Elementos de Elasticidad:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Elementos de Elasticidad:"

Transcripción

1 Elementos de Elasticidad: Consideemos el sólido como un continuo. Ondas de λ ~ 0-6 cm ν ~ 0, 0 H. Le de Hooke: Las defomaciones son popocionales a las fueas que las povocan. Si no se cumple, estamos en la ona no lineal o plástica. No distinguimos ente tansfomación adiabática o isotema. Coeficientes defomación: ε αβ << adimensional.

2 La longitud de los vectoes no se tienen que conseva:. ε ε ε ε ε... Luego los elementos ε, en pimea apoimación, las vaiaciones elativas de longitud de los vectoes unitaios. Sea un punto en. Donde estaá después de la defomación?.. El desplaamiento R de la defomación se define como R ε ε ε ε ε ε ε ε ε. Definamos u, v, w tal que, R u v w.

3 Desaollando ceca de 0 tomando R0 0, u u0 u/ u/ u/. Y compaando queda Definimos el tenso de defomaciones e αβ : Es un tenso simético e αβ e βα luego tiene 6 componentes distintas. Las componentes diagonales dan el alagamiento, las no diagonales los cambios de ángulos cotes. ATENCION: difeencia de definición ente Kittel Landau o Fenman

4 Tenso de esfueos tensiones: Un esfueo o tensión es una fuea actuando sobe la unidad de supeficie. Dimensiones de pesión. [Fuea en X] / [áea pependicula a Y] X El tenso es po tanto: El tenso es simético si no pemitimos movimientos de otación. Tiene entonces 6 componentes. La fuea sobe una supeficie es df n da donde n es el vecto unitaio pependicula a dicha supeficie.

5 Constantes elásticas de igide defomación: La le de Hooke establece la popocionalidad ente las defomaciones tenso de las fueas tenso de esfueos. S αβ, constantes elásticas de defomación. ij Cij, kl kl e kl C ij,kl C αβ Constantes elásticas de igide. 36 componentes. Dimensiones [fuea]/[áea] [enegía]/[volumen]

6 Enegía Elástica: La enegía po unidad de volumen asociada a defomaciones está dada po la epesión: U ~ Cij, kleijekl ijkl Donde los índices α,β... 6.,, 3, 4, 5, 6. A pati de la enegía los componentes del tenso de esfueos se calculan como deivadas especto de e α. U e U e ~ C e 6 β Compaando con la epesión anteio: ~ ~ αβ ~ C C β Cβ e β Luego las C αβ son siméticas po tanto ha distintas, peo se pueden educi más po simetía. αβ e α e β ~ ~ Cαβ Cβα Cβα C αβ

7 Constantes elásticas en el sistema cúbico: Apliquemos las opeaciones de simetía del sistema cúbico paa ve cuantas constantes elásticas distintas tenemos. Son sólo tes C, C 44 C. La enegía debe se invaiante bajo las opeaciones de simetía. Sólo pueden apaece los téminos e e e C e e e C e e e e e e U C 44 Estos téminos son invaiantes bajo los otaciones de oden 3 0º. Estas otaciones 4 cambian los ejes: Sin embago téminos del tipo e e... ; e e... ; e e No son invaiantes a que e -e,-.

8 A pati de la enegía podemos calcula los esfueos: U e U e C C 44 e e C e e C C 3 ; C 4 C 5 C 6 0; C 6 C 6 C 63 C 64 C 65 0 ; C 66 C 44 ; Invitiendo la mati: C 44 /S 44 ; C - C S - S C C S S

9 Dilatación : El cubo unidad,, se tansfoma en el,,. El nuevo volumen es: V. Coeficiente de dilatación. Módulo de Compesibilidad: Consideemos una dilatación unifome e e e /3δ. La enegía del cistal cúbico es U/6 C C δ. Definimos el módulo de compesibilidad U ½ B δ. Es equivalente a B -V dp/dv. Luego paa un cistal cúbico B/3 C C Compesibilidad : K /B

10 Otas estuctuas cistalinas:

11 Ondas elásticas en el sistema cúbico: Veamos la dinámica de un cubo de volumen. F ] [ ] [ ] [

12 Aplicando la ª Le de Newton a ese elemento de volumen t u ρ Y aplicando ahoa la le de Hooke: Usando las definiciones de las e ij se obtiene paa las 3 componentes de R:

