LA TRANSFORMADA DE LAPLACE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LA TRANSFORMADA DE LAPLACE"

Transcripción

1 TRNSFORMD DE PCE CROS S. CHINE TRNSFORMD DE PCE E l má coocid y uilizd d l rformd igrl. S h mordo d u gr uilidd l hor d rolvr muliud problm d l cici y cologí, plicádo d mr fciv l udio d m fudml como ori d vibrcio, circuio lcróico, búqud d olucio d cucio drivd prcil, udio d l coducividd dl clor, cució d od, olucio d problm d vlor d fror, c.. Iroducció: id báic dl llmdo Cálculo Oprivo coi blcr u corrpodci fuciol o rformció d modo qu i u fució f dd l corrpod u cojuo [f] d oprcio, o u cojuo d cucio [f], l fució rformd corrpodi F l corrpodrá l cojuo d oprcio [F] o bi u cojuo d cucio [F]. uilidd d corrpodci fuciol mifi cudo l cojuo d oprcio, [F], o d cucio rformd [F] d má cill rolució qu l oprcio corrpodi [f], o cucio corrpodi [f] l fució origil f. Pud r idd, obvim, múlipl rgl d rformció. E priculr h ruldo fciv l llmd rformd igrl, por l qu dfi l fució rformd F como u igrl d l fució origil f muliplicd por lgu fució rbirri d l vribl y qu domi grl Núclo d l rformció: b F K,. f. d E od l rformd igrl l úclo d l rformció, K,, y, lgú co, lo lími d igrció, y b, lo qu dfi l ipo d rformd igrl. So jmplo d rformd igrl l igui:. Trformd d Fourir por o: F. f. d MRCHEN SEVI, SEPTIEMBRE 5

2 TRNSFORMD DE PCE CROS S. CHINE b. Trformd d Fourir por coo: F co. f. d c. Trformd d Fourir complj: d. Trformd d plc: i F. f. d. Trformd d Hkl: F. f. d F f.. J. d J l fució d Bl d órd f. Trformd d Mlli: F f.. d MRCHEN SEVI, SEPTIEMBRE 5

3 TRNSFORMD DE PCE CROS S. CHINE. rformd igrl d plc: Dfiició.: S f u fució rl dfiid l irvlo -, l qu f i <. S llm Trformd d plc d f l fució F. f. d qu mbié podmo digr por f, o por f. vribl u úmro compljo, i.b, y l rformd F á dfiid pr qullo vlor d l plo compljo pr lo cul covrg l igrl. Propoició.: Si llmmo φ. f, oc l rformd d plc d f coicid co l rformd d Fourir complj d φ. E fco: bi. ib ib. f. d f. d.. f. d. φ. d Propoició.: Pr qu i l rformd d plc d u fució f codició ufici qu: f R, odo irvlo fiio. b f d ord pocil, o, qu i co poiiv M,, o l qu f M., E fco: Dcompogmo l igrl qu dfi l rformció: o f. d f. d f. d primr d mb igrl i, puo qu f R odo irvlo fiio. E cuo l gud igrl, i qu pr >: f. f. M M.,, por o: MRCHEN SEVI, SEPTIEMBRE 5 3

4 TRNSFORMD DE PCE CROS S. CHINE f. d M. E dfiiiv,. F M. d f. d. f. d f. d f. d M. covrg bolum pr >... d Propoició.3: Si l igrl i. y. f. d covrg, oc, i pr culquir qu l úmro rl poiivo k dfiimo l cor k co véric o como l cojuo y y k iy / > o, < k rul qu l igrl covrg uiformm k.. f. d E fco: El orm qudrí probdo dmormo qu pr odo k, i lgú l qu i oc MRCHEN SEVI, SEPTIEMBRE 5 4

5 TRNSFORMD DE PCE CROS S. CHINE MRCHEN SEVI, SEPTIEMBRE 5 5,. > < d f Empcmo dfiido d f d f.. β, i, por lo qu d f d. β, y por o: d d f.. β, ido iguldd válid pr odo úmro compljo iy qu g. Obvim, i β, o, pr vlor d uficim grd, fució pud hcr pquñ como quir. Por lo o, ddo >, impr podmo lgir u l qu pr ' β <, ido culquir úmro poiivo, por muy pquño qu, priculr, podmo lgir rbirrim ' k Vmo probr hor, por coigui, qu,.. > < β d d f, pr odo k pr llo rolvmo por pr l gud igrl: [ ] d d d β β β β β β y ido cu qu cudo k >, i qu: [ ].. i y y por lo cul, uilizdo diguldd, pud cribir qu [ ] ' ' ' ' '. ' '. '.. ' ' '.... k y y y y d d < < < < β y, film, i uiuimo ' k :

6 TRNSFORMD DE PCE CROS S. CHINE f. d. dβ <, > por lo qu l igrl idicd covrg uiformm l cor k. Puo qu odo puo dl miplo > á iudo dro d lgú cor k co véric, pud ucir l igui corolrio. Corolrio.: Si l igrl. f. d covrg pr i.y mbié covrg pr cd i. y l miplo >, covrgci qu pud o o r uiform dicho miplo. E lo puo d l rc diio d l igrl pud o r covrg. Dfiició.: El ífimo dl cojuo d odo lo l qu. f. d covrg pr i.y llm bci d covrgci d l igrl y rpr por σ. E bci podrí r -, pro o, pu l fució f d ord pocil. El miplo > σ llm miplo d covrgci d l igrl. Propoició.4: S σ l bci d covrgci d l igrl F. f. d Pr cd i.y, co > σ i l drivd F y vi dd por F'.. f. d igrl qu covrg uiformm odo cor k irior l miplo > σ. MRCHEN SEVI, SEPTIEMBRE 5 6

7 TRNSFORMD DE PCE CROS S. CHINE plicció rird d orm o dic qu F i drivd d culquir ord y qu vi dd por l fórmul F.. f. d i prc l miplo d covrgci. E fco: Vrmo l dmorció do pr. E l primr probrmo l covrgci d l igrl.. f. d l miplo d covrgci > σ, y l gud pr probrmo l ici d l drivd F y u prió mdi l igrl rior. Covrgci d.. f. d : Coidrmo l fució α f. d f. d, álog l fució β dfiid l dmorció d l propoició.3. S i oc qu d α f. d, y por o:.. f. d.. d α, y rolvmo por pr l gud igrl:... dα. α. α α. α.. d [.. ].. α d d Puo qu α á cod, α M, i iy y >, impr pud lgir u h l qu < h<, y, pr α E dfiiiv, l igrdo d.. M.. M.. M.. h... d α á codo por M h.., qu i lími fiio pr dido ifiio, por lo cul, plicdo l cririo M d Wirr, rul r covrg pr > l igrl.. f. d y, film, puo qu olm á ujo l codició d qu >, dduc qu l igrl dich covrg pr odo dl miplo d covrgci > σ. plicdo l propoició.3. rior l igrl covrg dmá uiformm odo cor Sk d dicho miplo. σ MRCHEN SEVI, SEPTIEMBRE 5 7

