TRIGONOMETRÍA (Resumen) Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec. cotg x +

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRIGONOMETRÍA (Resumen) Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec. cotg x +"

Transcripción

1 TRIGONOMETRÍA (Resumen) Definiiones en tiángulos etángulos ateto opuesto sen ateto ontiguo os ateto opuesto tg ateto ontiguo ose ateto opuesto se ateto ontiguo ateto ontiguo otg ateto opuesto Razones de 0º, 60º 45º sen 0º os 0º tg0º sen 60º os 60º tg60º sen 45º os 45º tg45º Definiiones geneales (válidas paa ualquie ángulo de ualquie uadante) ose. P(, ) se otg sen os tg Signos de las azones según los uadantes sen os tg ose + + se + otg Las azones en la iunfeenia tigonométia (adio = ) sen

2 os tg Reoido sen os < tg < +, Situa un ángulo en la iunfeenia Si el ángulo es mao de 60º, lo dividimos ente 60 (sin elimina eos en dividendo diviso, si se pudiea) oinide on la posiión del esto de la división soe la iunfeenia. Ejemplo: = (5 vueltas ompletas + 00º) 00º 00º oiniden soe la iunfeenia. Si el ángulo es negativo meno de 60º, dividimos ente 60 su valo asoluto, omo antes. El ángulo oinide on el esto negativo. Sumándole 60º se onviete en un ángulo ente 0º 60º. Ejemplo: Tomemos 00º; se tiene: = = 5 ( 60) 00 00º 00º oiniden soe la iunfeenia. Peo 00º oinide soe la iunfeenia on 00º + 60º = 60º. Po tanto, 00º oinide on 60º.

3 ) ) ) Fómulas fundamentales otg tg se os ose sen 4) sen os 5) 6) 7) 8) sen tg os os otg sen tg os otg sen El adián El adián es una medida de ángulos. Un ángulo mide adián ( se denota omo ad) si delimita un ao de iunfeenia ua longitud oinide on el adio. Como la longitud de la iunfeenia es, diha longitud (el ao que delimita) es vees mao que el adio. Po tanto, un ángulo de 60º es vees mao que aquél que mide ad. Luego 60º equivale a ad. Y po ello, 80º equivale a ad. Así, una egla de pemite pasa de gados a adianes, o al evés: 80º Ángulo en gados ad Ángulo en ad Relaiones ente azones de distintos ángulos Ángulos opuestos: Ángulos suplementaios: 80º sen ( ) = sen os ( ) = os tg ( ) = tg 80 sen (80º ) = sen os (80º ) = os tg (80º ) = tg Áng. que difieen en 80º: 80º+ Ángulos omplementaios: 90º 80º + sen (80º +) = sen os (80º +) = os tg (80º +) = tg 90 sen (90º ) = os os (90º ) = sen tg (90º ) = otg Áng. que difieen en 90º: + 90º 90º+ º sen (90º + ) = os os (90º + ) = sen tg (90º + ) = otg

4 Resoluión de tiángulos no etángulos Teoema de los senos A B a C a sen A sen B sen C Osevaiones elativas al Teoema de los senos: ) Sive paa esolve un tiángulo onoidos dos ángulos un lado o dos lados el ángulo opuesto a uno de ellos. ) Cuando se alula un ángulo ha, en pinipio, dos soluiones: 80º. Ha que ompoa si amas son válidas: La suma de los tes ángulos no puede supea 80º, un tiángulo tiene, a lo sumo, un solo ángulo otuso. ) Si en un polema deteminado, paa alula un ángulo, podemos opta po aplia el Teoema de los senos o el Teoema del oseno, ha que elegi siempe el del oseno (poque el de los senos puede apota dos soluiones falsamente válidas en estos asos). Teoema del oseno B A a C a = + os A = a + a os B = a + a os C Osevaiones elativas al Teoema del oseno: ) Sive paa esolve un tiángulo onoidos los tes lados o dos lados el ángulo ompendido ente ellos. ) Si en un polema deteminado, paa alula un ángulo, podemos opta po aplia el Teoema de los senos o el Teoema del oseno, ha que elegi siempe el del oseno (poque el de los senos puede apota dos soluiones falsamente válidas en estos asos). Otas fómulas útiles Teoema de Pitágoas a Sólo en tiángulos etángulos: a = + (a es la ) Teoema de la altua m h n Sólo en tiángulos etángulos: h = m n (a = m +n es la )