13 Ondas en la diección [00] : el vecto de ondas k K,0,0 donde Kπ/λ. Ondas longitudinales : u u 0 ep[ik-ωt] sustituendo ω ρ C K. v L C / ρ ½. Ondas tansvesales : v v 0 ep[ik-ωt] sustituendo ω ρ C 44 K. v T C 44 / ρ ½ Y lo mismo paa w. esto no es cieto, en geneal. Ondas en la diección [0] : el vecto de ondas k K,K,0 -½ K,K,0 Pobemos una solución tansvesal en el eje : w w 0 ep[ik K -ωt] sustituendo da ω ρ C 44 K K C 44 K Luego v T C 44 / ρ ½

14 Veamos ahoa una solución geneal en el plano XY. u u 0 ep[ik K -ωt] v v 0 ep[ik K -ωt] Sustituendo en las ecuaciones de onda encontamos: Estas ecuaciones tienen soluciones no tiviales u 0 v 0 si Las aíces del deteminante son: ª ª

15 Sustituendo las aíces en el deteminante: º Es deci u v po tanto el desplaamiento lleva la diección [0]. LONGITUDINAL. Luego v L [C C C 44 / ρ] ½ º Es deci u -v po tanto el desplaamiento es pependicula a la diección [0]. TRANSVERSAL. Luego v T [C - C /ρ] ½

16 Sistema Isótopo no cistalino: Todavía más simético. Da igual la diección de los ejes. Sólo ha dos coeficientes independientes C C C 44 ; La le de Hooke: ij µ µ δ ij e ij λ e e e δ ij ij µ e ij λ e e e δ ij ;definición Kittel ; definición Landau-Fenman Donde µ λ se llaman las constantes elásticas de Lamé. C λ ; C 44 µ ; C µ λ ; Dinámica en un sólido isótopo: Sobe el volumen V actúan F et F int F o et d Fint ρ dv dt d F f int et ρ dv dt fdv

17 Las componentes de F int en la el elemento de áea da es : df n n n da e integando a tavés del áea n n n da f dv A Usando la le de Gauss paa la pimea integal V V luego f i j ij j dv V f dv Ahoa insetando la le de Hooke con la definición de las e ij : f λ µ R µ R Navie

18 Ondas elásticas en medios isótopos: Si asumimos que no ha fueas etenas R R dt R d µ µ λ ρ Todo campo vectoial se puede escibi como suma de campos: 0 0 que tal R dt d µ µ λ ρ Tomando la divegencia e intecambiando e podemos saca facto común: po tanto 0 t t µ λ ρ µ λ ρ

19 Tomando el otacional e intecambiando de nuevo se obtiene: t µ ρ Luego las dos componentes cumplen ecuaciones de ondas luego: longitudinal Onda 0 0 ep tansvesal Onda 0 0 ep o o o o k t k k t k ω ω Con velocidades de popagación ρ µ ρ µ λ T L V V

20 Condiciones de equilibio de un sólido isótopo: Paa el tenso de tensiones: Paa las defomaciones: j ij j 0 o - ρg λ µ R µ R 0 o - ρg Las otas fueas etenas vienen a tavés de las condiciones de fontea. Enegía elástica de un sólido isótopo: la densidad de enegía es, U λ µ e e e e e e e e e E elastica UdV Volumen

21 Ota foma de defini las constantes elásticas isótopas: Módulos de YoungY, E de Poisson F Y A w w l l h h Young l l Poisson La elación con las constantes de Lamé la compesibilidad es: λ Y, µ K 3 Y Y Y la le de Hooke queda: e /Y[ ] ; e /Y e /Y[ ] ; e /Y e /Y[ ] ; e /Y

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Ecuaciones del movimiento de un fluido

Ecuaciones del movimiento de un fluido Ecuaciones del movimiento de un fluido 1 Foma fundamental El tenso de tensiones Relación constitutiva paa un fluido Newtoniano La ecuación de Navie-Stokes El tenso de tensiones paa flujos incompesibles

