POSIBLE SOLUCIÓN DEL EXAMEN DE INVESTIGACIÓN OPERATIVA DE SISTEMAS DE JUNIO DE 2003.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "POSIBLE SOLUCIÓN DEL EXAMEN DE INVESTIGACIÓN OPERATIVA DE SISTEMAS DE JUNIO DE 2003."

Transcripción

1 POSILE SOLUIÓN DEL EXMEN DE INVESTIGIÓN OPERTIV DE SISTEMS DE JUNIO DE. Problema (,5 utos): E ua ivestigaió o ratoes, se usa u laberito o uatro eldas,, y D, segú se muestra e la figura. E ada miuto, u rató uede ermaeer e la misma elda e la que estaba e el miuto aterior o ua robabilidad del 5%, o bie uede moverse a ua de las eldas que se omuia o aquella e la que estaba. Si sólo hay ua elda adyaete, la robabilidad de ir a ella será del 5%, mietras que si hay dos eldas adyaetes, ada ua de ellas tedrá ua robabilidad del 5%. a) Halle la matriz de trasiió de la adea de Markov que modela este sistema. b) Si u rató se euetra e u mometo dado e la elda, uál es la robabilidad de que dos miutos desués se euetre e la elda D? ) Si dejamos u rató durate u tiemo muy largo e el laberito, qué robabilidad habrá de eotrarlo e ada ua de las eldas? D Soluió: artado a): El ojuto de estados será S{,,,D}. La matriz de trasiió será:,5,5 Q,5,5,5,5,5,5,5,5 artado b): Segú las euaioes de hama-kolmogorov, se trata de alular uo de los elemetos de Q : () q,5,5,5,5,5,5 artado ): 4 omo la adea de Markov es fiita y ergódia, odemos afirmar que existe la distribuió estaioaria, que es reisamete lo que os ide. Para alularla, lateamos el siguiete sistema de euaioes:

2 D T D Q D El sistema uede resolverse, or ejemlo, fijado y ormalizado luego. La soluió fial es:.,,, D Ésta es la distribuió de robabilidad de la loalizaió del rató, a la larga. Problema (,5 utos): U ambulatorio disoe de ua sala de esera, uya aaidad odemos suoer ilimitada. Hay dos médios, ambos igualmete aaitados, ada uo de los uales atiede a u aiete e u tiemo que se distribuye exoeialmete o media de miutos. Los aietes llega al ambulatorio o u tiemo etre llegadas que se distribuye exoeialmete, o media de miutos. Halle: a) La robabilidad de que alguo de los dos médios esté desouado. b) El tiemo medio que u aiete tiee que eserar e la sala, ates de ser atedido. ) El úmero medio de aietes que hay eserado e la sala (o se ueta los que ya está siedo atedidos). Soluió: El sistema se uede modelar omo ua ola M/M/, o /λ miutos, /µ miutos, o lo ual λ lietes/hora, µ lietes/hora, λ/(µ)5/. artado a): Nos ide la robabilidad de que haya lietes e el sistema o bie liete e el sistema (so las irustaias bajo las uales hay algú médio desouado). Es deir, teemos que alular. Para ello, lo rimero que teemos que haer es hallar :!!!! 4!!!

3 artado b): otiuaió hallamos : 5 5! Y or último, la robabilidad de que algú médio esté desouado: 5 8 P( lgú médio está desouado ), 444 Nos ide el tiemo de esera e la ola, W q. Si uso las fórmulas del formulario del exame, eesito hallar ates L q : Lq! ( )! ( ) aietes,7878 aietes hora ya uedo hallar W q mediate el teorema de Little: Lq 5 5 L q λwq Wq horas,7878 horas,77 miutos λ artado ): Nos ide el úmero medio de lietes e la ola, L q, que ya habíamos hallado omo resultado auxiliar e el aartado aterior: 5 L q aietes,7878 aietes Problema (,75 utos): Sea el siguiete roblema de rogramaió lieal: Maximizar 5x x Sujeto a: x x x x x, x Resuelva diho roblema mediate el método del Simlex, siguiedo estos asos: a) ostruya ua soluió fatible iiial (tabla iiial del método). b) Obtega la(s) soluió(es) ótima(s), si las hay. ) De qué tio es la(s) soluió(es) ótima(s) obteida(s), si las hay?