8 TRNSFORMD DE PCE CROS S. CHINE b Eici d l drivd F : Coidrmo l dcompoició: F f. d dod llmmo: u iy co y. f. d i f. d co y i. y. f. d y. f. d u, y iv, y, y co y. f. d v, y y. f. d drivdo prcilm prio mo: u u y.. co y. f. d y. f. d v. v. y y. f. d co y. f. d [.4.] d lo qu dduc qu cumpl l cucio d Cuchy-Rim: u v y u v y por lo cul: d d d d F ' F F iy [ u, y iv, y ]. d d d d d y ido u v drá qu F' i, y, udo l d d d v u cucio d Cuchy-Rim, mbié F' i y y Por o, uiuydo l prio igrl [.4.]: F'. F'. co y. f. d i co y. f. d i.. y. f. d y. f. d. f. d por o, l drivd d l rformd d plc i y, prcim, l igrl cuy covrgci h probdo l prágrfo rior. MRCHEN SEVI, SEPTIEMBRE 5 8

9 TRNSFORMD DE PCE CROS S. CHINE. Propidd: Propoició. Propidd d lilidd: Si o c y c úmro rl y o f y f fucio rl l qu u rformd d plc o F y F, vrific qu l rformd d l combició lil d l fucio l combició lil d l rformd: c, c R [ f ] F [ f ] F c [ f c f ] c [ f ] c [ f ] c F c F E fco: [ ] [ ] f c f c f c f. d c f. d c f. d c [ f ] c [ f ] c F c F c Propoició. Primr propidd d rlció: oc mbié vrific qu [. ] f F. Si [ f ] F E fco: [. f ]. f. d f. d F Propoició.3. Sgud propidd d rlció: Si [ f ] F y f, g, > oc [ g ]. F < E fco: [ g ] g. d g. d g. d f. d por o: u [ g ] f u. du F u f u. du MRCHEN SEVI, SEPTIEMBRE 5 9

10 TRNSFORMD DE PCE CROS S. CHINE Propoició.4 Propidd d cmbio d cl: f F Si [ f ] F, oc [ ] E fco: u du u [ f ] f. d f u f u. du F Propoició.5 Propidd d rformció d drivd: S f u fució coiu r, d ord pocil pr >r, y u f F, vrific qu drivd f l mo coiu rmo. Si [ ] [ f ' ]. F f E fco: [ ] f ' f '. d lím. f '. d lím f f. d lím f f f. d lím f f f. d f. F pu f, pr >r f. d Propoició.6 Propidd d rformció d drivd co dicoiuidd l orig: Si l fució f d l propidd rior o ifc l coiuidd, pro i lim f f uqu o igul f oc [ f ' ]. F f E fco: lím [ f ] ' f '. d. f '. d f f. d lím MRCHEN SEVI, SEPTIEMBRE 5

11 TRNSFORMD DE PCE CROS S. CHINE lím f f f f. d f. F f. d f f f. d Propoició.7 Propidd d rformció d drivd co dicoiuidd u puo culquir: Si l fució f d l do úlim propidd dj d r coiu > oc E fco: [ f ' ]. F f [ f f ] lím [ f ] ' f '. d. f '. d. f '. d f f d f lím.... f f f. d f f f. F f f. d. f. d Propoició.8 Propidd d rformció d l -im drivd: Si [ f ] F y o f, f,...,f - coiu pr N y d ord pocil pr >N, y imimo f l mo coiu rmo pr N, vrific qu [ f ] F f f '.... f f E fco: Podmo hcr l dmorció por iducció: MRCHEN SEVI, SEPTIEMBRE 5

12 TRNSFORMD DE PCE CROS S. CHINE Pr : [ f ]. F F Pr : [ f ' ]. [ f ] f por dfiició por propidd 5ª Supogmo l fórmul cir pr l vlor k- fi d probr qu, oc, rí mbié cir pr k: k k k k 3 k 3 k [ f ] F f f '.... f f Vmo qu h d r cir pr k. Por l propidd 5ª drá qu: k k k [ f ] [ f ] f, por lo qu l uiuir: k k k k 3 k 3 k k [ f ] [ F f f '.... f f ] f Por o: k k k k k k [ f ] F f f '.... f f Propoició.9 Propidd d rformció d igrl: oc f u. du F Si [ f ] F E fco: S g f u. du g' f g [ g' ]. [ g ] g [ g ] Eoc: [ g ] [ g' ] [ f ] F f u. du F Propoició. Propidd d rformció dl produco por u poci d l vribl: d Si [ f ] F oc [. f ]. F. F d E fco: curmo por iducció. fórmul cir pr : MRCHEN SEVI, SEPTIEMBRE 5

13 TRNSFORMD DE PCE CROS S. CHINE d d F d f. d. f. d d [. f ] Vmo qu i upomo l fórmul cir pr k- hmo d cocluir qu mbié h d r cir pr k: Pr k- l upomo cir: b Vmo pr k: k k k d [ f ]. F. k k k k k d k d k d d [ f ] [. f ] [ f ] k. F. F. k d d d d d k Propoició. Propidd d rformció l dividir por l vribl: f Si [ f ] F oc F u. du E fco: f Si llmmo g f. g [ f ] [. g ] [ g ] Por lo cul: [ g ] F. d [ g ] d F u. du f f f F u. du F u. du d d Propoició. Propidd dl vlor iicil: Si i lo lími qu idic, oc vrific qu E fco: lim f lim. F [ f ' ] f '. d. F f. Si f coiu rozo y d ord pocil, i qu lim f '. d. Por o: MRCHEN SEVI, SEPTIEMBRE 5 3

14 TRNSFORMD DE PCE CROS S. CHINE [ f ' ] lim. F f lim. F lim f lim o bi: lim f lim. F Propoició.3. Propidd dl vlor fil: Si i lo lími qu idic, oc vrific qu lim f lim. F E fco: [ f ' ] f '. d. F f lim f '. d lim. F f f '. d lim f ' u. du lim. F f lim f f lim. F f y dfiiiv: lim f lim. F MRCHEN SEVI, SEPTIEMBRE 5 4

15 TRNSFORMD DE PCE CROS S. CHINE 3. Covolució y rformd ivr: Dfiició 3.: S domi covolució d l fucio f y g y rpr por f*g, l prió f g f u. g u. du Propoició 3.: S vrific l propidd d comució f g g f E fco: f g f u. g u. du f v. g v. dv f v. g v. dv g f Dfiició 3.: Si [ f ] F pr por f [ F ] oc f llm rformd ivr d plc d F, y d plc. dod - llm oprdor rformd ivr Propoició 3. Torm d covolució: Si [ F ] f y [ G ] g E fco:, oc vrific qu [ F. G ] f u. g u. du f Probrmo, quivlm, qu [ f g] F. G : g [ f g] f u. g u. du. d f u. g u. du. d D Du v u v lim f u. g u. du. d lim D D f u. g v. du. dv MRCHEN SEVI, SEPTIEMBRE 5 5