5 Teoema del ateto m a = m + n n Sólo en tiángulos etángulos: = m a (a es la ) = n a Fómula de Heón Calula el áea de un tiángulo ualquiea onoidos sus tes lados. Si llamamos p al a semipeímeto del tiángulo, esto es: p =, se tiene: S = p( p a)( p )( p ) Áea de un tiángulo ase altua S Longitud de la iunfeenia l Áea del íulo S

TRIGONOMETRÍA 1 (Resumen) cotg. Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec.

TRIGONOMETRÍA 1 (Resumen) cotg. Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec. Tignometía Resumen TRIGONOMETRÍA (Resumen) Definiiones en tiángulos etángulos ateto opuesto sen ateto ontiguo os ateto opuesto tg ateto ontiguo ose ateto opuesto se ateto ontiguo ateto ontiguo otg ateto

Más detalles

TRIGONOMETRÍA 1 (Resumen) cotg. Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec.

TRIGONOMETRÍA 1 (Resumen) cotg. Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec. Trignometría Resumen TRIGONOMETRÍA (Resumen) Definiiones en triángulos retángulos ateto opuesto sen hipotenusa ateto ontiguo os hipotenusa ateto opuesto tg ateto ontiguo hipotenusa ose ateto opuesto hipotenusa

Más detalles

TRIGONOMETRÍA. Estudia las relaciones entre los lados y los ángulos de los triángulos.

TRIGONOMETRÍA. Estudia las relaciones entre los lados y los ángulos de los triángulos. TRIGONOMETRÍA Estudia las elaciones ente los lados los ángulos de los tiángulos. Los ángulos en maúsculas. Los lados como el ángulo opuesto, peo en minúsculas. Ángulo. Poción de plano compendida ente dos

Más detalles

Problema encadenado 1. Apartado 1

Problema encadenado 1. Apartado 1 Poblema enadenado 1. 1. Dibuja dos iunfeenias de igual adio tangentes ente si y tangentes a los lados del tiángulo del que se onoe: el lado = 120 mm, el ángulo = 700 y la mediana m = 85 mm. De las posibles

Más detalles

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 )

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 ) COLEGIO ESTRADA DE MARIA AUILIADORA CIENCIA, TRABAJO VALORES: MI PROECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (0 ) Fecha: Nombe del estudiante: N O T A La nivelación es en foma de talle donde

Más detalles

NOCIONES DE TRIGONOMETRÍA

NOCIONES DE TRIGONOMETRÍA Ejeiios de Tigonometí http://pi-tgos.esp.st NOCIONES DE TRIGONOMETRÍA L Tigonometí tiene po ojeto l esoluión de tiángulos, es dei, onoe los vloes de sus tes ldos de sus tes ángulos. P esolve un tiángulo

Más detalles

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto.

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto. TRIGONOMETRÍA INTRODUCCIÓN En un sentido ásio, se puede fim que l Tigonometí es el estudio de ls eliones numéis ente los ángulos ldos del tiángulo. Peo su desollo l h llevdo tene un ojetivo más mplio,

Más detalles

Apuntes de Trigonometría Elemental

Apuntes de Trigonometría Elemental Apuntes de Tigonometía Elemental José Antonio Salgueio González IES Bajo Guadalquivi - ebija ii Agadecimientos A Rocío, que con su apoyo hace posible la ealización de este poyecto 1 Índice geneal Agadecimientos

Más detalles

SISTEMA SEXAGESIMAL. Unidad: El grado sexagesimal (º). 1 º = ángulo completo 360. ángulo completo = º = 400 g = 2π rad