4 Soluió: artado a): Pasado a forma estádar queda: Maximizar 5x x Sujeto a: x x x x x x 4 x, x, x, x 4 Observamos que o odemos oseguir la matriz idetidad ara ostruir la tabla iiial, or lo que asamos al método de las dos fases, añadiedo la variable artifiial x 5 : Maximizar x 5 Sujeto a: x x x x x x 4 x 5 x, x, x, x 4, x 5 La Fase I se desarrolla omo sigue: ase P P P P P 4 P 5 P P 5 riterio de etrada: mí{, }, luego etra x. riterio de salida: mí{/, /}/, luego sale x 5. ase P P P P P 4 P 5 P 5/ 5/ / / P / / / / La tabla aterior es ua de las tablas ótimas ara la fase I (habría otras dos más, orresodietes a itroduir e la base x y x 4, resetivamete). Utilizamos esta tabla ara ostruir la rimera tabla de la fase II: 5 ase P P P P P 4 P 5/ 5/ / P / / / / 5/ /

5 artado b): otiuamos o la fase II del método de las dos fases, artiedo de la tabla iiial de diha fase que ostruimos e el aartado aterior: riterio de etrada: mí{ 5/, /} 5/, luego etra x. riterio de salida: mí{5/5, /}5/5, luego sale x. 5 ase P P P P P 4 P 5 5 /5 /5 P /5 / riterio de etrada: mí{ }, luego etra x 4. riterio de salida: mí{5}5/5, luego sale x. 5 ase P P P P P 4 P P 5 Esta tabla es ótima, y orresode a la soluió (,,,5). Esto quiere deir que los valores ótimos de las variables del roblema origial so: x, x, y que el valor ótimo de la fuió objetivo es. artado ): La soluió ótima idiada e el aartado aterior es úia, ya que la tabla ótima o hay variables o básias que tega u ero e la última fila. uque o se ide, a otiuaió iluimos la soluió or el método gráfio de este roblema (utos de orte y reresetaió gráfia):

6 Problema 4 (,5 utos): Ua emresa de seguridad eesita teer ada día de la semaa al meos el siguiete úmero de emleados: Día Lues Martes Miéroles Jueves Vieres Sábado Domigo Emleados Sabiedo que ada emleado hará su semaa laboral trabajado 5 días oseutivos omezado uado la emresa le diga y que ada otrato suoe u osto de 5 /semaa, uátos emleados deberá otratar y qué días deberá trabajar ada uo o el objetivo de miimizar los ostos de otrataió? Platee u roblema de rogramaió lieal que modele esta situaió. No itete obteer la soluió, sólo debe dar el lateamieto. Soluió: Variables de deisió: x úmero de trabajadores que emieza a trabajar el lues x úmero de trabajadores que emieza a trabajar el martes x úmero de trabajadores que emieza a trabajar el miéroles x 4 úmero de trabajadores que emieza a trabajar el jueves x 5 úmero de trabajadores que emieza a trabajar el vieres x úmero de trabajadores que emieza a trabajar el sábado x 7 úmero de trabajadores que emieza a trabajar el domigo Fuió objetivo (ostes de otrataió, exresados e euros): Miimizar 5x 5x 5x 5x 4 5x 5 5x 5x 7

7 Restriioes: x x 4 x 5 x x 7 (lues) x x x 5 x x 7 5 (martes) x x x x x 7 (miéroles) x x x x 4 x 7 9 (jueves) x x x x 4 x 5 4 (vieres) x x x 4 x 5 x (sábado) x x 4 x 5 x x 7 8 (domigo) x, x, x, x 4, x 5, x, x 7 (o egatividad) x, x, x, x 4, x 5, x, x 7 Z (el úmero de trabajadores otratados ha de ser etero) Dado que las variables de deisió sólo uede tomar valores eteros, este roblema se resolvería utilizado métodos de rogramaió lieal etera, que o hemos visto.

