1. Consecuencias de la inclusión de variables irrelevantes en el modelo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Consecuencias de la inclusión de variables irrelevantes en el modelo"

Transcripción

1 Tma 7: spcificació d la cació: Problmas, cotrasts, métodos d slcció d variabls y lcció d forma fcioal. Cosccias d la iclsió d variabls irrlvats l modlo. Cosccias d la omisió d variabls rlvats l modlo 3. étodos d slcció d rgrsors 4. l cotrast d spcificació RST d Ramsy Tma 7

2 Tma 7.: Cosccias d la iclsió d variabls irrlvats l modlo Spogamos q l modlo vrdadro s: Pro l modlo q stimamos icorrctamt s: Por tato l stimador s: Tma 7

3 Tma 7 3 Tma 7.: Cosccias d la iclsió d variabls irrlvats l modlo? [ ] [ ] [ ] [ ] SSGADOS

4 Tma 7.: Cosccias d la iclsió d variabls irrlvats l modlo [ ] - odlo Vrdadro odlo stimado Tma 7 4

5 Tma 7 5? [ ] [ ] 0 I Tma 7.: Cosccias d la iclsió d variabls irrlvats l modlo

6 Tma 7 6 [ ] 0 0 I INSSGADOS σ σ σ Tma 7.: Cosccias d la iclsió d variabls irrlvats l modlo

7 Tma 7.: Cosccias d la iclsió d variabls irrlvats l modlo Hasta ahora, la iclsió d variabls irrlvats o ha tido igú cost, si mbargo si lo ti. Al añadir vas variabls, tato rlvats como irrlvats, s dismiirá la prcisió d la stimació d los coficits rlvats Var σ Para modlo stimado co variabls irrlvats qda Var σ Var < Var Tma 7 7

8 Tma 7: spcificació d la cació: Problmas, cotrasts, métodos d slcció d variabls y lcció d forma fcioal. Cosccias d la iclsió d variabls irrlvats l modlo. Cosccias d la omisió d variabls rlvats l modlo 3. étodos d slcció d rgrsors 4. l cotrast d spcificació RST d Ramsy Tma 7 8

9 Tma 7.: Cosccias d la omisió d variabls rlvats l modlo odlo Vrdadro odlo stimado [ ] [ ]? Tma 7 9

10 Tma 7 0 Tma 7.: Cosccias d la omisió d variabls rlvats l modlo

11 Tma 7 La stimació srá ssgada, sto s: Si s cmpl q: y so ortogoals icorrlacioadas 0 Las variabls clidas so o sigificativas [ ] Tma 7.: Cosccias d la omisió d variabls rlvats l modlo [ ] [ ]

12 Tma 7 La stimació d la variaza d la prtrbació: Tma 7.: Cosccias d la omisió d variabls rlvats l modlo [ ] [ ] [ ] [ ] 0 dado q :

13 Tma 7 3 Tido cta q l stimador d la variaza d la prtrbació s la variaza dl rror, s st issgado? Tma 7.: Cosccias d la omisió d variabls rlvats l modlo [ ] σ tr

14 Tma 7 4 Tma 7.: Cosccias d la omisió d variabls rlvats l modlo S σ σ σ σ SSGADO

15 Tma 7: spcificació d la cació: Problmas, cotrasts, métodos d slcció d variabls y lcció d forma fcioal. Cosccias d la iclsió d variabls irrlvats l modlo. Cosccias d la omisió d variabls rlvats l modlo 3. étodos d slcció d rgrsors 4. l cotrast d spcificació RST d Ramsy Tma 7 5

16 Tma 7.4: l cotrast d spcificació RST d Ramsy odlo Vrdadro odlo stimado 3 Caso asimilabl a la omisió d variabls rlvats: stimadors ssgados icosistts [ ] [ ]? Tma 7 6

17 Tma 7 7 Tma 7.4: l cotrast d spcificació RST d Ramsy Obtido la prsió dl stimador d térmios dl modlo ctrado o modlo dsviacios, os qda: y Solo srá issgado cado la Distribció mstral d sa simétrica

18 Tma 7.4: l cotrast d spcificació RST d Ramsy stimamos la cació: r Obtmos los valors stimados para, y obtmos a va rgrsió itrodcido los valors stimados alga forma o lial, por jmplo: Tma 7 8

19 Tma 7.4: l cotrast d spcificació RST d Ramsy Si solo iclímos a variabl, l cotrast s raliza a través d cotrast d sigificació idividal sobr s parámtro. Si itrodcimos más d a variabl, sría cotrast sobr sbcojto d parámtros, como s vio l tma 3, sto s: r m ~ Fm, Tma 7 9

ESTIMADOR DE AITKEN Y PROPIEDADES DEL MISMO (Última revisión: 1 de marzo de 2007)

ESTIMADOR DE AITKEN Y PROPIEDADES DEL MISMO (Última revisión: 1 de marzo de 2007) Apts d clas d coomtría II / 6 STIMADOR D AITKN Y ROIDADS DL MISMO Última rvisió: d marzo d 7 rof. Rafal d Arc rafal.darc@am.s stimació d los parámtros dl MBRL por máxima vrosimilitd Apoádoos la hipótsis

