Algunos Ejercicios de Trigonometría
|
|
|
- Arturo Torres Ferreyra
- hace 9 años
- Vistas:
Transcripción
1 Algunos Ejercicios de Trigonometrí. Cuál es el vlor de sec00?. A qué es equivlente l expresión α sec( 90 α ) tn α tn( 90 α ) sec α cosα. Si en un triángulo rectángulo cos α = Cuál o cules proposiciones son verdders? I. α = 0 II. α = 4 III. EL triángulo es isósceles L I y l II Sólo l I Sólo l II L II y l III cos? 4. En un triángulo rectángulo cuy hipotenus mide 90cm, l medid del ldo opuesto α? csc α = cuál es l 9 0cm cm cm 4cm
2 . Si sen ϑ es negtivo y tn ϑ es positivo entonces en cuál cudrnte se locliz el ángulo ϑ? I cudrnte II cudrnte III cudrnte IV cudrnte 6. De cuerdo con l figur, cuál es el vlor de sen β cos β? 7. A qué es equivlente l expresión sec 6 cos 4 + sen 4 + tn 4 csc? 6 8. Cuál es el vlor numérico de l expresión 4 tn + cos 4? cot 6
3 9. A qué es equivlente l expresión +? + senφ senφ sec φ csc φ cos φ sen φ 0. Si ϕ es l medid de un ángulo tl que csc ϕ? cot ϕ = entonces cuál es el vlor de A que es equivlente l expresión tn θ secθ? secθ sec θ cos θ csc θ cosθ sena = qué es equivlente senacos A? 4. Si ( + cos A) 4
4 . A qué es equivlente l expresión secα cosα? sen α tnα cos α tn α sen α cotα tn α 4. A qué es equivlente l expresión ( ) senθ cosθ + cosθ cosθ cosθ + cosθ senθ cosθ senθ cscθ cotθ?. En un triángulo rectángulo, l medid de un cteto es el triple de l medid del otro cteto, cuál es l medid del seno del ángulo menor? Si sen γ =, de cuerdo con l figur cuál es el vlor de x? 4 4 4
5 7. A qué es equivlentes l expresión cos x tn x? sec x + cos x + cos x senx sen x + sen x Cuál es el vlor numérico de l expresión sec + sen? Determine l medid en rdines de un ángulo de Si α es l medid de un ángulo gudo tl que csc α = 8, determine el vlor de cot α
6 . De cuerdo con l figur es flso que: h = bsenα h = senβ b h = cscα csc β h =. Si tn α =, determine el perímetro del triángulo Cuál medid no corresponde un ángulo cudrntl? Un poste de m de lto se encuentr m del pie de un edificio. Un observdor desde un ventn del edificio, visuliz el extremo superior del poste con un ángulo de elevción α y el extremo inferior con un ángulo de depresión β. Cuál es l ltur l que está el observdor? tnα + cot β tn β + tnα 6
7 . Simplifique l expresión csc α cosα. secα tn α cot α tn α cot α 6. Si tnω =, con ω en el II cudrnte, entonces cuánto mide el ángulo ω? 6 7. De cuerdo con l figur, qué es equivlente h? tn 48 tn 4 tn 4 tn 48 7
8 8. El ldo terminl de un ángulo α en posición estándr intersec l círculo trigonométrico 6 en el punto,, determine el vlor de cot α Determine el conjunto solución de senx senx 0. = en el intervlo [, [, 6 6, 6 6 7, 6 6 7, Si β está en posición estándr y el punto P (, ) se encuentr en el ldo terminl de β, determine el vlor de sen β cos β. 8
9 . Si α =, cuál de los siguientes ángulos es coterminl con α? Si α [ 0, [ cuál es el conjunto solución de sen α cosα senα = 0? 0,,,,,, 6 0,,, 6 6 0,,, 6 6. De cuerdo con los dtos de l figur cuál es l medid proximd de AB? 6, 44 4, 4 6, 9 4, 4 9
10 4. Desde l cim de un cerro, un observdor ve dos botes en líne rect con ángulo de depresión de y 6 respectivmente, cuáles de ls siguientes opciones es verdder? 0 + x tn6 = tn = 0 + x 00 tn 6 = 0 + x 0 + x tn = 00. En un triángulo los ldos miden, 0 y. Cuál es l medid proximd del ángulo de menor medid? Cuál o cules de ls siguientes proposiciones son identiddes? I. sec α cotα = secα cscα cosα senα = senα cos II. ( ) α Sólo l I Sólo l II Ambs Ningun 7. Cuáles son soluciones de l ecución 4 csc = ? + x en [, [ 0