Posible solución del examen de Investigación Operativa de Sistemas de junio de 2007

Posible solución del examen de Investigación Operativa de Sistemas de junio de 2007 Posible soluió del exame de Ivestigaió Operativa de Sistemas de juio de 7 Problema : (3 putos) E u laboratorio se aaliza las probabilidades de que u átomo radioativo se ovierta e u átomo de otro tipo,

Más detalles

a) Aumento de la temperatura K c b) Adición de I 2 O 5 (s) Cantidad de I 2 c) Aumento de la presión Cantidad de CO

a) Aumento de la temperatura K c b) Adición de I 2 O 5 (s) Cantidad de I 2 c) Aumento de la presión Cantidad de CO 1.- Cosidere el siguiete sistema geeral e equilibrio: a A(g) + b B(g) C(g) + d D(g) H < a) Idique razoadamete e qué aso so iguales los valores de las ostates y. b) Justifique ómo afetará al sistema la

Más detalles

CONCEPTOS CLAVE DE LA UNIDAD 1

CONCEPTOS CLAVE DE LA UNIDAD 1 CONCEPTOS CLAVE DE LA UNIDAD 1 1. Proeso iterativo. La idea fudametal de u proeso iterativo osiste e lo siguiete: Dada ua o varias situaioes iiiales (etapa 1), se les aplia algua trasformaió iterativa,

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

Análisis de respuesta en frecuencia

Análisis de respuesta en frecuencia Aálisis de respuesta e freueia Co el térmio respuesta e freueia, os referimos a la respuesta de u sistema e estado estable a ua etrada seoidal. E los métodos de la respuesta e freueia, la freueia de la

Más detalles

Ejercicios Prueba Solemne 2 Profesor Ivan Derpich C. Ayudantes Cristián Arredondo

Ejercicios Prueba Solemne 2 Profesor Ivan Derpich C. Ayudantes Cristián Arredondo Eeriios rueba Soleme rofesor Iva Derpih C. Ayudates Cristiá Arredodo.- El proeso de evasado de ierto artíulo está oformado por dos operaioes e serie. a llegada de artíulos sigue u roeso de oisso o tasa

Más detalles

VARIABLES DE ESTADO EN SISTEMAS LINEALES DE TIEMPO DISCRETO. 1. INTRODUCCIÓN.

VARIABLES DE ESTADO EN SISTEMAS LINEALES DE TIEMPO DISCRETO. 1. INTRODUCCIÓN. NOAS BREVES SUJEAS A REVISIÓN SOBRE: VARIABLES DE ESADO EN SISEMAS LINEALES DE IEMPO DISCREO.. INRODUCCIÓN. Los métodos de variables de estado para el aálisis y diseño de sistemas de tiempo otiuo puede

Más detalles

Consideremos los siguientes experimentos aleatorios

Consideremos los siguientes experimentos aleatorios 69 Veremos e lo que sigue uevas variables aleatorias discretas. Estas variables y sus distribucioes se utiliza como modelos e muchas alicacioes estadísticas. Distribució Biomial Cosideremos los siguietes

Más detalles

MMII_MSV_c1: Problemas de contorno de ecuaciones diferenciales ordinarias lineales

MMII_MSV_c1: Problemas de contorno de ecuaciones diferenciales ordinarias lineales MMII_MSV_: Problemas de otoro de euaioes difereiales ordiarias lieales Guió: Co esta lase iiiamos el estudio del Método de Separaió de Variables (MSV). Su apliaió para resolver problemas de otoro de euaioes

Más detalles

TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7

TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7 TEMAS SELECTOS I ECONOMÍA FINANCIERA NOTA 7 Valuaió de u boo e ua feha etre uoes E lo que hemos isto hasta aquí sobre la determiaió del reio de u boo o uó hemos osiderado eriodos omletos, es deir, el úmero

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

Tema 7 Flujo de bienes y rentas en una economía abierta

Tema 7 Flujo de bienes y rentas en una economía abierta Ejeriios resueltos de Itroduió a la Teoría Eoóia Care Dolores Álvarez Albelo Miuel Beerra Doíuez Rosa María Cáeres Alvarado María del ilar Osoro del Rosal Ola María Rodríuez Rodríuez Tea 7 Flujo de biees

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Tema Iferecia estadística. Estimació de la media Mate CCSSII 2º Bach. 1 TEMA INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA DISTRIBUCIÓN NORMAL EJERCICIO 1 : Los esos, e kilogramos, de u gruo de ersoas

Más detalles

Solución de Recurrencias. Dr. Ivan Olmos Pineda

Solución de Recurrencias. Dr. Ivan Olmos Pineda Soluió de Reurreias Dr. Iva Olmos Pieda Coteido Itroduió a la Soluió de Reurreias Téias para la Soluió de Reurreias Por sustituió Reurreias homogéeas Reurreias o homogéeas Cambio de variable Trasformaió