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles

r r F a La relación de proporcionalidad que existe entre la fuerza y la aceleración que aparece sobre un punto material se define como la masa:

r r F a La relación de proporcionalidad que existe entre la fuerza y la aceleración que aparece sobre un punto material se define como la masa: LECCION 7: DINAMICA DEL PUNTO 7.. Fueza. Leyes de Newton. Masa. 7.. Cantidad de movimiento. Impulso mecánico. 7.3. Momento cinético. Teoema del momento cinético. 7.4. Ligaduas. Fuezas de enlace. 7.5. Ecuación

Más detalles

r 2 F 2 E = E C +V = 1 2 mv 2 GMm J O = mr 2 dθ dt = mr 2 ω = mrv θ v θ = J O mr E = O 2mr GMm 2 r

r 2 F 2 E = E C +V = 1 2 mv 2 GMm J O = mr 2 dθ dt = mr 2 ω = mrv θ v θ = J O mr E = O 2mr GMm 2 r Física paa Ciencias e Ingenieía 18.1 18.1 Leyes de Keple Supongamos que se ha lanzado un satélite atificial de masa m, sometido al campo gavitatoio teeste, de tal manea que su enegía mecánica sea negativa.

Más detalles

Flujo eléctrico. Michael Faraday, septiembre de íd. 25 de agosto de 1867) fue un físico y químico inglés)

Flujo eléctrico. Michael Faraday, septiembre de íd. 25 de agosto de 1867) fue un físico y químico inglés) Flujo eléctico Michael Faaday, (Londes, 22 de septiembe de 1791 - íd. 25 de agosto de 1867) fue un físico y químico inglés) Flujo eléctico (Φ) 2 N m φ E da A C Flujo eléctico (Φ) Cuál es el flujo eléctico

Más detalles

SOLUCIONES FCA JUN 09 OPCIÓN A

SOLUCIONES FCA JUN 09 OPCIÓN A SOLUCIONES FCA JUN 09 OCIÓN A 1. a) Es la velocidad mínima que hay que comunicale a un cuepo situado en la supeficie del planeta paa que abandone de manea definitiva el campo gavitatoio. El cuepo que se

Más detalles

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

Tema 1: Electrostática en el vacío

Tema 1: Electrostática en el vacío Tema : lectostática en el vacío. Caga eléctica Le de Coulomb. Campo eléctico.3 Campo ceado po distibuciones continuas de caga.4 Le de Gauss.5 Potencial electostático.6 negía potencial electostática Masolle

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

ˆk, donde f 1. son funciones escalares, entonces su producto cruz o vectorial del operador con la función es: y f 2

ˆk, donde f 1. son funciones escalares, entonces su producto cruz o vectorial del operador con la función es: y f 2 Rotacional de una función vectoial Si una función vectoial es f = f 1 î + f 2 ĵ + f 3 ˆk, donde f 1, f 2, f 3 son funciones escalaes, entonces su poducto cuz o vectoial del opeado con la función es: f

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

L Momento angular de una partícula de masa m

L Momento angular de una partícula de masa m Campo gavitatoio Momento de un vecto con especto a un punto: M El momento del vecto con especto al punto O se define como el poducto vectoial M = O Es un vecto pependicula al plano fomado po los vectoes

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

Transferencia de Momentum

Transferencia de Momentum Tansfeencia de Momentum 1740-. 014-0-5 8ª Contenido Sistemas coodenados convencionales Ecuación de continuidad; Balance de momentum. 014-0-5 y t z x v 0 =0 cuando Ecuación de continuidad, notación vectoial:

Más detalles

la radiación lección 2 Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz 1 Ingeniería Técnica en Topografía

la radiación lección 2 Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz 1 Ingeniería Técnica en Topografía Dpto. de Ingenieía Catogáfica la adiación Calos Pinilla Ruiz 1 lección 2 Ingenieía Técnica en Topogafía la adiación Calos Pinilla Ruiz 2 Dpto. de Ingenieía Catogáfica sumaio Ingenieía Técnica en Topogafía

Más detalles

Movimiento en dos dimensiones

Movimiento en dos dimensiones Movimiento en dos dimensiones Nivelatoio de Física ESPOL Ing. José David Jiménez Continuación Contenido: Movimiento cicula Movimiento cicula Existen muchos ejemplos de movimiento cicula: Discos de música