Más detalles

PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal)

PROBLEMAS TEMA 4 EJERCICIO 1 (Ej 9.15 de Fernández Abascal) PROLMAS TMA JRCICIO j 9.5 d Frádz Abascal La cotizació olsa d u cirto título s cosidra ua variabl alatoria ormalmt distribuida co arámtros dscoocidos, ro s diso d la siguit iformació: a ist u,5% d robabilidad

Más detalles

2. Utilizando el método adimensional basado en el factor de calidad Q, determine:

2. Utilizando el método adimensional basado en el factor de calidad Q, determine: Uivrsidad Simó Bolívar Dpartamto d Covrsió y Trasport d Ergía Autor: Eduardo Albaz. Cart: 06-391 Profsor: J. M. Allr Máquias Eléctricas II CT-311 U motor d iducció coxió strlla d 100 kw, 416 V, rdimito

Más detalles

El error con ese presupuesto será aproximadamente del 3,1% Ejercicio 8.2

El error con ese presupuesto será aproximadamente del 3,1% Ejercicio 8.2 EJERCICIO 8.1 U ivstigador dispo d 0.000 para ralizar las trvistas d ua custa ua gra ciudad. El custioario s admiistrará mdiat trvistas tlfóicas, sido l cost d cada trvista d 0. Qué marg d rror dbrá asumir

Más detalles

APUNTES DE CLASE ECONOMETRÍA I UDI ECONOMETRÍA E INFORMÁTICA. Y = Xβ + U, donde los parámetros se han

APUNTES DE CLASE ECONOMETRÍA I UDI ECONOMETRÍA E INFORMÁTICA. Y = Xβ + U, donde los parámetros se han APNTS D CLAS CONOMTRÍA I DI CONOMTRÍA INFORMÁTICA Prof. Rafal d Arc Rafal.darc@uam.s "CONTRAST DL PRDICTOR" o INTRVALO D CONFIANZA D LA PRDICCIÓN PNTAL N L MBRL a d las mdidas d bodad a posriori más frcum

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas Uivrsidad d Purto Rico Rcito Uivrsitario d Mayagüz Dpartamto d Cicias Matmáticas Eam III Mat - Cálculo II d abril d 8 Nombr Númro d studiat Scció Profsor Db mostrar todo su trabajo. Rsulva todos los problmas.

Más detalles

1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:

1.- a) Hallar a y b para que la siguiente función sea continua en x = 1: .- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim

Más detalles

Solución a la práctica 6 con Eviews

Solución a la práctica 6 con Eviews Solución a la práctica 6 con Eviws El siguint modlo d rgrsión rlaciona la nota mdia qu obtinn los alumnos n matmáticas (nota) n un cntro, con l númro d profsors disponibls n l cntro (profsors), l porcntaj

Más detalles

ESTIMADORES DE LA VARIANZA DE LAS PERTURBACIONES ALEATORIAS EN EL MBRL

ESTIMADORES DE LA VARIANZA DE LAS PERTURBACIONES ALEATORIAS EN EL MBRL Apts d Clas d cootría Prof Rafal d Arc STMADORS D LA VARANZA D LAS PRTURBACONS ALATORAS N L MBRL rafaldarc@as Ua vz ddcda a fórla para la stacó para la dtracó d los parátros dl odlo, a través d los MCO

Más detalles

CONCEPTOS BÁSICOS SOBRE LA AUTOCORRELACIÓN EN EL MODELO BÁSICO DE REGRESIÓN LINEAL

CONCEPTOS BÁSICOS SOBRE LA AUTOCORRELACIÓN EN EL MODELO BÁSICO DE REGRESIÓN LINEAL CONCPTOS BÁSICOS SOBR LA ATOCORRLACIÓN N L MODLO BÁSICO D RGRSIÓN LINAL Ramó Mahía Dpo. d coomía Aplicada ivrsidad Aóoma d Madrid ramo.mahia@am.s Marzo Rfrcias básicas ilizadas para la laboració d s xo:

Más detalles

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin

Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,

Más detalles

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.

a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r. (Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

TEMA 2 MODELO DE REGRESIÓN LINEAL SIMPLE

TEMA 2 MODELO DE REGRESIÓN LINEAL SIMPLE TEMA MODELO DE REGRESIÓN LINEAL SIMPLE. INTRODUCCIÓN A LA REGRESIÓN SIMPLE! 4 Supogamos qu la varal s ua fucó lal d otra varal, dod la rlacó tr y dpd d parámtros! y! dscoocdos. Itroduccó a la Rgrsó Smpl!