16 TRNSFORMD DE PCE CROS S. CHINE u v u f u. g v. du. dv f u. du v f v. dv F. G Propoició 3.3. Fórmul d ivrió: S c u úmro poiivo d modo qu pr cd bolum l igrl F. f. d i. y, ido >c, covrg Y u puo qu ifc lgu d l igui codicio locl: c f d vrició cod u oro d [ δ δ ],. d Ei lo do lími f y f- y l do igrl impropi δ f u u f. du o bolum covrg. δ f u u f. du Eoc, pr cd >c cumpl qu f T. f lim π T T iv T. F iv. dv igrl dl gudo mimbro pud prr como u igrl d cooro omd lo lrgo d u gmo rcilío qu u -it co it cuyo co cribimo f f lim πi T it T it. F. d i E ocio uiliz l ímbolo i como brvició d T lim it it Dmorció: Coidrmo l fució g Igrl d Fourir, i: f. plicdo l Torm d l < T g g iv u lim π T T g u. dv MRCHEN SEVI, SEPTIEMBRE 5 6

17 TRNSFORMD DE PCE CROS S. CHINE prdo rlció fució d f: f T T f iv. iv u iv lim π T T f u.. du dv lim π T T F iv. dv MRCHEN SEVI, SEPTIEMBRE 5 7

18 TRNSFORMD DE PCE CROS S. CHINE 4. Ejmplo: 4.. Ejmplo d rformd dirc: { } b! { },.,,3,... c { } d { } k { k} k f {co k} k g k { hk} k h {coh k} k 4.. lgu rformd ivr: - b -!,.,,3,... c - d - k k k - co k k f - k hk k - g coh k k MRCHEN SEVI, SEPTIEMBRE 5 8

19 TRNSFORMD DE PCE CROS S. CHINE 4.3. Trformd d or fucio: ogrimo url: b Ríz -im: [ l ] l γ [ ] Γ c Fució d Bl d primr pci: [ ] J d Fució modificd d Bl d primr pci: Fució rror: [ ] I [ ] rf 4 rfc / MRCHEN SEVI, SEPTIEMBRE 5 9

20 TRNSFORMD DE PCE CROS S. CHINE 5. pliccio: 5.. Eumrció d lgu d l much pliccio d l rformció:. Solució d cucio difrcil co cofici co.. Trmio d l Torí d Vibrcio. 3. Circuio lcróico. 4. Rici d mril. 5. Solució d im d cucio difrcil lil. 6. Solució d cucio igrl pcil. 7. Solució d cucio difrcil lil co cofici vribl. 8. Solució d cucio drivd prcil. 9. Solució d cucio difrci fii.. Solució d cucio igro-difrcil.. Solució d cucio difrcil difrci.. Coducividd dl clor. 3. Ecució d od. 4. í d rmiió. 5. Solució d problm dl ipo d vlor d fror. 5.. U jmplo cocro d plicció: Coidrmo l cució difrcil y y... y' f co u cojuo d codicio d fror: y, y',..., y Si plicmo l rformció d plc mbo mimbro d l cució difrcil, i: [ y ] [ y ] [ y] [ f ]... y ido [ y ] Y, [ f ] F, i, ido cu l codicio d fror y l rformció d l drivd d culquir ord propoició.8: dod G u poliomio. G. Y F MRCHEN SEVI, SEPTIEMBRE 5

21 TRNSFORMD DE PCE CROS S. CHINE Eoc, cribimo Y F, por lo qu, film, pr hllr l G olució d l cució difrcil dd brá hllr l rformd ivr d plc d Y: F y G MRCHEN SEVI, SEPTIEMBRE 5

22 TRNSFORMD DE PCE CROS S. CHINE 6. Bibliogrfí. SPIEGE, M.R. Trformd d plc. Mcgrw-Hill. E. BOYCE Y R. C. DI PRIM. Ecucio Difrcil y Problm co vlor l Fror, imu. Méico COURNT, R. y HIBERT, D., Mhod of Mhmicl Phyic, Vol. y ; imu Wily. SMITH, M. G., plc Trform Thory; V Nord SNEDDON, I. N., Fourir Trform; Mc-Grw-Hill MURRY, R. y SPIEGE, Trformd d plc; Mc-Grw-Hill Colcció Schum. Crlo S. CHINE cchi@lli. MRCHEN SEVI, SEPTIEMBRE 5

La transformada de Laplace

La transformada de Laplace rormd d plc Y y d { y } Pirr-Simo plc 79-87 "Podmo mirr l do pr dl uivro como l co dl pdo y l cu d u uuro. S podrí codr u ilco qu culquir momo ddo brí od l urz qu im l urlz y l poicio d lo r qu l compo,

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecuaciones Diferenciales [Guia]

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecuaciones Diferenciales [Guia] UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecucio Difrcil [Gui] E l hoj d orcio or l úmro d rgu, l drrollo qu juifiqu u ru, u ru co i crrd u rcágulo lugo u

Más detalles

[ 1] Transformada de Laplace Definición de la Transformada de Laplace

[ 1] Transformada de Laplace Definición de la Transformada de Laplace Trormd d Lplc. 8 Diició d l Trormd d Lplc S u ució cul, dcir diid pr, y pr odo

Más detalles

SOLUCIÓN DE LA ECUACIÓN LINEAL A COEFICIENTES CONSTANTES: CASO HOMOGÉNEO. De acuerdo a la naturaleza de las soluciones, se obtienen tres casos:

SOLUCIÓN DE LA ECUACIÓN LINEAL A COEFICIENTES CONSTANTES: CASO HOMOGÉNEO. De acuerdo a la naturaleza de las soluciones, se obtienen tres casos: Mri: Cálclo III Uidd III: Eccio dircil d gdo ord Nro. d pág.: Libro: Eccio dircil co pliccio Aor: Zill Di G.... SOLUCIÓN DE LA ECUACIÓN LINEAL A COEFICIENTES CONSTANTES: CASO HOMOGÉNEO L orm grl d cció

Más detalles

CAPITULO V FUNCIONES DE RED

CAPITULO V FUNCIONES DE RED UTOS EÉTOS g. Guvo A. Nv Buillo APTUO FUNONES DE ED 5. Frcuci col 5. Fució d dci y Adici 5. d rford 5.4 Fucio d rd 5.5 Polo y ro d fucio d rd 5.. FEUENA OMPEJA Much fucio ud dcriir l for grl f ( ) K dod