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

Primer curso de Ingeniería Industrial. Curso 2009/2010 Dpto. Física Aplicada III 1

Primer curso de Ingeniería Industrial. Curso 2009/2010 Dpto. Física Aplicada III 1 Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 9/1 Dpto. Física Aplicada III 1 Índice Intoducción: enegía potencial electostática Difeencia de potencial

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA ESTÁTICA

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA ESTÁTICA UNIVESIDD NCINL DEL CLL CULTD DE INGENIEÍ ELÉCTIC Y ELECTÓNIC ESCUEL PESINL DE INGENIEÍ ELÉCTIC ESTÁTIC * Equilibio de cuepos ígidos ING. JGE MNTÑ PISIL CLL, 2010 EQUILIBI DE CUEPS ÍGIDS CNCEPTS PEVIS

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID

UNIVERSIDAD POLITÉCNICA DE MADRID UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO (EIAE) Mecánica de Fluidos I Poblema de ecuaciones geneales Un cilindo de adio R 0 y una cacasa concéntica con el cilindo

Más detalles

Ejemplos 2. Cinemática de los Cuerpos Rígidos

Ejemplos 2. Cinemática de los Cuerpos Rígidos Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,

Más detalles

LECCIÓN 5: CINEMÁTICA DEL PUNTO

LECCIÓN 5: CINEMÁTICA DEL PUNTO LECCIÓN 5: CINEMÁTICA DEL PUNTO 5.1.Punto mateial. 5.. Vecto de posición. Tayectoia. 5.3. Vecto velocidad. 5.4. Vecto aceleación. 5.5. Algunos tipos de movimientos. 5.1. PUNTO MATERIAL. Un punto mateial

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Las imágenes de la presentación han sido obtenidas del libro:

Las imágenes de la presentación han sido obtenidas del libro: Las imágenes de la pesentación han sido obtenidas del libo: Physics fo Scientists and Enginees Paul A. Tiple Gene Mosca Copyight 2004 by W. H. Feeman & Company Supongamos una función f = f ( x, y, z) Con

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores

MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón BLOQUE : GEOMETRÍA DEL ESPCACIO Tema 5: Vectoes MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón Definición de vecto Un sistema de ejes tidimensional se constuye

Más detalles

UNIDAD 11: PUNTOS, RECTAS Y PLANOS EN EL ESPACIO

UNIDAD 11: PUNTOS, RECTAS Y PLANOS EN EL ESPACIO I.E.. Isabel Peillán y Quiós Matemáticas Depatamento de Matemáticas UNIDAD : Puntos, ectas y planos en el espacio UNIDAD : PUNTO, RECTA Y PLANO EN EL EPACIO Ecuaciones de la ecta Ecuaciones del plano Posiciones

Más detalles

El potencial en un punto de un campo de fuerzas eléctrico es la energía potencial que poseería la unidad de carga situada en dicho punto:

El potencial en un punto de un campo de fuerzas eléctrico es la energía potencial que poseería la unidad de carga situada en dicho punto: Campo eléctico Hemos visto hasta ahoa un tipo de inteacción, la gavitatoia, siendo siempe una fueza atactiva. En la mateia, además de esta, nos encontamos con: inteacción eléctica, inteacción débil,...

Más detalles

Capítulo 8. Sistemas de partículas idénticas

Capítulo 8. Sistemas de partículas idénticas Capítulo 8 Sistemas de patículas idénticas 8 Indistinguibilidad 8 Funciones popias del opeado de pemutación 8 Átomo de helio 83 spín total 8 Sistemas de patículas idénticas n la mecánica clásica en una

Más detalles

Adenda Electrones en potencial periódico

Adenda Electrones en potencial periódico Adenda Electones en potencial peiódico Bandas en potencial peiódico Banda de conducción niveles atómicos Electones en un potencial peiódico ed simetía taslacional R = n1 a1 + n2a2 + n3a3; n1, n2, n3 enteos

Más detalles

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B.