11 8. En l figur, cuánto mide proximdmente? 6, 4, 47 70, 7, 6 9. Desde un punto se observn dos utos, uno m y el otro m. Si el ángulo de que se form entre ls dos línes visules es de 8 cuál es l distnci proximd entre los dos utos?,69m,m 6,48m,m 40. De cuerdo con los dtos de l figur, cuál es el vlor proximdo de x? , 04,48 4. De cuerdo con los dtos, l plicr el Teorem de los Cosenos, cuál de ls siguientes opciones es verdder? x + 4x 0 = 0 x 8x 0 = 0 x 4x 0 = 0 x + 8x 0 = 0
12 4. Si tnα = y α IV cudrnte, entonces cuál es el vlor de sen α? En l figur, α es l medid de un ángulo en posición norml, el cul determin un ángulo de referenci de 0, cuál de ls siguientes opciones corresponde tn α? 44. De cuerdo con los dtos de l figur, cuál de ls siguientes opciones es verdder? cos β = b tn β = b cot β = b senβ =
13 4. De cuerdo con los dtos de l figur, cuál es el vlor de cot α? 46. De cuerdo con los dtos de l figur en el trpecio ABEC, determine el vlor de cos α. 47. De cuerdo con los dtos de l figur, cuál es el vlor de sec ϑ?
14 48. De cuerdo con los dtos de l figur, si ABCD es un trpecio rectángulo entonces cuál es l longitud proximd de AD?, 4, 4, 9, Anlice ls siguientes proposiciones referentes f ( x) = tn x : I. tn( x + ) = tn x pr todo x en su dominio. II. Intersec l eje x en los puntos ( 0, k ), k Z., III. El dominio es R ( k ) k Z Cuál o cules son verdders? Sólo l I. Sólo l III. Sólo l I y l II. Sólo l I y l III.. 0. De ls siguientes firmciones, cuál o cules son verdders? I. f ( x) = senx es creciente si x 0,. II. f ( x) = cos x es creciente si x 0,. III. f ( x) = tn x es creciente si x 0,. Sólo l I y l II. Sólo l I y l III. Sólo l II y l III. Tods. 4
15 Soluciones los Ejercicios de Trigonometrí Pregunt Respuest Pregunt Respuest C 6 B C 7 A D 8 B 4 D 9 A C 0 A 6 B A 7 D C 8 B A 9 A 4 B 0 D B B 6 A A 7 D A 8 D 4 B 9 B B 40 D 6 D 4 D 7 A 4 C 8 C 4 C 9 C 44 C 0 C 4 A C 46 D D 47 A D 48 A 4 A 49 D D 0 B
EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD
EJERCICIOS DE º BACHILLERATO CIENCIAS DE LA SALUD TRIGONOMETRÍA I - Sin utilizr l clculdor, hll el vlor de l siguientes expresiones: π π 5 π π 7π 4π π sen. 4sen + senπ sen sen cos + tg + tg 6 6 - Comprueb:
Trigonometría. 1. Ángulos:
Trigonometría. Ángulos: - Ángulos en posición estándar: se ubican en un sistema de coordenadas XY. El vértice será el origen (0,0) y el lado inicial coincide con el eje X positivo. - Ángulos positivos:
Guía - 2 de Funciones: Trigonometría
Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Sector: Matemática. Nivel: NM 4 Prof.: Ximena Gallegos H. Guía - de Funciones: Trigonometría Nombre(s): Curso: Fecha. Contenido:
Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas
Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido Contenido anes : Contenido Discutiremos: ángulo trigonométrico : Contenido Discutiremos:
Trigonometría. Prof. María Peiró
Trigonometrí Prof. Mrí Peiró Trigonometri Funciones Trigonométrics Ls funciones trigonométrics son rzones o cocientes entre dos ldos de un triángulo rectángulo. Hy seis funciones trigonométrics: Directs
Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas
Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Algebra y Trigonometría Taller 8: Funciones trigonométricas Dado el ángulo α, halla la medida exacta del ángulo en radianes o en grados
UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos
UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función
GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:
Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino
ω C) tan θ C) 1 se n θ cos θ tan θ B) sec θ D) sen θ E) 1 csc θ C) senx sen ω + cosω sen ω + + es igual a: csc x sec + D) 1 E) 0
Sesión Unidad II Funciones trigonométricas. D. Identidades trigonométricas..- La expresión sin( x) es igual a: Sec(x) ) Tan(x) C) Csc(x) D) Cot(x) E) Cos(x).- sin ( x ) equivale a: Cos (x) ) + sin( x )
PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA
CURSO PRE FACULTATIVO II-01 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del
Trigonometría. Guía de Ejercicios
. Módulo 6 Trigonometría Guía de Ejercicios Índice Unidad I. Razones trigonométricas en el triángulo rectángulo. Ejercicios Resueltos... pág. 0 Ejercicios Propuestos... pág. 07 Unidad II. Identidades trigonométricas
RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO
TUTORIAL DE PREPARAIÓN MATEMATIA 009 RELAIONES MÉTRIAS EN EL TRIÁNGULO RETÁNGULO I.- MARO TEORIO DEPTO. DE MATEMATIA Ls relciones métrics en un triángulo rectángulo son 5 relciones plicles sólo este tipo
Senx a) 0 b) 1 c) 2 d) 2
EJERIIOS. lculr en : Sen( - 0º) = os( + 0º) ) b) c) 4 d) 6 e). Si : Tg (8 º) Tg ( + º) = Hllr: K = Sen tg 6 7 7 ) b) c) - d) - e) ) 0, b) c), d) e) 8. Si : Tg =, Sen lculr : K Tg ) c) e) ( ) b) d) ( ).
2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería
Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros
DOCUMENTO DE TRABAJO TRIGONOMETRÍA. Prof. Juan Gutiérrez Céspedes
ANGULO TRIGONOMÉTRICO * ANGULO TRIGONOMETRICO Es aquel que se genera por la rotación de un rayo desde una posición inicial hasta otra posición final, siempre alrededor de un punto fijo llamado vértice.
TRIGONOMETRIA UNIDAD 11. Objetivo General. Al terminar esta unidad podrás resolver ejercicios y problemas utilizando las funciones trigonométricas.
UNIDAD TRIGONOMETRIA Objetivo General Al terminar esta unidad podrás resolver ejercicios problemas utilizando las funciones trigonométricas. Objetivos específicos:. Recordarás las funciones trigonométricas
Resolución de triángulos
8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del
Guía - 3 de Funciones y Procesos Infinitos: Trigonometría
Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Prof.: Ximena Gallegos H. Guía - de Funciones y Procesos Infinitos: Trigonometría Nombre(s): Curso: Fecha. Contenido: Trigonometría.
Como el ángulo es mayor que 360º lo tratamos del siguiente modo:
MATEMÁTICAS 4º ESO EXAMEN DE TRIGONOMETRÍA RESUELTO EXAMEN RESUELTO Halla las razones trigonométricas de los siguientes ángulos: a) 740º Como el ángulo es maor que lo tratamos del siguiente modo: 740 60
TRIGONOMETRÍA. Para el estudio de dichas relaciones entre lados y ángulos se utilizan triángulos rectángulos como el siguiente.
TRIGONOMETRÍA La trigonometría es la rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de los triángulos. Etimológicamente la palabra trigonometría proviene del griego Tri
Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas
Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas Algebra y Trigonometría Taller 7: Funciones Trigonométricas de Números Reales Encuentre el ángulo complementario de α. 1) α = 7 39 58
1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)
Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics
MATEMÁTICAS-FACSÍMIL N 9
MTEMÁTIS-FSÍMIL N 9. b b b ) - b ) b - ) b D) E) 6 cm ( b) =. El triángulo está inscrito en l mitd de l circunferenci. Si h c = cm y el ldo = 5cm. El rdio de l circunferenci es: ) cm ) 6 cm ) 6 cm O D)
3.5 cm. 4.2 cm. a. sen(α) = 9. b. sen(α) = 9 2. c. cot(α) = cm
COMPLEJO EDUCATIVO CANTON TUTULTEPEQUE GUIA DE TRABAJO Profesor Responsable: Santos Jonathan Tzun Meléndez. Grado: º Bachillerato. Asignatura: Matemática I Periodo: Fecha de Entrega: UNIDAD. UTILICEMOS
PSU Matemática NM-4 Guía 22: Congruencia de Triángulos
Centro Educcionl Sn Crlos de Argón. Dpto. Mtemátic. Nivel: NM 4 Prof. Ximen Gllegos H. PSU Mtemátic NM-4 Guí : Congruenci de Triángulos Nombre: Curso: Fech: - Contenido: Congruenci. Aprendizje Esperdo:
INTRODUCCIÒN Solución de triángulos rectángulos
INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir
Razones trigonométricas DE un ángulo agudo de un triángulo
RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades
Universidad de Antioquia - Depto. de Matematicas
Índice Álgebra y Trigonometría (CNM-108) Clase 6 Trigonometría analítica Departamento de Matemáticas http://ciencias.udea.edu.co/ Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft
Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1
GUÍ DE EJERITIÓN VNZD onceptos generles de triángulos rogrm Entrenmiento Desfío GUIEN023MT22-16V1 Mtemátic En l figur, RQ = 24 cm, RS SQ y RM SN. Si M es el punto medio de SQ y N es el punto medio de RQ,
Inyectivas, Suprayectyivas, Biyectivas. Funciones Trigonométricas
Funciones Trigonométricas Denición 1. Dado un circulo de radio 1 y un punto P sobre el circulo a un ángulo θ, denimos cos θ Abcisa dep sen θ Ordenada dep Si S es el mismo ángulo medido en radianes y S
Trigonometría ACTIVIDADES. a) 360 x π. b) 360 x sen α = 109. sec α = tg α = cos α = cosec α = 60. cotg α = tg β = 60.
ACTIVIDADES a) b) c) π x 0π π = x = = rad 60 10 60 18 π x 70π π = x = = rad 60 15 60 π x 10π π = x = = rad 60 60 60 a) 60 x 60 π = x = = 10º π π 6π b) 60 x 60 = x = = 171,88º π π c) 60 x 60 π = x = = 0º
UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO N o 1
UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO N o 1 UNIDAD ACADÉMICA ASIGNATURA UNIDAD TEMÁTICA DEPARTAMENTO DE CIENCIAS BÁSICAS FUNDAMENTOS DE CÁLCULO TRIGONOMETRÍA COMPETENCIA Aplicar los conceptos
UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS
UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS Álgebra Ejercicios Trigonometría Plana Material para el alumno. Recopilado y preparado por los profesores Isabel Arratia
Práctica 09 Funciones y Ecuaciones Trigonométricas
Instituto Tecnológico de Costa Rica Escuela de Matemática Matemática General Práctica 09 Funciones y Ecuaciones Trigonométricas I. Exprese en grados las siguientes medidas dadas en radianes 1) ) ) 7π 6
1. Un ciclista tiene que subir una cuesta que tiene una inclinación de 12º. Qué altura habrá subido cuando haya recorrido 200m?
º ESO - AMPLIACIÓN DE MATEMÁTICAS EJERCICIOS DE TRIGONOMETRÍA. Un ciclista tiene que subir una cuesta que tiene una inclinación de º. Qué altura habrá subido cuando haya recorrido 00m?. Si α es un ángulo
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
. Triángulos: clasificación
. Triángulos: clsificción Propieddes básics importntes En todo tringulo se verific: 1.- l sum de los ángulos interiores es 180º 2.- l sum de los ángulos exteriores es 360º 3.-un Angulo exterior es siempre
Semana06[1/24] Trigonometría. 4 de abril de Trigonometría
Semana06[1/4] 4 de abril de 007 Medida de ángulos en radianes Semana06[/4] Consideremos la circunferencia de radio 1 y centrada en el origen de la figura. P α A x Ángulo positivo Dado un punto P en la
TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula:
Cursos ALBERT EINSTEIN ONLINE Calle Madrid Esquina c/ Av La Trinidad LAS MERCEDES 9937172 9932305! www. a-einstein.com TRIGONOMETRÍA SISTEMAS DE MEDIDAS DE ÁNGULOS SISTEMA SEXAGESIMAL: Es el que considera
1. Al convertir 135º a radianes se obtiene: a) b) c) d) 2. Al convertir a grados se obtiene:
1. Al convertir 135º a radianes se obtiene: a) b) c) d) 2. Al convertir a grados se obtiene: a) 36º b) 86º c) 120º d) 60º 7. Un dirigible que está volando a 800 m de altura, distingue un pueblo con un
1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad?
PÁGIN 164 El director del equipo nliz un plno en el cul 1 cm corresponde 20 m en l relidd. Su mquet de l moto es l décim prte de lrg que l moto rel. L moto de l fotogrfí es l mism que se ve en l mquet.