Más detalles

x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto

x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto ERIE DE POTENCIA ERIE DE POTENCIA. Diició. U sri d pocis c s u sri d l orm c c c c... c... Por jmplo. i c y l sri d pocis om l orm....... Por jmplo. i c y l sri d pocis om l orm....... TEOREMA. El cojuo

Más detalles

Análisis de Fourier para Señales y Sistemas de Tiempo Discreto

Análisis de Fourier para Señales y Sistemas de Tiempo Discreto Aálii d Fourir pr Sñl y Sitm d impo Dicrto Rput d u itm LI l pocil compl [] h[] y [ ] h [ ] [ ] h [ ] [ ] Si y h h H [ ] [ ] [ ] [ ] ( [ ] ( H Autofució d lo Sitm LI Autovlor ocido y Si r rformd Si rformd

Más detalles

SEÑALES Y SISTEMAS I TABLAS. Dpto. Teoría de la Señal y Comunicaciones

SEÑALES Y SISTEMAS I TABLAS. Dpto. Teoría de la Señal y Comunicaciones SEÑALES Y SISEMAS I ABLAS Dpo. orí d l Sñl y Comuiccios POPIEDADES DE LA ASFOMADA DE LAPLACE Propidd Sñl rsformd OC ( ) ( ) ( ) s () ( s) ( s) Lilidd () + b ( ) ( s) b ( s) Dsplzmio l impo ( ) Dsplzmio

Más detalles

operacional de Laplace (F5.3)

operacional de Laplace (F5.3) 9.4.8 Már d Enyo n Vulo MÁSTER DE ENSAYOS EN VUELO Y CERTIFICACIÓN N DE AERONAVES Curo 8/9 El méodo m oprcionl d Lplc F5. Már d Enyo n Vulo L rnormd d Lplc 9.4.8 Y L y y d { } Már d Enyo n Vulo L rnormd

Más detalles

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones

SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones SISEMAS LIEALES ABLAS Dpo. orí d l Sñl y Comuiccios POPIEDADES DE LA ASFOMADA DE LAPLACE Propidd Sñl rsformd OC ( ) ( ) ( ) s ( s) ( s) Lilidd + b ( ) ( s) b ( s) Dsplmio l impo ( ) Dsplmio l domiio s

Más detalles

Matemáticas. Si f es una función periódica de período 2T seccionalmente continua, admite la siguiente representación en los puntos de continuidad:

Matemáticas. Si f es una función periódica de período 2T seccionalmente continua, admite la siguiente representación en los puntos de continuidad: Mmáics Pági dod s coró s iormció hp://www.losskkdos.com ANÁLISIS LINEAL SERIES DE FOURIER Ejrcicios Rsulos CONCEPOS BÁSICOS Ls sris d Fourir prmi rprsr ucios priódics mdi combicios d sos y cosos sri rigooméric

Más detalles

Departamento de Matemática Facultad de Ingeniería Universidad Nacional de Mar del Plata

Departamento de Matemática Facultad de Ingeniería Universidad Nacional de Mar del Plata Dprmo d Mmáic Fculd d Igirí Uivridd Nciol d Mr dl Pl Mmáic Avzd hp:://www3..ffii..mdp.du.r/mvzd mvzd@ffii..mdp.du.r 6 Coido INRODUCCIÓN...3 EMAS DE VARIABLE COMPLEJA...9 ANÁLISIS EN EL DOMINIO EMPORAL

Más detalles

Departamento de Matemática Facultad de Ingeniería Universidad Nacional de Mar del Plata

Departamento de Matemática Facultad de Ingeniería Universidad Nacional de Mar del Plata Dprmo d Mmáic Fculd d Igirí Uivridd Nciol d Mr dl Pl Mmáic Avzd hp:://www3..ffii..mdp.du.r/mvzd mvzd@ffii..mdp.du.r 7 Coido INRODUCCIÓN...3 EMAS DE VARIABLE COMPLEJA...9 ANÁLISIS EN EL DOMINIO REAL EMPORAL;

Más detalles

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN

SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN TEMA Nº SISTEMAS DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN. TEOREMA PRELIMINAR INTRODUCCIÓN.- Sism d cucios dircils lils co icógis d l orm P D P D P D P D P P D D... P... P... P D D D b b b dod ls P

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación E.T.S.I. Idustrils y Tlcomuicció Curso 00-0 Grdos E.T.S.I. Idustrils y Tlcomuicció Asigtur: Cálculo I Tm : Sucsios y Sris Numérics. Sris d Potcis. Ejrcicios propustos Obtr los cutro primros térmios, sí

Más detalles

SISTEMAS DE COMUNICACIONES DIGITALES. POP en Tecnologías Electrónicas y de las Comunicaciones

SISTEMAS DE COMUNICACIONES DIGITALES. POP en Tecnologías Electrónicas y de las Comunicaciones SISMAS D COMUICACIOS DIGIALS O cologí lcróic y d l Comuiccio COMUICACIÓ BADABAS Modulció por mpliud d pulo AM - Sñl AM co muro url: dod w w - pcro AM: W d d W d /, / d COMUICACIÓ BADABAS Modulció por mpliud

Más detalles

Departamento de Matemática Facultad de Ingeniería Universidad Nacional de Mar del Plata

Departamento de Matemática Facultad de Ingeniería Universidad Nacional de Mar del Plata Dprmo d Mmáic Fculd d Igirí Uivridd Nciol d Mr dl Pl Mmáic Avzd hp:://www3..ffii..mdp.du.r/mvzd mvzd@ffii..mdp.du.r 4 Coido INRODUCCIÓN.3 EMAS DE VARIABLE COMPLEJA 8 ANÁLISIS EN EL DOMINIO EMPORAL /REAL

Más detalles

La transformada de Laplace en economía

La transformada de Laplace en economía c d Ecoomí Año 8 Núm 5 L rformd d Lplc coomí écor Lomlí y Briz Rmbo * Smrio E cd vz má frc q coomí ilic écic y méodo mmáico q oriilm riro como rp problm fíico U modoloí q d comúm pr problm d iirí l d l

Más detalles

LA TRANSFORMADA DE LAPLACE

LA TRANSFORMADA DE LAPLACE LA RANSFORMADA DE LAPLACE (pun crio por Dr. Mnul Prgd). INRODUCCIÓN Enr l rnformcion má uul qu oprn con funcion f(x) cumplindo condicion dcud n I[,b, pr obnr or funcion n I, án por jmplo : L oprción D

Más detalles

CAPITULO 6.- LA TRANSFORMADA DE LAPLACE.