Más detalles

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 1

MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O 1 MATEMÁTICA AVANZADA TRABAJO PRÁCTICO N O Fcios aalíticas Dmostrar q s aalítica todo l plao complo Z. Siglaridads d a ció Estdiar las siglaridads d las sigits cios calclado límit: a b c 9 cos d 7 Trasormació

Más detalles

OBTENCIÓN DE LA MATRIZ DE VARIANZAS Y COVARIANZAS A TRAVÉS DE LOS PRODUCTOS KRONECKER PARA MODELOS BALANCEADOS

OBTENCIÓN DE LA MATRIZ DE VARIANZAS Y COVARIANZAS A TRAVÉS DE LOS PRODUCTOS KRONECKER PARA MODELOS BALANCEADOS UNVERSS SCENRUM Rvista d la Facultad d Cicias ulio-dicimbr d PONFC UNVERSDD VERN Vol. 8, 9- OBENCÓN DE L MRZ DE VRNZS Y COVRNZS RVÉS DE LOS PRODUCOS RONECER PR MODELOS BLNCEDOS Luz Maria Moa Moa Facultad

Más detalles

COLEGIO DE POSTGRADUADOS

COLEGIO DE POSTGRADUADOS COLEGIO DE POSTGRADUADOS INSTITUCIÓN DE ENSEÑANZA E INVESTIGACIÓN EN CIENCIAS AGRÍCOLAS CAMPUS MONTECILLO SOCIOECONOMÍA, ESTADÍSTICA E INFORMÁTICA ESTADÍSTICA PRUEBAS DE BONDAD DE AJUSTE Y DE RAZÓN DE

Más detalles

NOTAS DE CLASE ECONOMETRÍA I UDI ECONOMETRÍA E INFORMÁTICA

NOTAS DE CLASE ECONOMETRÍA I UDI ECONOMETRÍA E INFORMÁTICA MDIDAS D BONDAD A POSTRIORI CONTRAST D JANS NOTAS D CLAS CONOMTRÍA I DI CONOMTRÍA INFORMÁTICA Prof. Rafal d Arc rafal.darc@uam.s Rvisado dicimbr 8 CONTRAST DL PRDICTOR" o INTRVALO D CONFIANZA D LA PRDICCIÓN

Más detalles

1 Realizar los ejercicios resueltos números 1 y 2 del tema 3 de Integración de. 2 Terminar los ejercicios de la práctica realizada este día.

1 Realizar los ejercicios resueltos números 1 y 2 del tema 3 de Integración de. 2 Terminar los ejercicios de la práctica realizada este día. Est documto coti las actividads o prscials propustas al trmiar la clas dl día qu s idica. S sobrtid qu tambié s db ralizar l studio d lo plicado clas auqu o s icluya sa tara st documto. Clas 5 d ovimbr

Más detalles

TEMA 4: CONTRASTE DE HIPOTESIS

TEMA 4: CONTRASTE DE HIPOTESIS ESTADÍSTICA, CURSO 2008 2009 TEMA 4: CONTRASTE DE HIPOTESIS HIPOTESIS ESTADISTICAS ENSAYOS DE HIPOTESIS Cocepto de hipótesis estadística Esayos de hipótesis Hipótesis ula (H 0 ) y alterativa (H ) Diferecias

Más detalles

( ) 1. Halla el dominio de continuidad y clasifica las discontinuidades de las siguientess funciones: x 1. x 4. = x 2. = x. b) f ( x) x 4x.

( ) 1. Halla el dominio de continuidad y clasifica las discontinuidades de las siguientess funciones: x 1. x 4. = x 2. = x. b) f ( x) x 4x. º Bacillrato d CCNN. Halla l dominio d continuidad y claica las discontinuidads d las guintss uncions: a b c ln d g i j 7 k l 8 m 6 n 6 o p q r s t u v w y z ln. Halla l dominio d continuidad y claica

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,

Más detalles

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim

SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA : Problma Nº 5.3 Opphim Obsrv l siguit sistma: Dtrmi y() Solució: El traycto d arriba produc, al multiplicar por Cos(/), traslació dl spctro

Más detalles

TEMA 3: ESTIMACIÓN PUNTUAL.

TEMA 3: ESTIMACIÓN PUNTUAL. TEMA 3: ESTIMACIÓN PUNTUAL..- S tra ua mustra por m.a.s. d tamaño d ua poblacó qu sgu l modlo d Posso. Obtr l stmador por l método d los momtos y l stmador por l método d máma vrosmltud. Solucó: El método

Más detalles

Definición: valores están relacionados en momentos diferentes en el tiempo. Un valor positivo (o negativo) de u

Definición: valores están relacionados en momentos diferentes en el tiempo. Un valor positivo (o negativo) de u 7 Aocorrlació Dfiició casas d aocorrlació Dfiició: valors sá rlacioados momos difrs l impo. U valor posiivo o gaivo d gra a scsió d valors posiivos o gaivos. Eso s aocorrlació posiiva. Aocorrlació ambié

Más detalles

Implementación de un Regulador PID

Implementación de un Regulador PID Tma 3 Implmntación d un Rgulador PID Gijón - Marzo 22 .4 Accions d Control Clásicas.2 x(t).8.6 x(t) (t) _ P I D 2 3 u(t) Sistma.4.8.6.4.2-5 5 5 2 25 3 (t) -.2 -.4-5 5 5 2 25 3 2.8 - Proporcional ( t) =