TEMARIO PARA EL EXAMEN DE RECUPERACIÓN 4TO AÑO SECUNDARIA 2013
TEMARIO PARA EL EXAMEN DE RECUPERACIÓN 4TO AÑO SECUNDARIA 2013 1.- FUNCIONES: Dominio y rango, función real de variable real, operaciones con funciones, composición de funciones. 2.- ÁNGULOS: congruencia
UNIDAD: GEOMETRÍA TRIÁNGULO RECTÁNGULO
u r s o : Mtemátic 3º Medio Mteril Nº MT-16 UNI: GOMTÍ TIÁNGULO TÁNGULO TOM ITÁGOS n todo triángulo rectángulo, l sum de ls áres de los cudrdos construidos sobre sus ctetos, es igul l áre del cudrdo construido
REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS
TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen
4.1. Qué es un número complejo. Representación geométrica.
Tema Números complejos.. Qué es un número complejo. Representación geométrica. Un número complejo z C C es el conjunto de los números complejos es una expresión de la forma z a + b i en la que a, b R a
TRIGONOMETRÍA DEL CÍRCULO
TRIGONOMETRÍA DEL CÍRCULO Otra unidad de medida para ángulos: RADIANES 1 Usamos grados para medir ángulos cuando aplicamos trigonometría a los problemas del mundo real. Por ejemplo, en topografía, construcción,
1. Ángulos Referencia angular. TRIGONOMETRÍA La palabra, TRI-GONO-METRÍA, etimológicamente significa relación entre los lados
IES Joan Ramon Benaprès TRIGNMETRÍA La palabra, TRI-GN-METRÍA, etimológicamente significa relación entre los lados y ángulos de un triángulo 1 Ángulos Definición 1 (Ángulo) Un ángulo es la abertura de
Capítulo 8. Trigonometría. M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática
1 Capítulo 8 Trigonometría M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triangulo rectángulo asociado a sus ángulos. SENO, COSENO Y TANGENTE Recordarás que eisten
TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm.
TRIGONOMETRÍA 1.- Pasa de grados a radianes y viceversa: a) 1º b) 1º c) π rad 4 d) 0,71 rad.- Calcula las razones trigonométricas del ángulo A del siguiente triángulo rectángulo..- Calcula las razones
Matemáticas Propedéutico para Profesional. Ángulo
Matemáticas Propedéutico para Profesional Tema. Medida de ángulos, ángulos coterminales, complementarios suplementarios, triángulos rectángulos funciones trigonométricas de ángulos especiales. 1 Ángulo
BLOQUE III Geometría
LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40
Trigonometría: ángulos / triángulos. matemática / arquitectura
Trigonometrí: ángulos / triángulos mtemátic / rquitectur Grn pirámide de Guiz. Egipto. 2750.C. (h=146,62m / l=230,35m) Pirámide del Museo Louvre. Pris. 1989. rq. Ieoh Ming Pei. (h=20m / l=35m) Grn pirámide
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems
4º ESO ACADÉMICAS - APLICADAS TRIGONOMETRÍA DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa TRIGONOMETRÍA
º ESO CDÉMICS - PLICDS TRIGONOMETRÍ DEPRTMENTO DE MTEMÁTICS. TRIGONOMETRÍ.- Demuestra, aplicando algún criterio de semejanza, que el triángulo () rectángulo isósceles es semejante al triángulo () de lados
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del
TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández.
NEXA A LA NORMAL DE NAUCALPAN TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández. Contesta a mano en hojas blancas, incluye todos los procedimientos.
EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes
Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) α = 5 b) β = 170 c) γ = 0 d) δ = 75 e) ε = 10 f ) η = 50 g) θ = 0
1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º.