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

FORMULARIO TEORIA DE FILAS

FORMULARIO TEORIA DE FILAS FORMULARIO TEORIA DE FILAS Proceso geeral de acimieto y muerte. Tasas de etrada: λ 0,λ 1,..., λ 1 clietes or uidad de tiemo. Tasas de salida: µ 1,µ 2,..., µ clietes or uidad de tiemo. =1, 2,... Razó etrada/salida:

Más detalles

Generadores de onda Práctica # 8

Generadores de onda Práctica # 8 Gruo de iestigació cietífica y microelectróica Geeradores de oda Práctica # 8 Objetios Estudiar alguos circuitos de relajació. Estudiar alicacioes ara geeradores de oda triagular y cuadrada. Equio ecesario

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

( ) RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN. ba 9 SEMANA 8 RELOJES = 18. ab + ba 9 = 24. x 16 x RPTA.: E

( ) RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN. ba 9 SEMANA 8 RELOJES = 18. ab + ba 9 = 24. x 16 x RPTA.: E SEMANA 8 RELOJES. Las horas trascurridas del día está represetadas por u úmero de dos cifras y el exceso de dicho úmero co las cifras ivertidas sobre ueve, represeta las horas que falta trascurrir. Qué

Más detalles

VALUACIÓN DE BONOS. 2. Valuación de bonos con cupón de intereses

VALUACIÓN DE BONOS. 2. Valuación de bonos con cupón de intereses 1 VALUACIÓN DE BONOS 2. Valuació de boos co cuó de itereses El tíico boo del cual os ocuamos ahora osee las siguietes características básicas: 1. Tiee u valor omial o facial que es la suma que el emisor

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Unidad III: Series de Fourier

Unidad III: Series de Fourier // Uia III: Series e Fourier Fuioes ortogoales. Series e Fourier. Series e Fourier e oseos y seos. Forma omleja e la serie e Fourier. eorema e Parseval. Esetro e freueia isreta. Esetro e oteia. FVC- Reaso

Más detalles

Formulas. Población infinita. Población finita

Formulas. Población infinita. Población finita Formulas X~N(μ, σ 2 ) x = x i x ~N si X~N o si > 30 Població ifiita Població fiita x ~N(μ, σ2 ) N x ~N(μ, N 1 σ2 ) Ejercicio Se sabe que la media poblacioal e u exame de Estadística es de 70 y que la variaza

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se llama valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la variable

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n NÚMEROS COMBINATORIOS Def:Dado u úmero etero o egativo, se defie el factorial de (! como el producto! = ( 1...1 Def: Dados dos úmeros,k eteros o egativos tales que k, se defie el úmero combiatorio sobre

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

EL MODELO DE MERCADO (MODELO DE ÍNDICE ÚNICO, O MODELO DE UN SOLO FACTOR).

EL MODELO DE MERCADO (MODELO DE ÍNDICE ÚNICO, O MODELO DE UN SOLO FACTOR). 1 EL MODELO DE MERCADO (MODELO DE ÍNDCE ÚNCO, O MODELO DE UN SOLO FACTOR). Disoemos de las tasas de redimieto de u cojuto de activos co riesgo (i = 1,,, ) y disoemos tambié de la tasa de redimieto de u

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

TABLAS DE CONTINGENCIA. IGNACIO MÉNDEZ GÓMEZ-HUMARÁN

TABLAS DE CONTINGENCIA. IGNACIO MÉNDEZ GÓMEZ-HUMARÁN TABLAS DE CONTINGENCIA IGNACIO MÉNDEZ GÓMEZ-HUMARÁN imgh000@yahoo.om El uso de Tablas de Cotigeia permite estudiar la relaió etre dos variables ategórias o riterios de lasifiaió. E ua Tabla, los regloes

Más detalles

Estadística inferencial

Estadística inferencial Estadístia Ifereial Matemátias 2 CCSS Estadístia ifereial 1. Itroduió La estadístia ifereial trata de la elaboraió de olusioes ara ua oblaió, artiedo de los resultados de ua muestra y el del grado de fiabilidad

Más detalles

Pruebas de hipótesis para dos muestras.