SISTEMA SEXAGESIMAL. Unidad: El grado sexagesimal (º). 1 º = ángulo completo 360. ángulo completo = º = 400 g = 2π rad TRIGNMETRÍ. ÁNGULS igen: Positivos: tido ntihoio. Negtivos: tido hoio. + MEDID DE ÁNGULS Sistem segesiml Sistem entesiml Rdines SISTEM SEXGESIML. Unidd: El gdo segesiml (º. ángulo ompleto 60º º ángulo

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Deechos básicos de apendizaje: Compende utiliza funciones tigonométicas paa modela fenómenos peiódicos justifica las soluciones. (ve DBA # gado 10º. Página 6. Ministeio

Más detalles

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 página 2 SEGUNDO BIMESTRE 1 FUNCIONES DE MAS DE 90 GRADOS 1.1 CONCEPTOS Y DEFINICIONES Los valoes de las funciones tigonométicas solamente eisten paa

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES. Halla las dimensiones del ectángulo de áea máima que se puede inscibi en una cicunfeencia de adio 5 cm. A máima 5cm Po el teoema de Pitágoas: 0 de donde 0cm 00 La

Más detalles

Trigonometría. Positivo

Trigonometría. Positivo Seminaio Univesitaio de Ingeso 17 Tigonometía La tigonometía es una de las amas de la matemática, cuyo significado etimológico es la medición de los tiángulos. Se deiva del vocablo giego tigōno: "tiángulo"

Más detalles

TRIGONOMETRÍA. Proviene del griego TRIGONOS (triángulo) y METRÍA (medida).

TRIGONOMETRÍA. Proviene del griego TRIGONOS (triángulo) y METRÍA (medida). Colegio Diocesano Asunción de Nuesta Señoa Ávila Tema 6 El cálculo de distancias se fundamenta en la semejanza de tiángulos ectángulos. Desde hace siglos los astónomos, sobe todo los hindús, tataon de

Más detalles

IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS

IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS A. COORDENADAS POLARES Dado un punto en el plano catesiano, (coodenadas ectangulaes), dicho punto puede se epesentado con otas coodenadas (coodenadas polaes)

Más detalles

4.- (1 punto) Como ya sabéis, el campo eléctrico creado por una carga en un punto P, es una magnitud vectorial que viene dada por la expresión E K u

4.- (1 punto) Como ya sabéis, el campo eléctrico creado por una carga en un punto P, es una magnitud vectorial que viene dada por la expresión E K u Nombe: Cuso: º Bachilleato B Examen I Fecha: 5 de febeo de 08 Segunda Evaluación Atención: La no explicación claa y concisa de cada ejecicio implica una penalización del 5% de la nota.- (,5 puntos) Halla

Más detalles

Cómo se transportan segmentos y ángulos (1/2)

Cómo se transportan segmentos y ángulos (1/2) ómo se tnspotn segmentos y ángulos (1/2) Tnspote de segmentos. Los segmentos se tnspotn llevndo su longitud on el ompás. Vemos un ejemplo. Dtos Pso 1 Pso 2 (soluión) Polem: tnspot el segmento '' l et de

Más detalles

CLASIFICAR POLIEDROS. Nombre: Curso: Fecha:

CLASIFICAR POLIEDROS. Nombre: Curso: Fecha: CLASIICAR POLIEDROS OBJETIVO 1 Nombe: Cuso: eca: POLIEDROS poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Los polígonos que limitan al poliedo se llaman caas. Los lados de las

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR UNIVERSIDD NIONL DE FRONTER EPREUNF ILO REGULR 0708 URSO: MTEMÁTI SEMN 0 TEM: TRIÀNGULOS R.T. NGULOS GUDOS R.T. ULQUIER MGNITUD TEM: PRODUTOS NOTLES DIVISIÓN LGERI OIENTES NOTLES TRINGULOS DEFINIIÓN: Tiángulo

Más detalles

TRANSFORMACIONES GEOMÉTRICAS: Inversión.