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B. FUNDAMENTOS GENERALES SOBRE LAS MAQUINAS ELÉCTRICAS REPASO SOBRE LAS MAGNITUDES DEL CAMPO MAGNÉTICO Hoja Nº I- INDUCCION MAGNETICA B Definida a pati del efecto electodinámico de fueza De la fueza F ejecida

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

Antes de ver la definición, estudiemos unos ejemplos de espacios vectoriales para ver las propiedades comunes.

Antes de ver la definición, estudiemos unos ejemplos de espacios vectoriales para ver las propiedades comunes. Espacios vectoiales. Popiedades. Antes de ve la definición, estudiemos unos ejemplos de espacios vectoiales paa ve las popiedades comunes. R 2 =RxR={(x,y)/x,y R} conjunto de todos los paes de númeos eales

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

Profesor BRUNO MAGALHAES

Profesor BRUNO MAGALHAES POTENCIL ELÉCTRICO Pofeso RUNO MGLHES II.3 POTENCIL ELÉCTRICO Utilizando los conceptos de enegía impatidos en Física I, pudimos evalua divesos poblemas mecánicos no solo a tavés de las fuezas (vectoes),

Más detalles

práctica FÍSICA Y QUÍMICA Problemas Muestra de ejercicio para la preparación de la prueba práctica

práctica FÍSICA Y QUÍMICA Problemas Muestra de ejercicio para la preparación de la prueba práctica FÍSIC Y QUÍMIC Poblemas páctica Muesta de ejecicio paa la pepaación de la pueba páctica 25-22420-13 FÍSIC Y QUÍMIC Páctica 3 1 Se dispone de un conducto ectilíneo indefinido cagado unifomemente. a) Emita

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( )

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( ) CAMPOS: OPERADOR NABLA Repesenta los campos vectoiales A i + j, B i j. Halla la divegencia el otacional de cada uno de ellos eplica el significado físico de los esultados obtenidos. Solución: I.T.I., 3,

Más detalles

Transferencia de Energía. Grupo ª

Transferencia de Energía. Grupo ª Tansfeencia de Enegía 547 Gupo 3. 204-08-25 6ª 204-08-25 ontenido El 204-08-20 no hubo clase. Ejemplo de tansfeencia de enegía po difusión a tavés de mateiales compuestos. A 0 T 0 M M 2 A 2L T 2L B T B

Más detalles

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =

Más detalles

Campos gravitoelectromagnéticos dependientes del tiempo

Campos gravitoelectromagnéticos dependientes del tiempo 6 Campos gavitoelectomagnéticos dependientes del tiempo 1.6 Campos gavitomagnéticos dependientes del tiempo Los campos gavitomagnéticos que hemos manejado hasta ahoa, como (.5), (4.5) y (5.5), coesponden

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

OTRAS APLICACIONES DE LA APROXIMACIÓN DE CAPA LÍMITE LAMINAR. CORRIENTES LIBRES.

OTRAS APLICACIONES DE LA APROXIMACIÓN DE CAPA LÍMITE LAMINAR. CORRIENTES LIBRES. OTRAS APLICACIONES DE LA APROXIMACIÓN DE CAPA LÍMITE LAMINAR. CORRIENTES LIBRES. 1 Intoducción Los movimientos de choos de líquido en el seno del mismo líquido, la estela de cuepos en el seno de una coiente

Más detalles

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones

Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas

CAMPOS ELECTROMAGNÉTICOS Tema 1. Cálculo Vectorial y Coordenadas Cartesianas, Cilíndricas y Esféricas ETS. Ingenieía de Telecomunicación Dpto. Teoía de la Señal Comunicaciones CAMPOS ELECTROMAGNÉTICOS Tema. Cálculo Vectoial Coodenadas Catesianas, Cilíndicas Esféicas P.- Dado un vecto A = + (a) su magnitud

Más detalles

Teoría de vigas. Métodos de resolución. Bibliografía: Gere, 5ª Ed. (2002): 4.1 a 4.5, 5.1 a 5.7 y 5.12, 9.1 a 9.5

Teoría de vigas. Métodos de resolución. Bibliografía: Gere, 5ª Ed. (2002): 4.1 a 4.5, 5.1 a 5.7 y 5.12, 9.1 a 9.5 Teoía de vigas Intoducción Ejemplos Relación ente cagas solicitaciones Defomaciones po flexión cuvatua Esfuezos nomales en flexión Relación momento-cuvatua Dimensionado de vigas Deflexiones en vigas étodos