Pruebas de hipótesis para dos muestras. Prueba de hiótei ara do muetra. Prueba de Hiótei ara do muetra grade, deviaioe etádar de la oblaioe deiguale. La roiedade de la Ditribuió Normal o tambié umamete útile uado queremo eotrar i do ojuto de

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA º BACHILLERATO. CIENCIAS SOCIALES 1. Ua variable aleatoria tiee ua distribució ormal de media m y desviació típica s. Si se extrae muestras aleatorias de tamaño : a) Qué distribució tiee la variable aleatoria

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 22 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS Juio, Ejercicio 4, Oció B Reserva, Ejercicio 4, Oció B Reserva 2, Ejercicio 4,

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

es ligada, siendo v V Dos subespacios F y G de V son suplementarios si y solo si se verifica:

es ligada, siendo v V Dos subespacios F y G de V son suplementarios si y solo si se verifica: 1- Dado el sbcojto F={ ( λ μ, λ,μ, μ) R / λ, μ R} de R, se verifica qe: a) dim F= b) {(1,1,0,0),(-,0,,-1)} es a base de F c) F o es sbespacio vectorial de R - E sistema ligado, se verifica qe: a) Agregado

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció ( p ). Para

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II UNIDAD III: TECNICAS DE ESTIMACIÓN ESTIMACIÓN POR INTERVALOS PROYECTO DE CARRERA: INGENIERÍA INDUTRIAL AIGNATURA: ETADÍTICA II UNIDAD III: TECNICA DE ETIMACIÓN ETIMACIÓN POR INTERVALO INTRODUCCIÓN E temas ateriores se estableciero las bases que ermite a los estadísticos

Más detalles

T o e r o ía í a d e d e C ol o a l s

T o e r o ía í a d e d e C ol o a l s Teoría de Cola Joé María Ferrer Caja Uiveridad Potificia Comilla Itroducció Cola: Cojuto de cliete e eera de recibir u ervicio Se roduce cuado lo cliete llega a u ervidor ocuado y ermaece e eera Teoría

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna. Modelo nº 2 Sept. Sobrantes de Soluciones

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna. Modelo nº 2 Sept. Sobrantes de Soluciones IES Fco Ayala de Graada Sobrates de 008 (Modelo Septiembre) Germá-Jesús Rubio Lua Istruccioes: Modelo º Sept. Sobrates de 007-008 Solucioes Duració: 1 hora y 30 miutos. Elija ua de las dos opcioes propuestas

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

TEORÍA DE LÍNEAS DE ESPERA (COLAS)

TEORÍA DE LÍNEAS DE ESPERA (COLAS) TEORÍA DE ÍEAS DE ESERA COAS Cojuto de modelos matemáticos ue describe sistemas específicos de líeas de espera o colas, usados e la toma de decisioes al ecotrar el estado estable o estacioario del sistema

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 8-9 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

TEMA 4: POLINOMIOS EN UNA INDETERMINADA.

TEMA 4: POLINOMIOS EN UNA INDETERMINADA. I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

Práctico 2 - Sucesiones y Número e. 1. Sucesiones. Universidad de la República Cprimerálculo 1 Facultad de Ingeniería - IMERL Segundo semestre 2017

Práctico 2 - Sucesiones y Número e. 1. Sucesiones. Universidad de la República Cprimerálculo 1 Facultad de Ingeniería - IMERL Segundo semestre 2017 Uiversidad de la Repúblia Cprimerálulo Faultad de Igeiería - IMERL Segudo semestre 07 Prátio - Suesioes y Número e. Suesioes. Estudiar mootoía, aotaió y overgeia de las siguietes suesioes (a ) N, dode:

Más detalles

DETERMINACIÓN DEL TAMAÑO MUESTRAL

DETERMINACIÓN DEL TAMAÑO MUESTRAL DETERMINACIÓN DEL TAMAÑO MUESTRAL Notas Ídie. INTRODUCCIÓN. TAMAÑO MUESTRAL EN ESTUDIOS PARA DETERMINAR PARÁMETROS.. Tamaño muestral ara estimar ua roorió.. Tamaño muestral ara estimar ua media 3 3. TAMAÑO

Más detalles

Ejercicio 1: Un embalaje contiene 9 cajas de CDs. Las 9 cajas tienen la siguiente composición:

Ejercicio 1: Un embalaje contiene 9 cajas de CDs. Las 9 cajas tienen la siguiente composición: Parcial de Probabilidad y Estadística : parte A Ejercicio 1: U embalaje cotiee 9 cajas de CDs. Las 9 cajas tiee la siguiete composició: 6 cajas cotiee 5 discos de música rock y 15 discos de música clásica