Más detalles

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R

Capítulo 3. El modelo de regresión múltiple. Jorge Feregrino Feregrino. Econometría Aplicada Utilizando R Capítulo 3. El modelo de regresió múltiple. Jorge Feregrio Feregrio Idetificació del modelo La idetificació del objeto de ivestigació permitirá realizar ua búsqueda exhaustiva de los datos para llevar

Más detalles

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre: INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La

Más detalles

ESTADÍSTICA. n i Se pide:

ESTADÍSTICA. n i Se pide: ESTDÍSTIC Tercera Prueba de Evaluació cotiua 1 de diciembre de 16 1.- l calcular cico veces la distacia etre dos putos, obteemos los siguietes valores: 17,13m; 17,1m; 17,m; 17,65m; 17,4 a) Itervalo de

Más detalles

4.1 Procedimientos de inferencia para la distribución exponencial

4.1 Procedimientos de inferencia para la distribución exponencial 4 Ifrca paramétrca 4 Procdmtos d frca para la dstrbucó xpocal La dstrbucó xpocal fu la prmra dstrbucó para modlar tmpos d falla y para lla s ha dsarrollado métodos stadístcos d mara xtsva a T ua va xpocal

Más detalles

DECAIMIENTO RADIOACTIVO

DECAIMIENTO RADIOACTIVO DECIMIETO RDIOCTIVO El dcaimito radioactivo s idpdit dl modo d dcaimito, y s aplica a todos llos: α,β +, β -, CE (captura lctróica), γ, y fisió spotáa. Postulados: LEY DE DESITEGRCIO RDIOCTIV. La probabilidad

Más detalles

TEMA 5: REGRESION LINEAL

TEMA 5: REGRESION LINEAL ESTADÍSTICA, CURSO 008 009 TEMA 5: REGRESION LINEAL REGRESION LINEAL SIMPLE. CORRELACION. REGRESION.. Regresió lieal simple Recta de regresió: y a + b.. Ajuste de ua recta de regresió Método de míimos

Más detalles

Política Fiscal. Gobiernos de coalición o de intereses geográficos dispersos

Política Fiscal. Gobiernos de coalición o de intereses geográficos dispersos Política Fiscal Goiros d coalició o d itrss oráficos disrsos Goiros d coalició o d itrss oráficos disrsos Escario olítico dod l oiro stá comusto or dos artidos coalició:. Partidos ti rfrcias distitas sor

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS

CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS Capítlo 17. Drivada d las Fcios Epocial, Logarítmica. CAPITULO 17 FUNCIONES EXPONENCIALES Y LOGARITMICAS Ejrcicio. Dibja la gráfica d la fció =, para sto lla la sigit tabla: 0 1 3 4-1 - -3-4 Vamos l sigit

Más detalles

SUCESIONES. El límite de una potencia es igual al límite de la base elevado al límite del exponente.

SUCESIONES. El límite de una potencia es igual al límite de la base elevado al límite del exponente. SUCESIONES 1. El it d l sucsió d térmio grl A) B) 1 C) 0 + 1 3 + + 3 vl: (Covoctori juio 001. Exm tipo G) El it d u potci s igul l it d l bs lvdo l it dl xpot. + 1 1 Límit d l bs: 3 + 3 Límit dl xpot:

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA Uivrsidad Católica Adrés Bllo UIVERSIDAD CATOLICA ADRES BELLO Urb. Motalbá La Vga Apartado 068 Tléfoo: 47-448 Fa: 47-3043 Caracas, 0 - Vzula Facultad d Igiría Escula d Igiría Iformática -----------------------

Más detalles

Capı tulo 5. DISTRIBUCIONES EN EL MUESTREO

Capı tulo 5. DISTRIBUCIONES EN EL MUESTREO Capı tuo 5. DISTRIBUCIONES EN EL UESTREO E os capítuos atriors s stabció qu pricipa matria d procso d ivstigació coométrica so os datos y qu, para obtros, ivstigador db patar ua taba d datos d uidads d

Más detalles

1.- Contraste de combinaciones lineales entre parámetros 1.1 Caso General

1.- Contraste de combinaciones lineales entre parámetros 1.1 Caso General Tma 3: l modlo Básco d grsó Lal Múlpl II.- Coras d combacos lals r parámros. Caso Gral. Coras d sgfcacó global.3 Sbcojo d parámros.4 Coras d sgfcacó dvdal. smacó por rvalo d cofaza.- Prdccó mímo cadráca

Más detalles

8 Límites de sucesiones y de funciones

8 Límites de sucesiones y de funciones Solucioario 8 Límits d sucsios y d ucios ACTIVIDADES INICIALES 8.I. Calcula l térmio gral, l térmio qu ocupa l octavo lugar y la suma d los ocho primros térmios para las sucsios siguits., 6,,,..., 6, 8,,...,,,,...

