PRODUCCION UNIDAD 5 TEORIA DE LA PRODUCCION Teoría de la Producción La producción es un proceso a través del cual se transforman los insumos: tierra, trabajo y capital en productos finales: Bienes o Servicios. Con

Más detalles

Aplicaciones a la economía

Aplicaciones a la economía Aplicaciones a la economía. La utilidad total de una compañía al producir y vender x unidades diarias de un producto es: U ( 80x 0,3x 5. 000euros. Cuál es la utilidad marginal al producir y vender 40 artículos?

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

, 2 x+y+z = 2, = z 5 y s: 4x-2y+z = 0. ( ) ( ) y dado el punto P(0,3,-1) exterior a, obtener las ecuaciones en

, 2 x+y+z = 2, = z 5 y s: 4x-2y+z = 0. ( ) ( ) y dado el punto P(0,3,-1) exterior a, obtener las ecuaciones en x+y-z = 0 1. [2014] [EXT-A] Sea P el punto de coordenadas P(1,0,1) y r la recta de ecuación r x-2z = 1. a) Hallar la ecuación en forma continua de una recta que pase por el punto P y sea paralela a la

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

Lección 26: Extremos relativos condicionados: Multiplicadores de Lagrange. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 26: Extremos relativos condicionados: Multiplicadores de Lagrange. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 6: Extremos relativos condicionados: Multiplicadores de Lagrange Introducción al Cálculo Infinitesimal I.T.I. Gestión Ligaduras y extremos condicionados f : R n R función de varias variables Buscaremos

Más detalles

Matemática IV Taller, Ecuaciones de orden 1. dy dx = y xy2 2. Determine la solución general de la ecuación. (y 4x)dx + (y x)dy = 0.

Matemática IV Taller, Ecuaciones de orden 1. dy dx = y xy2 2. Determine la solución general de la ecuación. (y 4x)dx + (y x)dy = 0. Matemática IV - 2000953 Taller, Ecuaciones de orden 1 1. Resuelva R: y 2 x = ln y. dy dx = y 3, y(0) = 1. 1 2xy2 2. Determine la solución general de la ecuación (y 4x)dx + (y x)dy = 0. 3. Una persona tiene

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

f(x) = + 4. (0.15 ptos.) Calcula el dominio de la función f(x, y, z) = ln(x + 3) + ln(y + 2) + z + 4 z z por qué incluyes cada condición.

f(x) = + 4. (0.15 ptos.) Calcula el dominio de la función f(x, y, z) = ln(x + 3) + ln(y + 2) + z + 4 z z por qué incluyes cada condición. MATEMÁTICAS I Grupo GF 1--15 Ia 1. (0. ptos.) Si f(x) es la función representada en la gráfica, di cuáles de las afirmaciones siguientes son verdaderas y corrige las que sean falsas (sabiendo que todos

Más detalles

Álgebra de Funciones

Álgebra de Funciones Funciones polinómicas Álgebra de Funciones Guía 5: Función cuadrática y racional. Profesores: Ximena Cánovas & César Fernández Un polinomio de grado n es una función f: R R tal que : n n1 n 1 f ( x) an

Más detalles

(1-mx)(2x+3) x 2 +4 = 6. x > -1

(1-mx)(2x+3) x 2 +4 = 6. x > -1 . [04] [EXT-A] Sea la función f(x) = e x +ax+b a) Calcular a y b para que f(x) tenga un extremo en el punto (,). b) Calcular los extremos de la función f(x) cuando a = 0 y b = 0.. [04] [EXT-B] En la figura

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

EJERCICIOS MODELOS. 1. Las siguientes son las curvas de oferta y demanda de mercado del bien A. Explique qué sucede si:

EJERCICIOS MODELOS. 1. Las siguientes son las curvas de oferta y demanda de mercado del bien A. Explique qué sucede si: EJERCICIOS MODELOS 1. Las siguientes son las curvas de oferta y demanda de mercado del bien A. Explique qué sucede si: A) Se da un precio inferior al de equilibrio. B) Se da un precio superior al de equilibrio.

Más detalles