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

COMPORTAMIENTO DE LOS CRISTALES EN RELACIÓN CON EL CAMPO ELÉCTRICO LOCAL, LA POLARIZACIÓN Y EL CAMPO ELÉCTRICO DE LA LUZ INCIDENTE

COMPORTAMIENTO DE LOS CRISTALES EN RELACIÓN CON EL CAMPO ELÉCTRICO LOCAL, LA POLARIZACIÓN Y EL CAMPO ELÉCTRICO DE LA LUZ INCIDENTE COMPORTAMIENTO DE LOS CRISTALES EN RELACIÓN CON EL CAMPO ELÉCTRICO LOCAL, LA POLARIZACIÓN Y EL CAMPO ELÉCTRICO DE LA LUZ INCIDENTE Paa que la luz viaje con la misma velocidad a tavés de cualquie diección

Más detalles

Ayudantía 11. Problema 1. Considere un cascarón esférico de radio interno a y radio externo b con polarización

Ayudantía 11. Problema 1. Considere un cascarón esférico de radio interno a y radio externo b con polarización Pontificia Univesidad Católica de Chile Facultad de Física FIS1533 Electicidad y Magnetismo Pofeso: Máximo Bañados Ayudante: Felipe Canales, coeo: facanales@uc.cl Ayudantía 11 Poblema 1. Considee un cascaón

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

SOLUCIONES rectas-planos

SOLUCIONES rectas-planos SOLUCIONES ectas-planos x + y z. Ecuación de la ecta que pasa po A(,, ) y se apoya en las ectas x y + z x z + s y 4 y. Ecuación de la ecta que pasa po (,, ) es paalela al plano π x + y 4z + y está en x

Más detalles

CASTILLA Y LEÓN / SEPTIEMBRE 02. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO PRUEBA A

CASTILLA Y LEÓN / SEPTIEMBRE 02. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO PRUEBA A CASTILLA Y LEÓN / SEPTIEMBRE. LOGSE / MATEMÁTICAS II / EXAMEN CRITERIOS GENERALES DE EVALUACIÓN DE LA PRUEBA: Se obsevaán fundamentalmente los siguientes aspectos: coecta utilización de los conceptos,

Más detalles

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CATALUÑA / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CATALUÑA / SEPTIEMBRE 0. LOGSE / FÍSICA / EXAMEN COMPLETO Resuelva el poblema P1 y esponde a las cuestiones C1 y C Escoge una de las opciones (A o B) y esuelva el poblema P y esponda a las cuestiones C3

Más detalles

Contenidos de Clases Dictadas. Grupo G2. Prof. F.H. Sánchez. Martes 25/03/2014

Contenidos de Clases Dictadas. Grupo G2. Prof. F.H. Sánchez. Martes 25/03/2014 Contenidos de Clases Dictadas. Gupo G. Pof. F.H. Sánchez. Mates 5/3/4 Beve intoducción a la Física. Conceptos antiguos y enacentistas. Sujeto de estudio de la Física. Ámbitos de validez de las teoías físicas.

Más detalles

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas.

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas. Univesidad de Los Andes. acultad de Ingenieía. Escuela Básica de Ingenieía. Tema I Conceptos Pincipios fundamentales. Estática de patículas. Sistemas Equivalentes de fuezas. Pof. Naive Jaamillo S. Cáteda:

Más detalles

Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos de cálculo del potencial, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 6-. Ejemplo º. Calcula el potencial eléctico ceado po un hilo ectilíneo e infinito, que pesenta

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

Potencial Escalar - Integrales de superposición. 2010/2011

Potencial Escalar - Integrales de superposición. 2010/2011 Potencial Escala - Integales de supeposición. / Electostática Definición os conductoes en electostática. Campo de una caga puntual. Aplicaciones de la ey de Gauss Integales de supeposición. Potencial electostático

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk

r u,v ( ) = x u,v ( )î + y u,v ( ) ĵ + z u,v ( ) ˆk Supeficies Se ha visto que una cuva en el espacio se puede epesenta po una ecuación paamética del tipo: t = x t î + y t ĵ + z t ˆk En donde inteviene un solo paámeto t. La epesentación paamética de cuvas