Más detalles

UNED Tudela Psicometría. Tema 4 Esquema tema 4

UNED Tudela Psicometría. Tema 4 Esquema tema 4 Esquma tma 4 1.- Orintacions didácticas: Tmas antriors: construcción dl tst Tmas 4 al 8: Evaluación d la calidad d la pruba piloto basándos n las rspustas d los sutos: Fiabilidad, validz y calidad d los

Más detalles

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros

2.8.3 Solución de las ecuaciones diferenciales lineales no homogéneas por el método de variación de parámetros .8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros 59.8.3 Solució d las cuacios difrcials lials o hoogéas por l étodo d variació d parátros Variació d parátros U procdiito

Más detalles

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS

TEMA 2 SUCESIONES. Tema 2 Sucesiones Matemáticas I 1º Bach. 1 SUCESIONES Y TÉRMINOS Tma Sucsios Matmáticas I º Bach. TEMA SUCESIONES SUCESIONES Y TÉRMINOS EJERCICIO : Si l térmio gral d ua sucsió s a 0 Halla l térmio sgudo y l décimo. b) Hay algú térmio qu valga? Si hay dcir qu lugar

Más detalles

T5. Contrastes para los parámetros de una población Normal

T5. Contrastes para los parámetros de una población Normal Estadística :: T5. Cotrastes para los parámetros de ua població Normal Estadística T5. Cotrastes para los parámetros de ua població Normal Departameto de Ciecias del Mar y Biología Aplicada Estadística

Más detalles

TEMA 1: CALCULO DIRECTO DE LÍMITES

TEMA 1: CALCULO DIRECTO DE LÍMITES INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Rsolució Nº 88 d ovimbr.8/ ScrtariaD Educació Distrital REGISTRO DANE Nº-99 Tléfoo Barrio Bastidas Sata Marta DEPARTAMENTO DE MATEMATICAS ACTIVIDAD ESPECIAL

Más detalles

ANÁLISIS DE VARIABLES CATEGÓRICAS MEDIANTE EL PROCEDIMIENTO CATMOD DE SAS : APLICACIÓN A DATOS DE CRUZAMIENTO INDUSTRIAL EN BOVINO

ANÁLISIS DE VARIABLES CATEGÓRICAS MEDIANTE EL PROCEDIMIENTO CATMOD DE SAS : APLICACIÓN A DATOS DE CRUZAMIENTO INDUSTRIAL EN BOVINO ITEA (2002), Vol. 98A N. 2, 00-00 ANÁLISIS DE VARIABLES CATEGÓRICAS MEDIANTE EL PROCEDIMIENTO CATMOD DE SAS : APLICACIÓN A DATOS DE CRUZAMIENTO INDUSTRIAL EN BOVINO Btariz Sila, Jair Cañó Dpto. Producció

Más detalles

Typeset by GMNI & FoilTEX

Typeset by GMNI & FoilTEX Typst by GMNI & FoilTEX CÁLCULO MATRICIAL DE ESTRUCTURAS DE BARRAS (Articuladas 2D-3D) F. Navarrina, I. Colominas, M. Castliro, H. Gómz, J. París GMNI GRUPO DE MÉTODOS NUMÉRICOS EN INGENIERÍA Dpartamnto

Más detalles

Representación esquemática de un sistema con tres fases

Representación esquemática de un sistema con tres fases 6 APLICACIONES 6.1 Sistma con varias fass Una vz consguido l modlo para simular una mmbrana, s planta su uso para simular procsos con más d una. Uno d stos procsos podría sr un sistma con varias fass.

Más detalles

De la medición surge un valor, llamado valor de la magnitud y que indica el número de veces que la unidad elegida está contenida en la magnitud.

De la medición surge un valor, llamado valor de la magnitud y que indica el número de veces que la unidad elegida está contenida en la magnitud. Máquias, Métodos y Cotrol Dimsioal dl Procsamito METROLOGÍA MECÁNICA MEDICIONES Dfiició: Efctuar ua mdició, sigifica cotrar la distacia tr dos putos dados. Est caso s l más frcut, cuado las mdicios s rfir

Más detalles

Parte 1: UNIDADES DIDÁCTICAS 2 Y 3. Probabilidades con Sucesos y Variables Aleatorias.

Parte 1: UNIDADES DIDÁCTICAS 2 Y 3. Probabilidades con Sucesos y Variables Aleatorias. EXAMEN EXTRAORDINARIO DE PROBABILIDADE Y ETADÍTICA I JULIO 014 Realizar las pregutas e hojas separadas, idicado explícitamete todas las fórmulas que se utilice. Tato el alumo que copie como el que se deje

Más detalles

EVAPORACIÓN CON EL MÉTODO DE PENMAN USANDO REDES NEURONALES ARTIFICIALES. Juan Pablo Toro 3 Oscar Raúl Dölling 2 Eduardo Varas C.