CAPITULO 6.- LA TRANSFORMADA DE LAPLACE. PITUO 6.- TRSFORD DE PE. 6. Irocció. 6. rform plc. 6.3 rform plc ilrl. 6.4 Ivrió l rform plc. 6.5 Solció ccio ifrcil co coicio iicil. 6.6 rform plc ilrl. 6.7 álii im mi l rform plc. 6. Irocció. Grlizmo

Más detalles

3.11 Trasformada de Laplace de una función periódica 246

3.11 Trasformada de Laplace de una función periódica 246 3. Trformd d plc d un función priódic 46 3. Trformd d plc d un función priódic Dfinición 3.. Un función f llmd priódic i y olo i, it un númro no nulo f tl qu impr y cundo té n l dominio d f, tmbién lo

Más detalles

FACULTAD DE INGENIERÍA

FACULTAD DE INGENIERÍA FCULD DE INGENIERÍ Uivrdd Nciol uóo d Méico Fculd d Igirí ális d Siss y Sñls Profsor: M.I. Elizh Fosc Chávz SERIE DE FOURIER LUMN: Sáchz Cdillo Vicori GRUPO: 6 SERIE DE FOURIER od sñl priódic s pud prsr

Más detalles

MatemáticasI. 1. Basta con mover el cuadrado para ver que el área de la región limitada es la cuarta parte del cuadrado.

MatemáticasI. 1. Basta con mover el cuadrado para ver que el área de la región limitada es la cuarta parte del cuadrado. MtmáticsI UNIDAD : Límits d fucios. Cotiuidd ACTIVIDADES-PÁG. 76. Podmos dcir lo siguit: ) Pr l gráfic dl prtdo I): f ) tid cudo tid f ) tid + cudo tid por l izquird f ) tid - cudo tid por l drch f ) tid

Más detalles

5.1. LA DERIVADA, DERIVADAS LATERALES. Observación: df sí existe y es finito lim x a

5.1. LA DERIVADA, DERIVADAS LATERALES. Observación: df sí existe y es finito lim x a Divd d ucio u vibl l 5 LA DERIVADA, DERIVADAS LATERALES Diició 5 S : lr lr u ució, Dom, dimo qu divbl d í it y iito lim D D y d Si divbl t tbjo umo l otcio, d d p dci l divd d Ejmplo: Sí lim lim 8 Obvció:

Más detalles

Automá ca. Apéndice:TransformadadeLaplace. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Apéndice:TransformadadeLaplace. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Auomáca Apédic:Tafomadadaplac JoéRamólaaGacía EhGozálzSaabia DámaoFádzPéz CaloToFo MaíaSadaRoblaGómz DpaamodTcologíaElcóica IgiíadSimayAuomáca Apédic: Tafomada d aplac Apédic Tafomada d aplac A.. INTRODUCCIÓN

Más detalles

es divergente. es divergente.

es divergente. es divergente. .- Dtrmir l cráctr d l sri sgú los vlors d = +. Solució: sido = + = Si = = lim = s divrgt. = Si < < lim = s divrgt. = Si = = lim = s divrgt. = Si >, plicdo l critrio d D`Almrt: + ( + ) ( + ) + lim = lim

Más detalles

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; =

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; = CÁLCULO DE LÍMITES Propidds d los límits.- ( b ) b.- ( b ) b.- ( b ) b.- ( b ) b b.- ( ) ( ) 6.- k k b Por otro ldo s importt distiguir l cálculo d límits, los csos idtrmidos d los dtrmidos: Csos dtrmidos:

Más detalles

RESPUESTA TEMPORAL: PULSOS CONFORMADOS (Dominio del tiempo y Dominio de Laplace)

RESPUESTA TEMPORAL: PULSOS CONFORMADOS (Dominio del tiempo y Dominio de Laplace) ádr d Torí d ircio pn d Plo onormdo nrodcción RESPEST TEMPORL: PLSOS ONFORMDOS Dominio dl impo y Dominio d Lplc S mpln con ñl priódic o d orm pcil, l q dcomponn n ncion clón, rmp y dplzmino mporl Dominio

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Torí d istms y ñls Trsprcis: Torm dl Mustro Mustro l domiio rcucil Autor: Dr. Ju Crlos Gómz Mustro d ñls Alógics. Covrsió A/D y D/A L myorí d ls sñls d itrés so d tipo lógico. Pr procsr sts sñls form digitl

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Torí d istms y ñls Trsprcis: Torm dl Mustro Mustro l domiio rcucil Autor: Dr. Ju Crlos Gómz Mustro d ñls Alógics. Covrsió AD y DA L myorí d ls sñls d itrés so d tipo lógico. Pr procsr sts sñls form digitl

Más detalles

dx x x(2 x ) dx C EJERCICIOS UNIDAD IV.- LA INTEGRAL 1.-Verificar las siguientes integrales a) dt C t t dx ax dx x a C

dx x x(2 x ) dx C EJERCICIOS UNIDAD IV.- LA INTEGRAL 1.-Verificar las siguientes integrales a) dt C t t dx ax dx x a C EJERCICIOS UNIDAD IV.- LA INTEGRAL.-Vrificr ls siguis igrls d C k) l) m) ) d C 5/ 5/ / / / ( 5 ) d C 5 5 ( ) d C 5/ / ( ) d C 5 5 d 5l C / ( bd C b dy by C by b ( b) ( b) d C b ( ) ( ) d C ( by ) y( by

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04 SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Uivrsidad d Purto Rico Rcito Uivrsitario d Mayagüz Dpartamto d Cicias Matmáticas Eam III Mat - Cálculo II d abril d 8 Nombr Númro d studiat Scció Profsor Db mostrar todo su trabajo. Rsulva todos los problmas.

Más detalles

ERROR EN ESTADO ESTACIONARIO

ERROR EN ESTADO ESTACIONARIO UNIVESIDAD AUÓNOMA DE NUEVO LEÓN FACULAD DE INGENIEÍA MECÁNICA Y ELÉCICA EO EN ESADO ESACIONAIO INGENIEÍA DE CONOL M.C. ELIZABEH GPE. LAA HDZ. M.C. OSÉ MANUEL OCHA NÚÑEZ UNIVESIDAD AUÓNOMA DE NUEVO LEÓN

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti IES Mdirráno d Málg Solución Junio Jun Crlos lonso Ginoni BLOQUE CUESTIÓN..- Dmusr sin uilir l rgl d Srrus sin dsrrollr dircmn por un il /o column qu.indiqu n cd pso qu propidd (o propidds) d los drminns

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BASICAS DEPARTAMENTO DE MATEMATICAS Y ESTADISTICA GUIA No. 1. ECUACIONES DIFERENCIALES

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BASICAS DEPARTAMENTO DE MATEMATICAS Y ESTADISTICA GUIA No. 1. ECUACIONES DIFERENCIALES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BASICAS DEPARTAMENTO DE MATEMATICAS Y ESTADISTICA GUIA No.. ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES U cució ircil s u cució l qu