TRANSFORMACIONES GEOMÉTRICAS: Inversión. PRFESR: FRNCISC MNUEL GLÁN SN JSÉ. TRNSFRMCINES GEMÉTRICS: Invesión. INVERSIÓN siguientes leyes: La invesión es una tansfomaión que se ige po las M' ' 1. Dos puntos invesos y están alineados on un punto

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

DIVISIBILIDAD DE POLINOMIOS

DIVISIBILIDAD DE POLINOMIOS DIVISIÓN DE OLINOMIOS.- DIVISIBILIDAD DE OLINOMIOS Dados dos polinomios, D ( ) y d ( ) con d ( ) 0, llamados dividendo y diviso, con g( D( ) ) g( d( ) ), dividi el pimeo D ( ) ente (:) el segundo ( ) (que

Más detalles

longitud de C = 211: r

longitud de C = 211: r a En efecto: (m + n)2 = a 2 + b 2 = (h 2 + m 2 )+ ~ 2 + n 2 ) = 2h 2 + m 2 + n 2. Luego 2m n = 2h 2, Yasí m n = h 2. El númeo 11: (pi) Desde hace apoximadamente 4000 años, se notó que el númeo de veces

Más detalles

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro OBJETIVO 1 CLASIICAR POLIEDROS NOMBRE: CURSO: ECHA: POLIEDROS Un poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Aista Los polígonos que limitan al poliedo se llaman caas. Caa

Más detalles

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es...

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es... Semana Ángulos: Gados 7 adianes Razones tigonométicas Semana 6 Empecemos! Continuamos en el estudio de la tigonometía. Esta semana nos dedicaemos a conoce halla las azones tigonométicas: seno, coseno tangente,

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

Escaleno: TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS

Escaleno: TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS TRIÁNGULO: Supefiie pln limitd po tes segmentos o ldos que se otn dos dos en tes véties. NOENLTUR: Los véties se nomn on lets minúsuls y los ldos on lets myúsuls emplendo l mism let que el vétie opuesto.

Más detalles

0 1 a 1. a a = a + 2a a = 2a = 0 a = a = 2 0 Sistema incompatible a 1 1 a a a 2a 2a. a a.

0 1 a 1. a a = a + 2a a = 2a = 0 a = a = 2 0 Sistema incompatible a 1 1 a a a 2a 2a. a a. Pueba de Acceso a la Univesidad. SEPTIEMBRE 00. Instucciones: Se poponen dos opciones A y B. Hay que elegi una de las dos opciones y contesta a sus cuestiones. La puntuación está detallada en cada una

Más detalles

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA ÁNGULO. GRDO. TRIGONOMETRÍ El grdo es l medid de d uno de los ángulos que resultn l dividir el ángulo reto en 90 prtes igules. Su símolo es el º. 4º E.S.O. démis IRUNFERENI GONIOMÉTRI ÁNGULO. RDIÁN. 90º

Más detalles

A B. Teniendo en cuenta que el lado de un pentágono regular es la sección aurea de su diagonal, se tiene la siguiente construcción:

A B. Teniendo en cuenta que el lado de un pentágono regular es la sección aurea de su diagonal, se tiene la siguiente construcción: 1. Dibuja el pentágono egula de diagonal 120 mm. D E O G AF/2 A B F Pate pimea: Dibujo del pentágono. Teniendo en cuenta que el lado de un pentágono egula es la sección auea de su diagonal, se tiene la

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un

Más detalles

TRIGONOMETRÍA. Si se divide un grado en, 60 partes iguales, cada una de ellas representa a un minuto,.

TRIGONOMETRÍA. Si se divide un grado en, 60 partes iguales, cada una de ellas representa a un minuto,. TRIGONOMETRÍA CPR. JORGE JUAN Xuvia-Naón Un ángulo es la egión del plano limitada po dos semiectas secantes. Las dos semiectas se llaman lados del ángulo y el punto donde éstas se cotan se denomina vétice

Más detalles

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides Reusión y Relaiones de Reuenia UCR ECCI CI-04 Matemátias Disetas Pof. M.S. Kysia Daviana Ramíez Benavides Pogesión Geométia Es una suesión infinita de númeos donde el oiente de ualquie témino (distinto

Más detalles

III.4 UNIDAD 4: TRIGONOMETRÍA

III.4 UNIDAD 4: TRIGONOMETRÍA III.4 UNIDAD 4: TRIGONOMETRÍA L Tigonometí es un pte de l mtemáti que estudi ls eliones ente los ldos ángulos de un tiángulo etángulo. Ests son de muh utilidd p esolve polems en divess ms de est ieni o

Más detalles

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio.