EVAPORACIÓN CON EL MÉTODO DE PENMAN USANDO REDES NEURONALES ARTIFICIALES. Juan Pablo Toro 3 Oscar Raúl Dölling 2 Eduardo Varas C. SOCIEDAD CHILENA DE INGENIEÍA HIDÁULICA. XVII CONGESO CHILENO DE INGENIEÍA HIDÁULICA EVAPOACIÓN CON EL MÉTODO DE PENMAN USANDO EDES NEUONALES ATIFICIALES Jua Pablo Toro 3 Oscar aúl Döllig 2 Eduardo Varas

Más detalles

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IES Pdr Povd (Gudi) Mtátics II Dprtto d Mtátics Bloqu II: Álgr il Profsor: Ró ort Nvrro Uidd : Sists d Ecucios ils UNIDD SISTEMS DE ECUCIONES INEES DEFINICIONES U sist d cucios lils co icógits s u prsió

Más detalles

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1 Demostracioes de Regresió Simple. Estimació La distribució de y es y i N 0 x i, Estimació Máximo Verosímil La fució de verosimilitud, sabiedo que y i es ua variable ormal será L exp y i 0 x i ya que la

Más detalles

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IE Pdr Povd (Gudi) Mtátics plicds ls CC II Dprtto d Mtátics Bloqu I: Álgr il Profsor: Ró ort Nvrro Uidd : ists d Ecucios ils UNIDD : ITEM DE ECUCIONE INEE DEFINICIONE U sist d cucios lils co icógits s

Más detalles

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3

EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3 Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles

2. ALGEBRA LINEAL (2.1_AL_T_062, Revisión: , C12)

2. ALGEBRA LINEAL (2.1_AL_T_062, Revisión: , C12) . ALGEBRA LINEAL (._AL_T_06, Rvisió: 8-03-06, C). CONCEPTOS FUNDAMENTALES: ESPACIOS VECTORIALES, BASES, DIMENSIONES... INTRODUCCIÓN. Notació: utilizamos abcdario latio para vctors, grigo para scalars (úmros).

Más detalles

11 INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS)

11 INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS) INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS) Los sistmas o lials pud llgar a tr comportamitos ralmt sorprdts alguos casos: por u lado pud llgar a tr diámicas totalmt difrts sgú l valor qu

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS Juio, Ejercicio 4, Opció B Reserva, Ejercicio 4, Opció B Reserva 2, Ejercicio 4,

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL

LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES EALES DE UNA VAIABLE EAL.- Estudiar la continuidad, n los puntos y d la función: f ( ) L( ) si / si Solución: f continua n y El dominio d la

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS

Más detalles

al siguiente límite si existe: . Se suele representar por ( x )

al siguiente límite si existe: . Se suele representar por ( x ) UNIDAD : DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit it si ist: f f ' sigifica lo mismo. f. S sul rprstar por f D

Más detalles

FACULTAD DE ECONOMÍA, U.V. PRIMER EXAMEN DE ECONOMETRÍA 1 Profesor: Carlos Pitta Arcos. Grupos 401 y 402

FACULTAD DE ECONOMÍA, U.V. PRIMER EXAMEN DE ECONOMETRÍA 1 Profesor: Carlos Pitta Arcos. Grupos 401 y 402 FACULTAD DE ECONOMÍA, U.V. PIME EAMEN DE ECONOMETÍA Profsor: Carlos Ptta Arcos. Grupos 40 y 40 Paorama Gral: El am costa d 5 problmas, co ua podracó fal d 00 putos (pts). Para facltarl l cálculo dl valor

Más detalles

UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS

UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit límit si ist: f f ' lím sigifica lo mismo.

Más detalles

Una onda es una perturbación que se propaga y transporta energía.

Una onda es una perturbación que se propaga y transporta energía. Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga

Más detalles

Respuesta en frecuencia. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria.

Respuesta en frecuencia. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria. Rspusta frcucia. Procsado Digital d Sñals.4º Igiría Elctróica. Uivrsitat d Valècia. Profsor Emilio Soria. 1 Itrés uso PDS. Ti l mismo uso qu sistmas cotiuos: dtrmiar la salida d u sistma stado stacioario;

Más detalles

Problemas Tema 2: Sistemas

Problemas Tema 2: Sistemas SISTEMAS Y CIRCUITOS ~ PROBLEMAS Curso Académico 00900 Problmas Tma Sismas PROBLEMA. Dados los siguis sismas impo coiuo las sñals d rada idicadas, drmi las sñals d salida corrspodis ( ) x sñal d rada x

Más detalles

9.3. Contrastes de una proporción

9.3. Contrastes de una proporción 9.3. CONTRASTES DE UNA PROPORCIÓN 219 y el criterio que sumiistra el cotraste es si a teo χ 2 exp b teo = o rechazamos H 0 ; si χ 2 exp < a teo ó χ 2 exp > b teo = rechazamos H 0 y aceptamos H 1. Cotrastes

Más detalles

Fonones: Cuantización de las vibraciones de la red cristalina.

Fonones: Cuantización de las vibraciones de la red cristalina. Foo: Cuatizació d la ibracio d la rd critalia. Oda d logitud larga Oda lática... Oda d logitud corta λ a o πa tmo qu tr cuta la tructura atómica dl crital. foó logitudial foó traral a mooatómica: Coidrmo

Más detalles

! 1 3 <1 la serie converge (y confirma a n! 0 ). a n. x 2 >0; f 0 (x)<0 si x>1; R 1 f (x)dx = 1 2 e x2 1 = 1 2e. ) Convergente. n! 0 ) Convergente.