Más detalles

ERROR EN ESTADO ESTACIONARIO

ERROR EN ESTADO ESTACIONARIO UNIVESIDAD AUÓNOMA DE NUEVO EÓN FACUAD DE INGENIEÍA MECÁNICA Y EÉCICA EO EN ESADO ESACIONAIO INGENIEÍA DE CONO M.C. EIZABEH GPE. AA HDZ. M.C. OSÉ MANUE OCHA NÚÑEZ UNIVESIDAD AUÓNOMA DE NUEVO EÓN FACUAD

Más detalles

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,... TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto

Más detalles

Sobre la integral de línea en un álgebra de dimensión real 2 que no son los complejos

Sobre la integral de línea en un álgebra de dimensión real 2 que no son los complejos Culcyt// Itgrls Sor l itgrl d lí u álgr d dimsió rl qu o so los compljos Eliflt Lópz Gozlz, Víctor M Crrillo S, Srgio Trrzs Porrs Rsum: Cosidrmos u álgr d Bch A comuttiv uitri d dimsió rl qu o so los úmros

Más detalles

PROBLEMAS RESUELTOS DE SERIES DE FOURIER

PROBLEMAS RESUELTOS DE SERIES DE FOURIER PROBLEMS RESUELOS DE SERIES DE FOURIER Ejemplo. Hlle l represeció e serie rigooméric de Fourier pr l siguiee señl f ( e,, mosrd e l figur. SOLUCION. L señl es f ( e,, y pr ese ejemplo: y ω. Primero clculremos

Más detalles

6. Sistemas de ecuaciones diferenciales lineales. ( Chema Madoz, VEGAP, Madrid 2009)

6. Sistemas de ecuaciones diferenciales lineales. ( Chema Madoz, VEGAP, Madrid 2009) . Sisms d uios difrils lils Chm Mdoz VEGP Mdrid 9 Sisms d uios lils d primr ord Form orml: f d d f d d f d d Supodrmos qu los ofiis i y ls fuios f i so oius u irvlo I. Si ods ls f's so ro dirmos qu l sism

Más detalles

La transformada de LAPLACE de una señal muestreada en el tiempo y su relación con la Transformada Z

La transformada de LAPLACE de una señal muestreada en el tiempo y su relación con la Transformada Z ELECRÓNICA L rormd d LAPLACE d u ñl murd l impo y u rlció co l rormd Z Ocr Py Cbrr* Rum: E u l dci dl álii d l igirí d ñl lo ño 7, pro b qu u udid dd lo ño 5 y qu prdur h uro dí. L rormd Z l orí co l cul

Más detalles

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IE Pdr Povd (Gudi) Mtátics plicds ls CC II Dprtto d Mtátics Bloqu I: Álgr il Profsor: Ró ort Nvrro Uidd : ists d Ecucios ils UNIDD : ITEM DE ECUCIONE INEE DEFINICIONE U sist d cucios lils co icógits s

Más detalles

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x)

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x) INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 9 OCTUBRE

Más detalles

Tema 8. Derivadas. Teoremas de las funciones derivables. Regla de L Hôpital

Tema 8. Derivadas. Teoremas de las funciones derivables. Regla de L Hôpital Mtmátics II (Bcillrto d Cicis) Aálisis: Drivds 8 Tm 8 Drivds Torms d ls fucios drivbls Rgl d L Hôpitl Drivd d u fució u puto Dfiició U fució f () s drivbl l puto f ( ) f ( ) si ist l it: 0 Est it s dot

Más detalles

Respuesta al escalón unitario

Respuesta al escalón unitario Rpua al caló uiario Epcificacio l domiio dl impo La ampliud duració d la rpua raioria db mar dro d lími olrabl dfiido E ima d corol lial la caracrizació dl raiorio comúm raliza uilizado u caló uiario a

Más detalles

PROBLEMAS RESUELTOS DE SERIES DE FOURIER

PROBLEMAS RESUELTOS DE SERIES DE FOURIER PROBLEMS RESUELOS DE SERIES DE FOURIER Ejemplo. Hlle l represeció e serie rigooméric de Fourier pr l siguiee f, mosrd e l figur. señl () e, SOLUCION. L señl es f () e,, y pr ese ejemplo: y ω. Primero clculremos

Más detalles

Geodesia Matemática.

Geodesia Matemática. Godsi Mtátic Sist d coordds crtsis Sist crtsio triplt ortogol vctors uitrios ls dirccios d los js coorddos O r r r r Distci tr dos putos Trsforcios lils tr sists crtsios X Y Z Trslció c b Giro lrddor dl

Más detalles

= 9 3 x (fig. 2.9.), se nota que para obligar a (9

= 9 3 x (fig. 2.9.), se nota que para obligar a (9 .. EJERCICIOS RESUELTOS... Sobre límies de ucioes:. Usdo l deiició de límie de u ució, pruébese que: (9 6 Solució: Se u úmero poivo culquier ddo. Se debe llr u δ > l que: 5 δ 9 6 ( ( ( Pr ello codérese

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen.

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen. Uivrsidad d Costa Rica Istituto Tcológico d Costa Rica Tma: Itgrals impropias. Objtivos: Clasificar las itgrals impropias sgú su spci: primra, sguda o trcra spci. Calcular itgrals impropias utilizado su

Más detalles

TEMA 5: LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS

TEMA 5: LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS Dpartamto d Matmáticas. IE.S. Ciudad d Arjoa º Bach Socials. LÍMITES Propidads: TEMA : LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS. LÍMITES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES. RESOLUCIÓN DE INDETERMINACIONES.

Más detalles

Matemáticas II TEMA 8 Derivadas. Teoremas de las funciones derivables. Regla de L Hôpital

Matemáticas II TEMA 8 Derivadas. Teoremas de las funciones derivables. Regla de L Hôpital Aálisis Drivds Mtmátics II TEMA 8 Drivds Torms d ls fucios drivbls Rgl d L Hôpitl Drivd d u fució u puto Dfiició U fució f () s drivbl l puto f ( ) f ( ) si ist l límit: lím 0 Est límit s dot por f (),

Más detalles

EJERCICIOS PROPUESTOS. rectángulos obtenidos tomando como base la longitud de cada subintervalo y como altura la ordenada del extremo derecho.

EJERCICIOS PROPUESTOS. rectángulos obtenidos tomando como base la longitud de cada subintervalo y como altura la ordenada del extremo derecho. 6 Igrl dfiid Ejrcicio rsulo EJERCICIOS PROPUESTOS Obé, co l méodo viso, l ár dl rpcio limido por l rc y +, l j X y ls vricls y Clcul l ár goméricm y compr los rsuldos S divid l irvlo [, ] subirvlos, cd

Más detalles

. En tal caso f se llama suma de la serie y se denota por S. Así mismo diremos que f n converge a f.