. Estos vectores unitarios apuntan siempre en la misma dirección y en el mismo sentido, y no cambian, por tanto, de un punto a otro del espacio. CAPÍTUL 7.01 ÁLGEBRA VECTRIAL Sistemas de coodenadas Un sistema de coodenadas es un conjunto de valoes numéicos que deteminan unívocamente la posición de un punto en el espacio euclidiano. Las coodenadas

Más detalles

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

SELECTIVIDAD SEPTIEMBRE 2004 MATEMÁTICAS II

SELECTIVIDAD SEPTIEMBRE 2004 MATEMÁTICAS II Depatament de Matemàtiques Ieslaasuncionog/matematicas SELECTIVIDAD SEPTIEMBRE MATEMÁTICAS II EJERCICIO A PROBLEMA Obtene todos los valoes eales x, y, z, t paa los que se veifica AX XA, siendo X y A z

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

3) (1p) Estudia la posición relativa de recta y plano.

3) (1p) Estudia la posición relativa de recta y plano. CURSO 007-008. 16 de mayo de 008. 1) (1p) Si A(x 1,y 1,z 1 ) y B(x,y,z ) son dos puntos del espacio, demuesta que [AB ]=(x -x 1,y -y 1,z -z 1 ). ) (1p) Deduce la ecuación vectoial de la ecta. ) (1p) Estudia

Más detalles

Generalidades y ángulos en la circunferencia. II Medio 2016

Generalidades y ángulos en la circunferencia. II Medio 2016 Genealidades y ángulos en la cicunfeencia II Medio 2016 pendizajes espeados Identifica los elementos de una cicunfeencia y un cículo. Calcula áeas y peímetos del cículo, del secto cicula y del segmento

Más detalles

Ejemplos: 180 = media circunferencia = π radianes. 45 = 180 / 4 = π / 4 radianes

Ejemplos: 180 = media circunferencia = π radianes. 45 = 180 / 4 = π / 4 radianes Trigonometría ngulos Los ángulos pueden medirse viendo que parte de una irunferenia oupan. Los ailonios reían que la tierra tardaa 360 días en dar una vuelta al sol, así que dividieron al írulo en 360

Más detalles

Tensor de inercia. Tensor de inercia. I pzx. I pxx. I pxy. = I pyz. I pxz. I. Leyes de Newton. II. Cinemática

Tensor de inercia. Tensor de inercia. I pzx. I pxx. I pxy. = I pyz. I pxz. I. Leyes de Newton. II. Cinemática Univesidad Simón Bolíva. ees de Newton. Cinemátia. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange Tenso de ineia ( + ) Momentos de ineia: (Sieme ositivos) ( + ) Poiedades

Más detalles

CAPÍTULO 11: ÁREAS Y VOLÚMENES (I)

CAPÍTULO 11: ÁREAS Y VOLÚMENES (I) CAPÍTULO 11: ÁREA Y VOLÚMENE (I) Dante Gueeo-Canduví Piua, 015 FACULTAD DE INGENIERÍA Áea Deatamental de Ingenieía Industial y de istemas CAPÍTULO 11: ÁREA Y VOLÚMENE (I) Esta oba está bajo una licencia

Más detalles

PRUEBA A. PR-1. a) Hallar el valor del parámetro a para que los planos de ecuaciones:

PRUEBA A. PR-1. a) Hallar el valor del parámetro a para que los planos de ecuaciones: CASTILLA Y LEÓN / JUNIO. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO CRITERIOS GENERALES DE EVALUACIÓN DE LA PRUEBA: Se obsevaán fundamentalmente los siguientes aspectos: coecta utiliación de los conceptos,

Más detalles

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A.