! 1 3 <1 la serie converge (y confirma a n! 0 ). a n. x 2 >0; f 0 (x)<0 si x>1; R 1 f (x)dx = 1 2 e x2 1 = 1 2e. ) Convergente. n! 0 ) Convergente. Solucios d los roblmas d Matmáticas (07-08) {a } acotada ifriormt or 0 (los a so ositivos) y dcrcit us + + )9líma a ) a a ) a0 Como a + a < la sri covrg (y cofirma a 0 ) a) (a ) / Divrgt (O orqu {a

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

1.-Fuentes de perturbación no esféricas. Autocorrelación y Heterocedasticidad.

1.-Fuentes de perturbación no esféricas. Autocorrelación y Heterocedasticidad. Tema 9: Perturbaciones no esféricas l modelo lineal con matriz de covarianzas de los errores general -Fuentes de perturbación no esféricas Autocorrelación y Heterocedasticidad l estimador MCO en presencia

Más detalles

Señales y Sistemas. Análisis de Fourier.

Señales y Sistemas. Análisis de Fourier. Sñals y Sistmas Aálisis d Fourir. Itroducció El foqu d st capítulo s la rprstació d sñals utilizado sos y cosos ( otras palabras, xpocials complas). El studio d sñals y sistmas utilizado xpocials complas

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente

Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl El paso alatorio X t = c + X t 1 + a t no s stacionario. Sin mbargo, l procso difrnciado rgularmnt s stacionario. X t X t 1 = c +

Más detalles

EL REML SIN LAGRIMAS. A. Blasco Instituto de Ciencia y Tecnología Animal Universidad Politécnica de Valencia

EL REML SIN LAGRIMAS. A. Blasco Instituto de Ciencia y Tecnología Animal Universidad Politécnica de Valencia 1 EL RE SIN LAGRIMAS A. Blasco Istituto de Ciecia y Tecología Aimal Uiversidad Politécica de Valecia El Baby model y i = e i y = X + e = 1 + e dode X = 1 es u vector de uos. La matriz de variazas-covariazas

Más detalles

ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt)

ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt) Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 04/5 PRÁCTICA Nº ESPACIOS VECTORIALES EUCLÍDEOS: Procso d ortonormalización (Gram-Schmidt) En sta práctica vamos a vr como podmos calcular

Más detalles

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen.

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen. Uivrsidad d Costa Rica Istituto Tcológico d Costa Rica Tma: Itgrals impropias. Objtivos: Clasificar las itgrals impropias sgú su spci: primra, sguda o trcra spci. Calcular itgrals impropias utilizado su

Más detalles

Capitulo IV. IV.2 Generación de trayectorias. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica

Capitulo IV. IV.2 Generación de trayectorias. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica Capitulo IV IV. Gnración d trayctorias Capítulo IV Síntsis dimnsional d mcanismos IV. Síntsis dimnsional d mcanismos. Gnración n d funcions. IV. Gnración n d trayctorias.. Introducción n a la síntsis d

Más detalles

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; =

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; = CÁLCULO DE LÍMITES Propidds d los límits.- ( b ) b.- ( b ) b.- ( b ) b.- ( b ) b b.- ( ) ( ) 6.- k k b Por otro ldo s importt distiguir l cálculo d límits, los csos idtrmidos d los dtrmidos: Csos dtrmidos:

Más detalles

EXAMEN DE TÉCNICAS CUANTITATIVAS III.

EXAMEN DE TÉCNICAS CUANTITATIVAS III. APEIDOS: DNI: EXAMEN DE TÉCNICAS CUANTITATIVAS III. NOMBRE: GRUPO: E todos los casos, cosdr u vl d cofaza dl 95% (z=).. U mprsaro qur stmar l cosumo msual d lctrcdad ua comudad d 000 hogars dvddos 400

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS El cotraste de hipótesis es el procedimieto mediate el cual tratamos de cuatificar las diferecias o discrepacias etre ua hipótesis estadística y ua realidad de la que poseemos ua

Más detalles

Part IV. Modelos de memoria larga. Series de Tiempo. Germán Aneiros Pérez. Introducción. Procesos FARIMA: Construcción e. Estimación.

Part IV. Modelos de memoria larga. Series de Tiempo. Germán Aneiros Pérez. Introducción. Procesos FARIMA: Construcción e. Estimación. Sris d idntificación Part IV Modlos d mmoria larga Sris d Modlos d mmoria larga Sris d idntificación Comnzamos rcordando la notación y suposicions gnrals: x 1, x 2,..., x T : sri d timpo obsrvada. {X t

Más detalles

Página 76. Página 78. Página 77. Página 79. Y de la primera: 1. Resolvemos por sustitución: a) Despejo x de la primera y la sustituyo en la segunda:

Página 76. Página 78. Página 77. Página 79. Y de la primera: 1. Resolvemos por sustitución: a) Despejo x de la primera y la sustituyo en la segunda: Solucios d ls ctividds Pági 6. Rsolvmos por sustitució: ) Dspjo d l primr l sustituo l sgud: ( ) 8 0 Co lo cul: ( ) b) Si multiplico l primr por -, obtgo: + 8 Co lo cul tgo dos rcts coicidts, s dcir, l