. En tal caso f se llama suma de la serie y se denota por S. Así mismo diremos que f n converge a f. B. Covergeci de series de fucioes: DEFINICION 9. Se f :[,b] IR u sucesió de fucioes. U serie de fucioes es u pr de sucesioes f y s cuyos térmios está relciodos por: i) s ( ) = f( ) i (sums prciles) ii)

Más detalles

Problemas Tema 2: Sistemas

Problemas Tema 2: Sistemas SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x

Más detalles

1.2 INTEGRACION, DIFERENCIACIÓN DE FUNCIONES Y EXPANSIONES EN SERIES. (1.2_CvR_T_062, Revisión: , C2, C3, C4)

1.2 INTEGRACION, DIFERENCIACIÓN DE FUNCIONES Y EXPANSIONES EN SERIES. (1.2_CvR_T_062, Revisión: , C2, C3, C4) . INTEGRACION, DIFERENCIACIÓN DE FUNCIONES Y EXPANSIONES EN SERIES. (._CvR_T_06, Rvisió: 5-0-06, C, C3, C4).. DERIVADA DE UNA FUNCIÓN. Dfiició: f f ( ) f ( ) lim, si l límit ist. 0 Notció: f ', f ( ) E.g.:

Más detalles

Supertriangular Subtriangular Diagonal Unidad

Supertriangular Subtriangular Diagonal Unidad MT. EMPRESRILES TE RESOLVEMOS LS PRIMERS DUDS L eorí de mrices es l que v porr l form operiv de resolver u iumerle cidd de ejercicios de Álger. Por odo lo que supoe eso, os vmos proporcior los coocimieos

Más detalles

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IES Pdr Povd (Gudi) Mtátics II Dprtto d Mtátics Bloqu II: Álgr il Profsor: Ró ort Nvrro Uidd : Sists d Ecucios ils UNIDD SISTEMS DE ECUCIONES INEES DEFINICIONES U sist d cucios lils co icógits s u prsió

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León IES diáo d álg Jio J Clo loo Gioi P d cco l Uividd d Cill Ló TEÁTICS II To p lo lmo Nº pági INDICCIONES:.- OPTTIVIDD: El lmo dá cog d l do opcio pdido doll lo co jcicio l od q d..- CLCULDOR.- S pmiiá l

Más detalles

TEMA 4: TÉCNICAS DE INTEGRACIÓN

TEMA 4: TÉCNICAS DE INTEGRACIÓN loso Frádz Gliá TEM : TÉNIS DE INTEGRIÓN L igrció s l procso corrio l drivció. sí, igrr l fció f cosis corr ls fcios F ls q F f.. PRIMITIVS E INTEGRLES Dd fció f, dcimos q l fció F s primiiv d l fció f

Más detalles

3.3. Observar que el punto de acumulación de A no necesariamente pertenece a A.

3.3. Observar que el punto de acumulación de A no necesariamente pertenece a A. Escribirmos: f( L ε > δ > / Dom(f, < - < δ f( - L < ε Límit d fucios u vribl rl Lo cuál dic pr qu f( dist dl vlor L u úmro rbitrrimt uño ddo ε dbmos tr qu sté t crc d u rdio mor qu δ. Gométricmt: y L ε

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién

Más detalles

MATEMÁTICA D y D 1 Módulo II: Transformada de Laplace

MATEMÁTICA D y D 1 Módulo II: Transformada de Laplace Mmáic D y D MATEMÁTICA D y D : Trnformd d Lplc úåú Mg. Mrí Iné Brgi Trnformd d Lplc S f() un función d vribl rl dfinid pr

Más detalles

7ma Guía de Estudio 2do Parcial Estudio de Series de Potencia SOLUCIONARIO Guía Complementaria No.07

7ma Guía de Estudio 2do Parcial Estudio de Series de Potencia SOLUCIONARIO Guía Complementaria No.07 álculo tgrl (MAT, Scc.67 r Trimstr, do Smstr doprcil 7mGuíEstudio Documto lordo : M.Sc. g. Julio ésr Lóz Zró H6 7m Guí d Estudio do Prcil Estudio d Sris d Potci SOLUONAO Guí omlmtri No.7 omtrios Grls Ést

Más detalles

5 ECUACIONES DIFERENCIALES ORDINARIAS DE ORDEN N

5 ECUACIONES DIFERENCIALES ORDINARIAS DE ORDEN N DINÁMI Y ONTROL DE PROESOS 5 EUIONES DIFERENILES ORDINRIS DE ORDEN N Si ier err e u efoque memáico del em, recordemos que muchos de uesros sisems (y priculrmee odos los que vrí e el iempo) se epresrá como

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,

Más detalles

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D

6.3 Existencia de TL C1 s 1 2 D. 2 s 1 D 6.3 Exincia d TL 355 p Ejmplo 6..8 Calcular L. p L L n o C C p p : Podmo aplicar, nonc, la fórmula para lo xponn r ngaivo qu cumplan < r

Más detalles

Matemáticas II Hoja 2: Matrices

Matemáticas II Hoja 2: Matrices Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)

Más detalles

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma

Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma Aálisis d Sñals Capíulo III: Trasormada d Fourir discra Prosor: ésor Bcrra Yoma 3. Torma dl Musro Gra dsarrollo d la compuació > digializació d sñals mdia musro, posrior rcosrucció d la sñal Codició csaria

Más detalles

b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo

b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo Modelo. Ejecicio. lificció máim puos Siedo que el vlo del deemie es igul clcul el vlo de los deemies: ) ( puo) ) ( puo). dos co comú e colum duo co comú e colum * * l iecmi l posició de dos líes (fils

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

LECCIÓN 5 PORTADORES FUERA DE EQUILIBRIO: DIFUSIÓN Y RECOMBINACIÓN

LECCIÓN 5 PORTADORES FUERA DE EQUILIBRIO: DIFUSIÓN Y RECOMBINACIÓN LCCIÓ 5 PORAORS FURA QUILIBRIO: IFUSIÓ Y RCOMBIACIÓ GRACIÓ Y RCOMBIACIÓ PORAORS l lccio io o ho liido udi l oidd d lo odo quilibio éico. lcció bodo l udio d l oidd d lo odo fu d quilibio, qu o d g ioci

Más detalles

6. Sistemas de ecuaciones diferenciales lineales. ( Chema Madoz, VEGAP, Madrid 2009)

6. Sistemas de ecuaciones diferenciales lineales. ( Chema Madoz, VEGAP, Madrid 2009) 6. Sisms d uios difrils lils Chm Mdoz, VEGAP, Mdrid 9 Sisms d uios lils d primr ord Form orml: f d d f d d f d d Supodrmos qu los ofiis ij y ls fuios f i so oius u irvlo I. Si ods ls f's so ro dirmos qu