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A. 1 Halla la mediatiz del segmento. 2 Taza la ecta pependicula a la ecta po el punto. 3 Taza la pependicula a la ecta desde el punto. uál es la distancia del punto a la ecta? 4 Dibuja dos ectas pependiculaes

Más detalles

3 y un vector director Supongamos también que P x, y,

3 y un vector director Supongamos también que P x, y, . Coodenadas o componentes de un vecto Sean dos puntos a, a2, a y, 2, vecto son: b a, b a, b a b b b del espacio. Entonces las coodenadas o componentes del. Dos vectoes, CD son equivalentes ( CD ) si tienen

Más detalles

PREGUNTAS 1) El resultado de calcular. 100x es: A) ±10x B) 50 x C) 10x D) 10 x

PREGUNTAS 1) El resultado de calcular. 100x es: A) ±10x B) 50 x C) 10x D) 10 x La siguiente colección de ejecicios es una muesta de lo que podía contene la Evaluación Diagnóstica de Matemática, que se toma paa ingesa a cusa cualquiea de las caeas que se ofecen en la FACULTAD DE CIENCIAS

Más detalles

L Momento angular de una partícula de masa m

L Momento angular de una partícula de masa m Campo gavitatoio Momento de un vecto con especto a un punto: M El momento del vecto con especto al punto O se define como el poducto vectoial M = O Es un vecto pependicula al plano fomado po los vectoes

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II CSTILL-L MNCH CONVOCTORI SEPTIEMRE 00 SOLUCIÓN DE L PRUE DE CCESO UTOR: José Luis Péez Sanz Pime loque Llamamos al adio de la base y h a la altua del cilindo. Como la capacidad del depósito

Más detalles

F. Trig. para ángulos de cualquier magnitud

F. Trig. para ángulos de cualquier magnitud F. Tig. paa ángulos de cualquie magnitud Ahoa vamos a utiliza la ciuncfeencia unitaia paa descubi algunas popiedades de las funciones tigonométicas. Empezamos con las funciones sin cos. Al vaia el valo

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

5.2 PROBLEMAS PRACTICOS DE MÁXIMOS Y MINIMOS

5.2 PROBLEMAS PRACTICOS DE MÁXIMOS Y MINIMOS 8. Un avión que vuela a velocidad constante de Km/h pasa sobe una estación teeste de ada a una altua de 1 Km. Y se eleva a un ángulo de º. qué velocidad aumenta la distancia ente el avión la estación de

Más detalles

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u Geometía. Puntos, ectas y planos en el espacio. Poblemas méticos en el espacio Pedo Casto Otega. Coodenadas o componentes de un vecto Sean dos puntos ( a, a ) y ( ) uuu uuu vecto son: = ( b a, b a, b a

Más detalles

11 FORMAS GEOMÉTRICAS

11 FORMAS GEOMÉTRICAS 11 FRMS GEMÉTRIS EJERIIS PRPUESTS 11.1 Dos puntos deteminan una ecta. a) uántas ectas se pueden taza con un solo punto? b) ómo son las ectas que pasan po ese punto? a) Tantas como se quiea. b) Secantes,

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

ELIMINATORIA, 14 de abril de 2007 PROBLEMAS

ELIMINATORIA, 14 de abril de 2007 PROBLEMAS ELIMINATORIA, 14 de abil de 007 PROBLEMAS 1) Un númeo positivo tiene la popiedad de que su doble es una unidad más gande que él, cuántos divisoes positivos tiene? a) 1 b) c) 3 d) No se puede detemina )

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

Corrección examen PAU. Junio OPCIÓN A. Realizando la multiplicación e igualando a B, obtenemos el sistema:

Corrección examen PAU. Junio OPCIÓN A. Realizando la multiplicación e igualando a B, obtenemos el sistema: Coección eamen PU. Junio 4. OPCIÓN a) Debemos enconta los valoes de, y que veifiquen: 3, Realizando la multiplicación e igualando a B, obtenemos el sistema: 3 Debemos esolve dicho sistema y paa ello antes

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS.

CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Trigonometría Consejería de Eduaión, Cultura y Deportes C/ Franiso Garía Pavón, 6 Tomelloso 700 (C. Real) Teléfono Fax: 96 9 9. Los ángulos y su medida Trigonometría es una palabra que deriva del griego

Más detalles

Tema 7 Problemas métricos

Tema 7 Problemas métricos Tema 7 Poblemas méticos. Plano pependicula. Halla la ecuación del plano que contiene a los puntos A (- -) B ( -) es pependicula al plano. Los vectoes AB n (vecto nomal del plano ) uno de los puntos A o

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

VECTORES EN DIFERENTES SISTEMAS DE COORDENADAS. TRANSFORMACIONES ENTRE SISTEMAS

VECTORES EN DIFERENTES SISTEMAS DE COORDENADAS. TRANSFORMACIONES ENTRE SISTEMAS VECTRES EN DIFERENTES SISTEMAS DE CRDENADAS. TRANSFRMACINES ENTRE SISTEMAS Sistema ectangula Se explica especto de tes ejes pependiculaes ente sí (,,) que se cotan fomando un tiedo y sobe los que están

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

Sector Circular Longitud de Arco. Sector Circular. Und. 1 Introducción a la Trigonometría

Sector Circular Longitud de Arco. Sector Circular. Und. 1 Introducción a la Trigonometría Llamamos desaollo de una supeficie lateal al conjunto de puntos de la supeficie imaginaia que envuelve a un sólido y que es extendida sobe un plano. En pincipio toda supeficie lateal puede epesentase sobe

Más detalles

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas.

A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas. Tema 5: Ángulos entre retas y planos. Triedros Angulo de dos retas. El ángulo de dos retas es una de las magnitudes de las formas planas, y para obtener su verdadera magnitud se aplia el ambio de plano,

Más detalles

2.1. Potencia. cc A. Potencia de un punto respecto. de una circunferencia. 2. Potencia 2.1. Potencia. ccc Definición

2.1. Potencia. cc A. Potencia de un punto respecto. de una circunferencia. 2. Potencia 2.1. Potencia. ccc Definición 02 otenia Existen oneptos geométios, que eniean un ieto gado de omplejidad si se ven sólo desde su intepetaión matemátia, y que sin embago, mediante su apliaión y tazado sobe el plano, posibilitan una

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 Ejecicio de aplicación 44 (Deivación) Se desea obtene una viga ectangula a pati de un tonco cilíndico de 6 cm de diámeto a) Demosta que la viga con

Más detalles

DÉCIMO GRADO TALLER GUÍA No. 2 NOMBRE: RELACIONES TRIGONOMÉTRICAS A PARTIR DE COORDENADAS CARETESIANAS

DÉCIMO GRADO TALLER GUÍA No. 2 NOMBRE: RELACIONES TRIGONOMÉTRICAS A PARTIR DE COORDENADAS CARETESIANAS DÉCIMO GRADO TALLER GUÍA No. 2 ÁREA: MATEMÁTICAS UNIDAD: No. 2. ASIGNATURA: TRIGONOMETRÍA NOMBRE: RELACIONES TRIGONOMÉTRICAS A PARTIR DE COORDENADAS CARETESIANAS OBJETIVO: Fomase en la capacidad de compensión

Más detalles

Soluciones de los ejercicios del examen Parcial de Cálculo Primer curso de Ingeniería de Telecomunicación - febrero de 2007

Soluciones de los ejercicios del examen Parcial de Cálculo Primer curso de Ingeniería de Telecomunicación - febrero de 2007 Soluciones de los ejecicios del eamen Pacial de Pime cuso de Ingenieía de Telecomunicación - febeo de 7 Ejecicio a) Paa todo > sea f ) log e, y f ). Justifica que lím f ). Estudia el signo de la deivada

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Universidad de Antioquia

Universidad de Antioquia Univesidad de ntioquia Facultad de Ciencias Eactas Natuales Depatamento de Matemáticas Gupo de Semilleos de Matemáticas (Semática) Funciones Tigonométicas Matemáticas peativas Talle 0 La tigonometía es

Más detalles

PROBLEMAS DE OPTIMIZACIÓN (1)