MATEMÁTICAS NM TRIGONOMETRÍA 1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. a) Calcule AB. b) Halle el área del triángulo. 2. (D) La siguiente figura muestra una
SOLUCIONARIO Poliedros
SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17
Funciones trigonométricas (en el triángulo) α b. Trigonometría Física I, Internet. Trigonometría Física I, Internet
Funciones trigonométricas (en el triángulo) c B a A α b C Funciones trigonométricas (en el triángulo) Algunas consideraciones sobre el triángulo rectángulo Sea un triángulo rectángulo cualquiera ABC Se
Unidad 2 Lección 2.2. El Círculo Unitario y las Funciones Trigonométricas. 5/13/2014 Prof. José G. Rodríguez Ahumada 1 de 14
Unidd Lección. El Círculo Unitrio y ls Funciones Trigonométrics 5/3/0 Prof. José G. Rodríguez Ahumd de Actividdes. Referenci: Cpítulo 5 - Sección 5. Circulo Unitrio; Sección 5. Funciones trigonométrics
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis
Razones trigonométricas en triangulo rectángulo EJEMPLO Nº 1 Solución: Se tienen los siguientes datos:
Razones trigonométricas en triangulo rectángulo La trigonometría, enfocada en sus inicios solo al estudio de los triángulos, se utilizó durante siglos en topografía, navegación y astronomía. Esta rama
Los Modelos Trigonométricos
Los Modelos Trigonométricos Eliseo Martínez, Manuel Barahona 1. Introducción Normalmente, por motivos históricos, y de acuerdo al itinerario seguido por la humanidad en la invención de la trigonometría,
6.- En un puerto de montaña aparece una señal de tráfico que señala una pendiente del 12 %. Cuál sería ese desnivel en grados?
TRIGONOMETRÍA 1.- En un triángulo rectángulo, la hipotenusa mide 8 dm y tgα 1' 43, siendo α uno de los ángulos agudos. Halla la medida de los catetos..- Si cos α 0' 46 y 180º α 70º, calcula las restantes
Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de ángulos, polígonos y cuadriláteros GUICEN022MT22-A16V1
GUÍA DE EJERCITACIÓN AVANZADA Conceptos generles de ángulos, polígonos y cudriláteros Progrm Entrenmiento Desfío En l figur I se muestr un crtulin cudrd PQRS de ldo 1. Se doln los ldos SP y RQ por ls línes
Módulo 6. Trigonometría
Seminrio Universitrio Mtemátic Módulo 6 Trigonometrí L mtemátic compr los más diversos fenómenos y descubre ls nlogís secrets que los unen Joseph Fourier ÁNGULO ORIENTADO Pr comenzr trbjr con trigonometrí
BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos.
BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS 1ª Prte :Trigonometrí:Resolución de triángulos. 1.-Medid de ángulos. Un ángulo se puede medir en : )Grdos sexgesimles (DEG ó D) : 1º=60,1 =60. = 90º, =180º
Unidad 1: Trigonometría básica
Ejercicio Unidad : Trigonometría básica Obtén los radianes correspondientes a los siguientes grados: π rad rad 6 a) 80º 80º π rad b) 0º 0º π π rad ' rad 80º 80º 6 rad c) º º π π rad 0'79 rad 80º d) 00º
Carrera: Diseño Industrial. 1) Expresar en radianes: a) 75º = b) 63º = c) 18º = d) 7º = a) 120º = b) 135º = c) 180º = d) 360º = e) 57º = f) 45º =
TRIGONOMETRÍ 1) Expresar en radianes: a) 75º = b) 63º = c) 18º = d) 7º = e) 100 G = f) 80 G = g) 50 G = h) 3 G = 2) Expresar en grados centesimales: a) 2 π radián = b) 2π radián = c) 1º = d) 90º = 3) Expresar
Resolución de triángulos cualesquiera tg 15 tg 55
Resuelve los siguientes triángulos: ) 3 cm 17 cm 40 ) 5 cm c 57 cm 65 c) 3 cm 14 cm c 34 cm ) c 3 +17 3 17 cos 40 c 1,9 cm 17 3 + 1,9 3 1,9 cos 9 56' '' 10 ( + ) 110 3' 5'' ) 5 + 57 5 57 cos 65 79,7 cm
1. Ejercicios Primera parte. 1. Clasifique en verdadero (V) o falso (F):
PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ Progrm de Perfeccionmiento pr Profesores de Mtemátics del Nivel Secundrio Curso Piloto-Etp distnci 1. Ejercicios 1.1. Primer prte 1. Clsifique en verddero (V) o
UTILIZAMOS LA TRIGONOMETRÍA.
UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios
Las funciones trigonométricas
Funciones trigonométricas de ángulos Las funciones trigonométricas Las funciones trigonométricas de ángulos se originaron de triángulos rectángulos que son los que tienen dos ángulos agudos y uno recto.
68 EJERCICIOS DE TRIGONOMETRÍA
68 EJERCICIOS DE TRIGONOMETRÍA Repaso Trigonometría elemental:. Completar en el cuaderno la siguiente tabla: Grados 05º 5º 0º 5º Radianes 4π/9 rad π/5 rad rad Ejercicios libro: pág. 9:, y 4; pág. 4:, y.