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando MECNIC PLICD I. EXMEN PCIL. 17-04-99. PIME EJECICI TIEMP: 75 1. btene la expesión de la velocidad de ω V s ω V s sucesión del cento instantáneo de otación cuando =. 2 2. Indica qué afimaciones son cietas

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal Poyecto PMME - Cuso 007 Instituto de Física Facultad de Ingenieía UdelaR IULO AUORES PÉNDULO CÓNICO. Rodigo Biiel, Geado Fanjul, Danilo da Rosa INRODUCCIÓN Analizamos el movimiento del péndulo

Más detalles

Potencial gravitomagnético producido por una esfera en rotación

Potencial gravitomagnético producido por una esfera en rotación 5 Potencial gavitomagnético poducido po una esfea en otación 1.5 Cálculo del potencial gavitomagnético poducido en el exteio de un cuepo esféico en otación Obtenidos los fundamentos de la teoía gavitoelectomagnética,

Más detalles

Aplicaciones de la Optimización Convexa al análisis de redes

Aplicaciones de la Optimización Convexa al análisis de redes Aplicaciones de la Optimización Convea al análisis de edes Intoducción Repaso de conceptos básicos de unciones de vaias vaiables y conveidad Repaso : Función deivada pacial La deivada pacial de con especto

Más detalles

Hoy trataremos algún aspecto del diseño de una vasija o depósito de pared delgada (t/r<10) sometida a presión interna

Hoy trataremos algún aspecto del diseño de una vasija o depósito de pared delgada (t/r<10) sometida a presión interna CAPÍTULO 1 TENSIÓN Ho tataemos algún aspecto del diseño de una vasija o depósito de paed delgada (t/

Más detalles

TEMA I. Un espacio vectorial es una estructura algebraica que se compone de dos conjuntos y de dos operaciones que cumplen 8 propiedades.

TEMA I. Un espacio vectorial es una estructura algebraica que se compone de dos conjuntos y de dos operaciones que cumplen 8 propiedades. 1 Espacios vectoiales 2 Combinaciones lineales 3 Dependencia e independencia lineal 4 Bases 5 Rango de un conjunto de vectoes 6 Tansfomaciones elementales 7 Método de Gauss TEMA I 1 Espacios vectoiales

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

ϕ ), la métrica estática e isótropa puede

ϕ ), la métrica estática e isótropa puede ÓRBITAS EN LA METRICA DE SCHWARZSCHILD El objetivo de esta páctica con odenado es el estudio de las tayectoias obitales en la mética de Schwazschild. Las geodésicas, definidas como aquellas cuvas que tanspotan

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 Ejecicio de aplicación 44 (Deivación) Se desea obtene una viga ectangula a pati de un tonco cilíndico de 6 cm de diámeto a) Demosta que la viga con

Más detalles

A para α = 1. ( α 2) 2 2( α 1) 1 α ( ) y además sabemos que A 0 A. Calculemos A 1 : A A = = A 1 1 0

A para α = 1. ( α 2) 2 2( α 1) 1 α ( ) y además sabemos que A 0 A. Calculemos A 1 : A A = = A 1 1 0 Pueba de cceso a la Univesidad. JUNIO 0. Instucciones: Se poponen dos opciones y B. Hay que elegi una de las dos opciones y contesta a sus cuestiones. La puntuación está detallada en cada una de las cuestiones

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Cuata pate: Movimiento planetaio. Satélites A) Ecuaciones del movimiento Suponemos que uno de los cuepos, de masa M mucho mayo que m, se encuenta en eposo en el oigen de coodenadas

Más detalles

Estática del punto material

Estática del punto material TEMA 2: Estática del punto mateial 03//2008 Depatamento de Física Aplicada II. Miguel Galindo del Pozo CTE Mazo 2006 Atículo 0. Eigencias básicas de seguidad estuctual (SE). El objetivo del equisito básico

Más detalles

4.- (1 punto) Como ya sabéis, el campo eléctrico creado por una carga en un punto P, es una magnitud vectorial que viene dada por la expresión E K u