PROBLEMAS DE OPTIMIZACIÓN (1) PROBLEMAS DE OPTIMIZACIÓN (1) Sugeencia paa el pofeso Hace énfasis ante los estudiantes aceca de la siguiente impotante aplicación del Cálculo Difeencial, pues la esolución de polemas de optimización es

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 9: FORMAS GEOMÉTRICAS. Pime Cuso de Educación Secundaia Obligatoia. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 09: FORMAS GEOMÉTRICAS. 1. Ideas Elementales de Geometía

Más detalles

Una función es creciente en un intervalo [a,b] si dados dos puntos cualesquiera del intervalo, x 1, x 2, x 1 < x 2 se cumple que f(x 1 ) < f(x 2 )

Una función es creciente en un intervalo [a,b] si dados dos puntos cualesquiera del intervalo, x 1, x 2, x 1 < x 2 se cumple que f(x 1 ) < f(x 2 ) Aplicaciones de la deivada MATEMÁTICAS II CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN.. Definiciones Se dice que una función f es ceciente en un punto si paa cualquie punto de un entono de, (, + ) se veifica:

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. Página 68 Reconoce, nomba y descibe figuas geométicas que apaecen en esta ilustación. Respuesta libe. Po ejemplo: cilindo, otoedo, cono, pisma tiangula Recueda otas figuas geométicas que foman pate

Más detalles

Optica. n 1. n seni n senr. Reflexión

Optica. n 1. n seni n senr. Reflexión Reflexión N i Optica La eflexión es el cambio de diección que se poduce cuando un ao de luz choca conta una supeficie eflectante.. Rao incidente, nomal ao eflejado están en el mismo plano.. Los ángulos

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR ísia Geneal 1 Poyeto PMME - Cuso 007 Instituto de ísia aultad de Ingenieía UdelaR DINÁMICA DE LA PARTÍCULA MOVIMIENTO CIRCULAR EN UN PLANO VERTICAL abiana Andade Juan Pablo Balaini Pablo Doglio Intoduión:

Más detalles

Geometría 2/2. Material UA. Material propiedad de sus autores. Ojo tiene errores. Magisterio Infantil - Primaria

Geometría 2/2. Material UA. Material propiedad de sus autores. Ojo tiene errores. Magisterio Infantil - Primaria Geometía 2/2 Mateial U Mateial popiedad de sus autoes. Ojo tiene eoes Magisteio Infantil Pimaia / licante 84 Junto Telepizza 695400027 www.academiaup.es info@academiaup.es Univesidad de licante FIGURS

Más detalles

ESTRUCTURAS C151 Aeronáutica - Materiales - Mecánica Electromecánica

ESTRUCTURAS C151 Aeronáutica - Materiales - Mecánica Electromecánica ESTUTUAS 5 EJEMPLO : SISTEMAS DE FUEZAS NO ONUENTES EN EL PLANO 30º P 00 00P A En el esquema estructural de la figura calcular: ) Magnitud, dirección y sentido de la resultante del sistema de fuerzas actuantes,

Más detalles

1. (JUN 04) Se consideran la recta y los planos siguientes: 4

1. (JUN 04) Se consideran la recta y los planos siguientes: 4 Matemáticas II Cuso.. (JUN ) Se considean la ecta los planos siguientes ; ;. Se pide (a) Detemina la posición elativa de la ecta con especto a cada uno de los planos. (b) Detemina la posición elativa de

Más detalles

Teorema para Calcular el área de un cuadrilátero

Teorema para Calcular el área de un cuadrilátero Teoema paa alcula el áea de un cuadiláteo ilton Favio onaie eña El siguiente polema pulicado el 1 de Feeo del 2018, en la evista Tiangulos ai 1, nos pemitiá mosta algunos esultados inteesantes. olema 867

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Es claro que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palabra coseno (seno del complemento).

Es claro que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palabra coseno (seno del complemento). Es clao que el coseno de un ángulo agudo (digamos a) es igual al seno de su complemento W), de ahí la palaba coseno (seno del complemento). Nota: En adelante escibiemos indistintamente cos a o cos(m(a)),

Más detalles