Más detalles

Y i, es decir, la. Regresión Simple y Múltiple Parte II Profesor Oscar Millones Borrador, Octubre 12, Supuestos en el modelo de regresión

Y i, es decir, la. Regresión Simple y Múltiple Parte II Profesor Oscar Millones Borrador, Octubre 12, Supuestos en el modelo de regresión Rgrsón Smpl y Múltpl Part II Profsor Oscar Mllons Borrador, Octubr 1, 8 Supustos n l modlo d rgrsón 1.- Para cada valor d X, xst un grupo d valors d Y qu tnn una dstrbucón normal. (grafcar sta da).- Las

Más detalles

Universidad MUESTREO de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Métodos Estadísticos para

Universidad MUESTREO de Oviedo. Facultad de Economía y Empresa. Grado en ADE. Métodos Estadísticos para MÉTODOS ESTADÍSTICOS PARA LA EMPRESA TEMA 7: HERRAMIENTAS INFERENCIALES. DISTRIBUCIONES ASOCIADAS AL Uiversidad MUESTREO de Oviedo. Facultad de Ecoomía y Empresa. Grado e ADE. 7.1.- Distribucioes Métodos

Más detalles

MODELO DE REGRESIÓN LINEAL MÚLTIPLE

MODELO DE REGRESIÓN LINEAL MÚLTIPLE Modlo d Rgrsó Lal Múltpl MODELO DE REGRESIÓN LINEAL MÚLTIPLE Autors: Ratas Kzys (rzys@uoc.du), Ágl A. Jua (ajuap@uoc.du). ESQUEMA DE CONTENIDOS Hpótss sobr l térmo d prturbacó Hpótss sobr varabls xplcatvas

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

PROYECCIÓN CÓNICA CONFORME DE LAMBERT Prof. Ricardo Martínez Morales

PROYECCIÓN CÓNICA CONFORME DE LAMBERT Prof. Ricardo Martínez Morales CARTOGRAFÍA MATEMÁTICA PROYECCIÓN CÓNICA CONFORME DE LAMBERT Prof. Ricardo Martíz Morals INTRODUCCIÓN El físico, astróomo y matmático alsaciao J.H.Lambrt tuvo ua prolífica producció l ára d la cartografía

Más detalles

MEJOR PREDICTOR LINEAL E INSESGADO PARA APTITUD COMBINATORIA ESPECÍFICA DE LOS DISEÑOS DOS Y CUATRO DE GRIFFING

MEJOR PREDICTOR LINEAL E INSESGADO PARA APTITUD COMBINATORIA ESPECÍFICA DE LOS DISEÑOS DOS Y CUATRO DE GRIFFING Ensao Cintífico Rv. Fitotc. Mx. Vol. 8 (4): 369 376, 5 MEJOR PREDICTOR INEA E INSESGADO PARA APTITUD COMBINATORIA ESPECÍFICA DE OS DISEÑOS DOS Y CUATRO DE GRIFFING BEST INEAR UNBIASED PREDICTOR FOR SPECIFIC

Más detalles

SOLUCIONES DE LOS EJERCICIOS INCLUIDOS EN LOS TEMAS 1 a 3 DE ESTADÍSTICA II

SOLUCIONES DE LOS EJERCICIOS INCLUIDOS EN LOS TEMAS 1 a 3 DE ESTADÍSTICA II ESTADÍSTICA II SOLUCIONES DE LOS EJERCICIOS INCLUIDOS EN LOS TEMAS 1 a 3 DE ESTADÍSTICA II Profsors: J Gabril Molina y María F. Rodrigo Univrsitat d València TEMA 1 1) a) accidntal, b) alatorio simpl,

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

Capítulo IV. Estadísticas cuánticas.

Capítulo IV. Estadísticas cuánticas. Capítulo I. stadísticas cuáticas. Lcció 6 Itroducció a las stadísticas cuáticas. Partículas distiguibls idistiguibls. stadísticas d Bos-isti y d rmi-dirac. Lcció 7 Gas idal d rmi: lctros mtals. Lcció 8

Más detalles

INFERENCIA ESTADÍSTICA. TEST DE HIPÓTESIS. TIPOS DE ERRORES

INFERENCIA ESTADÍSTICA. TEST DE HIPÓTESIS. TIPOS DE ERRORES 1 INFERENCIA ESTADÍSTICA. TEST DE HIPÓTESIS. TIPOS DE ERRORES 001. PAU SELECTIVIDAD Uiversidad de Oviedo Juio 1996 La empresa de trasportes urgetes El Rápido asegura que etrega el 80% de sus evíos ates

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

Julio A. Santaella Banco de México Mercados Financieros y Curvas de Rendimiento CEMLA y CMCA San José, 25 de Septiembre de 2008

Julio A. Santaella Banco de México Mercados Financieros y Curvas de Rendimiento CEMLA y CMCA San José, 25 de Septiembre de 2008 Julio A. Santalla Banco d México Mrcados Financiros y Curvas d Rndiinto CEMLA y CMCA San José, 5 d Sptibr d 008 o Las curvas d rndiinto son uy iportants para divrsos propósitos: a. Para xtracción d tasas

Más detalles