Clase 21 Tema: Propiedades de los triángulos y expresiones algebraicas
Mtemátics 8 imestre: II Número de clse: 21 lse 21 Tem: Propieddes de los triángulos y expresiones lgebrics ctividd 72 1 Le l siguiente informción. L sum de los ángulos internos de un triángulo es 180º.
MATEMÁTICAS-FACSÍMIL N 13
MTEMÁTIS-FSÍMIL N 13 1. Ddos los siguientes números rcionles, tres quintos y siete novenos, ordendos de menor myor, cuál de los siguientes rcionles puede interclrse entre ellos? ) 6/ 5 ) 3/ ) 4/5 D) 5/4
CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA
CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA 1.- CIENCIA QUE ESTUDIA LAS RELACIONES EXISTENTES ENTRE LOS ÁNGULOS Y LOS LADOS DE UN TRIÁNGULO: A) GEOMETRÍA
TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos
TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360
TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Deducimos las razones trigonométricas como:
TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Dado el siguiente triángulo rectángulo: Deducimos las razones trigonométricas como: Seno α = cateto opuesto
Reporte de Actividades 30
Reporte de Actividades 30 Profesores: Arturo Ramírez, Alejandro Díaz. Acompañantes: Paulina Salcedo. 1. Sesión del 23 de noviembre de 2011. 1.1 Apuntes de la clase con Arturo Ramírez. 1.1.1. Semejanza
ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS ORIENTADOR: ESTUDIANTE: FECHA:
DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS SEGUNDO EJES TEMÁTICOS La recta numérica Suma de números enteros
UNIDAD III TRIGONOMETRIA
UNIDAD III TRIGONOMETRIA 1 UNIDAD III TRIGONOMETRIA TEMARIO. 1. Relación del par ordenado en un plano bidimensional. 1.1. El plano coordenado 1.2. Localización de puntos en los cuatro cuadrantes 2. Ángulos
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de
Capítulo 8. Trigonometría del círculo. Contenido breve. Presentación. Módulo 20 Funciones circulares. Módulo 21 Identidades fundamentales
Cpítulo 8 Trigonometrí del círculo Contenido breve Módulo 20 Funciones circulres Módulo 21 Identiddes fundmentles En un mp del cielo están presentes lguns funciones trigonométrics. Presentción En este
HOJA DE TRABAJO 2. Construyendo las identidades Pitagóricas
INSTITUCIÓN EDUCATIVA RURAL GIOVANNI MONTINI Vereda Colombia Km 41 GUIA DIDÁCTICA CÓDIGO VERSIÓN PÁGINA GAPP01 01 1 de 5 HOJA DE TRABAJO 2. Construyendo las identidades Pitagóricas Nombre del estudiante:
TRIGONOMETRÍA. c) 315º = d) 320º = 4.- Expresa los siguientes ángulos como suma de un número entero de vueltas y un ángulo menor
TRIGONOMETRÍA 1.- Expresa en grados los siguientes ángulos medidos en radianes: a) b) c) 5π rad = 4 7π rad = 6 4π rad = 3 10π d) rad = 9 e) 0,25 π rad = f) 1,25 π rad = 2.-Expresa en radianes los siguientes
EXAMEN DE TRIGONOMETRÍA
1. Deduce la expresión del seno del ángulo mitad. 2. Sabiendo que sen á = 1/4 y que á está en el primer cuadrante, calcula tg 2á. 3. Calcula cos(2x), siendo cos x=1/2. 4. Resuelve la ecuación: cos(x)=cos(2x)
EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL
Mtemátics pendientes de 1º (º prcil) 1 EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES º PARCIAL Fech tope pr entregrlos: 17 de bril de 015 Exmen el 3 de bril de 015
Colegio Universitario Boston Trigonometría Trigonometría 262
262 Ángulos. Ángulos en posición estándar o posición normal. Son aquellos ángulo cuyo lado inicial esta sobre el semi-eje x positivo. Lado terminal Lado inicial Podemos tener ángulos en posición estándar
4.1 Ángulos y medidas
CAPÍTULO CUATRO Ejercicios propuestos. Ángulos medidas. Un ángulo es la unión de dos semirrectas de origen común.. Un ángulo queda determinado de manera única por su vértice.. Dos ángulos son adacentes