4.- (1 punto) Como ya sabéis, el campo eléctrico creado por una carga en un punto P, es una magnitud vectorial que viene dada por la expresión E K u Nombe: Cuso: º Bachilleato B Examen I Fecha: 5 de febeo de 08 Segunda Evaluación Atención: La no explicación claa y concisa de cada ejecicio implica una penalización del 5% de la nota.- (,5 puntos) Halla

Más detalles

LA RUEDA PELTON (Shames)

LA RUEDA PELTON (Shames) LA RUEDA PELTON (Shames) Es una tubina de impulsión. Uno o más choos de agua, que sale(n) de una tobea a velocidad alta, incide sobe un sistema de cuchaas unidas a una ueda. El odete (cuchaas y ueda) tiene

Más detalles

Electrostática Clase 2 Vector Desplazamiento o densidad de flujo eléctrico. Ley de Gauss..

Electrostática Clase 2 Vector Desplazamiento o densidad de flujo eléctrico. Ley de Gauss.. Electostática Clase 2 Vecto Desplazamiento o densidad de flujo eléctico. Ley de Gauss.. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA En cietos casos que se analizan

Más detalles

TEMA10. VECTORES EN EL ESPACIO.

TEMA10. VECTORES EN EL ESPACIO. TEMA0. VECTORES EN EL ESPACIO..- Coodenadas en el espacio: En el espacio tidimensional, un punto P iene deteminado po tes coodenadas P(x, y, z) que epesentan las distancias diigidas desde los planos de

Más detalles

CAPITULO 6. CIRCULACIÓN Y VORTICIDAD.

CAPITULO 6. CIRCULACIÓN Y VORTICIDAD. CAPITULO 6. CIRCULACIÓN Y VORTICIDAD. En mecánica de cuepo ígido, los puntos que constituyen el cuepo son tatados como un todo. Un enfoque simila se puede hace en fluidos. Se puede considea un gupo de

Más detalles

Tema 7 Problemas métricos

Tema 7 Problemas métricos Tema 7 Poblemas méticos. Plano pependicula. Halla la ecuación del plano que contiene a los puntos A (- -) B ( -) es pependicula al plano. Los vectoes AB n (vecto nomal del plano ) uno de los puntos A o

Más detalles

EQUIPO DOCENTE DE FÍSICA DPTO. MECÁNICA ETSII - UNED

EQUIPO DOCENTE DE FÍSICA DPTO. MECÁNICA ETSII - UNED Cuso 000-00 Pimea Pueba Pesonal ª SEMANA Febeo 00.- Una patícula, obligada a desplazase a lo lago de una línea ecta y con una elocidad inicial de módulo o, se e fenada po la atacción de una fueza de módulo

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

Plano Tangente a una superficie

Plano Tangente a una superficie Plano Tangente a una supeficie Plano Tangente a una supeficie Sea z f ( una función escala con deivadas paciales continuas en (a b del dominio de f. El plano tangente a la supeficie en el punto P( a b

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

U.D. 3. I NTERACCIÓN GRAVITATORIA

U.D. 3. I NTERACCIÓN GRAVITATORIA U.D. 3. I NERACCIÓN GRAVIAORIA RESUMEN Ley de gavitación univesal: odos los cuepos se ataen con una fueza diectamente popocional al poducto de sus masas e invesamente popocional al cuadado de la distancia

Más detalles

Una nueva teoría electromagnetica I. Propiedades del electrón en reposo: masa, carga, spin y estabilidad.

Una nueva teoría electromagnetica I. Propiedades del electrón en reposo: masa, carga, spin y estabilidad. Una nueva teoía electomagnetica I. Popiedades del electón en eposo: masa, caga, spin y estabilidad. Manuel Henández Rosales. 18 de Junio de 215 Abstact En este atículo a pati de nuevas ecuaciones paa el

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un punto. Poblemas OPCIÓN A.- Un satélite descibe una óbita

Más detalles

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será:

La ecuación implicita del plano que pasa por el punto P(1, 0, 1) con vectores AB (2,1,0) y AP (2,0,0) será: xyz0 1. Dados la ecta : y el punto P(1, 0, 1) exteio a : x y z a) Halla la ecuación en foma geneal del plano que contiene a y a P b) Halla la ecuación (como intesección de dos planos) de la ecta s que

Más detalles