Más detalles

Cálculo diferencial integral en una variable Facultad de Ingeniería - IMERL Segundo semestre Práctico Semana xm (1 x) n dx = 1

Cálculo diferencial integral en una variable Facultad de Ingeniería - IMERL Segundo semestre Práctico Semana xm (1 x) n dx = 1 Uiversidd de l Repúblic Cálculo diferecil itegrl e u vrible Fcultd de Igeierí - IMERL Segudo seestre 8 Práctico Se 6. Cbio de vrible liel. Se f : R R u fució itegrble y,b R tl que < b. Probr que: Pr todo

Más detalles

n o ó i Mi nombre: Mi numero de orden: Cuadernillo 1 periodo II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR LA MEJORA DE LOS APRENDIZAJES

n o ó i Mi nombre: Mi numero de orden: Cuadernillo 1 periodo II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR LA MEJORA DE LOS APRENDIZAJES l bim cm CACIÓN EDU bim cm DOS TO C u m ó i c c i d r t m m i trá d D qu d r p d i, r u q rd p l rd m p d T d 2 d u g S g prid Mi mbr: Cudrill 1 Mi umr d rd: II MOMENTO DE LA MOVILIZACIÓN NACIONAL POR

Más detalles

MATEMÁTICAS II TEMA 1 Matrices: Problemas propuestos

MATEMÁTICAS II TEMA 1 Matrices: Problemas propuestos Álger: Mrices wwwmemicsjmmmcom José Mrí Mríez Medio MTEMÁTIS II TEM Mrices: Prolems propuesos Opercioes co mrices Dds 7, 9 y, hll dos úmeros y pr que se verifique que Dds ls mrices y, hll ors dos mrices

Más detalles

Transformada de Laplace

Transformada de Laplace Traformada d Laplac Traformada d Laplac Dada ua fució d variabl cotiua f, u traformada bilatral d Laplac dfi como: t [ f ] f dt L dod ua variabl complja, σ iω Para qu ta itgral covrja, dcir, para qu ita

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán. Intrprtción ométric d

Más detalles

Práctico 10 - Integrales impropias y Series. 1. Integrales impropias

Práctico 10 - Integrales impropias y Series. 1. Integrales impropias Uiversidd de l Repúblic Cálculo Fcultd de Igeierí - IMERL Segudo semestre 6 Práctico - Itegrles impropis y Series. Itegrles impropis. Se f : [,) R u fució cotiu tl que f (t) y defiimos F() = f (t)dt. Demostrr

Más detalles

Ejemplo de convolución

Ejemplo de convolución Capíulo : Rviió lo uamo x( y( Mamáico Sñal y ima Covolució: coíua icra [x(] y x * g x( g( x( g( D g( X( G( Y(X(*G(X(G( [(] - [Y(] raormaa ourir aplac [(] - [(] - [(] Domiio mporal Domiio complo Domiio

Más detalles

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 3. SUCESIONES Y SERIES. Sucesiones de números reales: monotonía, acotación y convergencia.

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 3. SUCESIONES Y SERIES. Sucesiones de números reales: monotonía, acotación y convergencia. Muel José Ferádez, mjfg@uiovi.es CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE. - TEMA. SUCESIONES Y SERIES.: Sucesioes umérics. Sucesioes de úmeros reles: mootoí, cotció y covergeci. Se llm sucesió de

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesió de fucioes cotius (6.1.017) Propiedd: Se {f } u sucesió de fucioes f, defiids e I. Si {f } coverge uiformemete f e I y ls f so cotius e I, etoces f es cotiu e I. Demostrció: Hemos de probr

Más detalles

Se llama tasa de variación media (T.V.M.) de una función y = f(x) en un intervalo a. T.V.M. a,b =

Se llama tasa de variación media (T.V.M.) de una función y = f(x) en un intervalo a. T.V.M. a,b = TEMA 7: DERIVADAS 7. Concpto d drivd. Función drivd. 7. Rgls d drivción. 7. CONCEPTO DE DERIVADA. FUNCIÓN DERIVADA. Est concpto mtmático no sólo nos prstrá un yud primordil n l rprsntción d funcions y

Más detalles

Vc D 40 N = N = RPM N = 130 RPM. = 0,3(130) a m = 39 mm/min. = = = 2 n = 2 pasadas 2p 2(3)

Vc D 40 N = N = RPM N = 130 RPM. = 0,3(130) a m = 39 mm/min. = = = 2 n = 2 pasadas 2p 2(3) TORNOS TIEMPOS DE MAQUINADO PROBLEMAS SOBRE TIEMPOS DE MECANIZADO EN EL TORNEADO ) Se dese cilidrr u iez de 00 00 de logiud (ver figur), r dejrl 88 ilíeros de diáero. L 00 Uilizdo u oro cuy g de velociddes

Más detalles

2. MÉTODO DE COEFICIENTES INDETERMINADOS.

2. MÉTODO DE COEFICIENTES INDETERMINADOS. . MÉTODO DE COEFICIENTES INDETERMINADOS. E un étodo r hllr un olución rticulr d l cución linl colt [], u conit fundntlnt n intuir l for d un olución rticulr. No udn dr rgl n l co d cucion linl con coficint

Más detalles

Introducción: conceptos básicos 1) Respuesta temporal depende de:

Introducción: conceptos básicos 1) Respuesta temporal depende de: Tm 5. R morl d im CLI. Irodcció. Coco báico. Sñl d yo 3. Cálclo d l r morl rir d l f.d.. Sim d r ord. R morl. Prámro crcríico: gci, co d imo, imo d mio 3. Sim d do ord. R morl. Tio d r fció dl morigmio.

Más detalles

UNA RELA C I ON QUE CARACTER IZA D I VERSOS ESPAC I OS D E CONVEXI DAD

UNA RELA C I ON QUE CARACTER IZA D I VERSOS ESPAC I OS D E CONVEXI DAD 37 Rvist d Uió tmátic rgti oum 3 9, 9 9 5. UN RL ON QU RTR Z RO P O ON Ju B TR T. co currt s gm t s t p s d v o t d " í gm t coví t prop r t í s to thí s th r prop r t i s r t í o. c t r rsu t s c s, (

Más detalles

Pagina inicial de Solicitud de Registro de Marcas, A la cual podrá acceder desde

Pagina inicial de Solicitud de Registro de Marcas, A la cual podrá acceder desde Ci 1. Iii...2 2. Mú piipl...4. Cii U...4 b. Cá...4. Rgí...5 3. Olvi ñ...7 4. A l Sim...9. Opi Mú,...10 i. D Uui...10 ii. Gió Sliiu...11 iii. Pñ Slii...12 iv. Pñ M...15 v. Pñ Pii / Ié Rl,...17 vi. Pñ Aju

Más detalles

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: Drivds: Torí jrcicios Bcillrto DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán.

Más detalles