Más detalles

Sistemas de colas: clase 1. Amedeo R. Odoni 10 de octubre de 2001

Sistemas de colas: clase 1. Amedeo R. Odoni 10 de octubre de 2001 Sistemas de colas: clase Amedeo R. Odoi de octubre de 2 Temas de teoría de colas 9. Itroducció a las colas: ley de Little; M/M/. olas de acimieto y muerte de Markov. ola M/G/ y extesioes 2. olas de prioridad:

Más detalles

Equilibrio Químico (II) Kp. Principio de Le Chatelier. Mezclas de gases. Presión parcial

Equilibrio Químico (II) Kp. Principio de Le Chatelier. Mezclas de gases. Presión parcial . Priiio de e Chatelier IES a Magdalea. vilés. sturias Mezlas de gases. Presió arial E ua mezla de gases odemos alular la resió total de la mezla si ooemos el úmero total de moles gaseosos ( Tot ) aliado

Más detalles

( ) 1.8 CRITERIOS DE CONVERGENCIA PARA SERIES (1.8_CvR_T_061, Revisión: , C8, C9, C10) INTRODUCCIÓN. Forma general de una serie: + a 1

( ) 1.8 CRITERIOS DE CONVERGENCIA PARA SERIES (1.8_CvR_T_061, Revisión: , C8, C9, C10) INTRODUCCIÓN. Forma general de una serie: + a 1 .8 CRITERIOS DE COVERGECIA PARA SERIES (.8_CvR_T_6, Revisió: -9-6, C8, C9, C).8.. ITRODUCCIÓ. Forma geeral de ua serie: S = = a = a + a + a +...+ a Suma de térmios. Si es fiito, la suma (S ) tambié es

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 211 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS Juio, Ejercicio 4, Oció A Reserva 1, Ejercicio 4, Oció A Reserva 2, Ejercicio

Más detalles

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville.

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. 4. Proiedades algebraias de las soluiones. Fórmulas de Abel y Liouville. A lo largo de esta seión suondremos que P, Q y R son funiones ontinuas en un intervalo

Más detalles

Secretaría de Extensión Universitaria. Trabajo Practico N 3

Secretaría de Extensión Universitaria. Trabajo Practico N 3 Trabajo Practico N 3 Medidas de Tedecia Cetral La Media (promedio), se deota como x, de ua muestra es el promedio aritmético de sus valores. Y se calcula mediate al formula: Si aparece los datos agrupados

Más detalles

Clase 6. Volatilidad del precio del bono y riesgo financiero: duración y duración modificada

Clase 6. Volatilidad del precio del bono y riesgo financiero: duración y duración modificada 1 lase 6 Volatilidad del recio del oo riesgo fiaciero: duració duració modificada 6.1 uració de u oo Es mu imortate el estudio de la relació etre la sesiilidad del recio del oo resecto a camios e la tasa

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

( 3.c) INTRODUCCIÓN A LOS MODELOS NO EXPONENCIALES Y REDES DE COLAS

( 3.c) INTRODUCCIÓN A LOS MODELOS NO EXPONENCIALES Y REDES DE COLAS (.c) INTRODUCCIÓN A LOS MODELOS NO EXONENCIALES Y REDES DE COLAS INTRODUCCIÓN A LAS REDES DE COLAS. Cocepto de red abierta y cerrada. Redes abiertas y Teorema de Jackso. MODELOS NO EXONENCIALES Cola M/G/:

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Apéndice C: Datos Experimentos

Apéndice C: Datos Experimentos Apédice C: Datos Experimetos Experimetos Los experimetos permitiero evaluar la afectividad de los usuarios al iteractuar etre ellos detro del IM. La realizació de los experimetos se basa e los siguietes

Más detalles

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de:

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de: ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si u suceso puede teer lugar de m maeras distitas y cuado ocurre ua de ellas se puede realizar otro suceso imediatamete de formas diferetes, ambos sucesos, sucesivamete,

Más detalles

COSAS DE DIVISORES Y HOTELES

COSAS DE DIVISORES Y HOTELES COSAS DE DIVISORES Y HOTELES E est sesió trtremos de resolver el siguiete rolem: Prolem: El hotel de ls mil hitioes. Cuet ue e ierto ís hí u gr hotel ue teí 000 hitioes y otros ttos emledos. Estos, u dí

Más detalles

b) a n = n + 1 2n 5 n c) a n = f ) a e n α R g) a n = 3n + ( 2) n b n = 1. Sea c n una sucesión real, probar que si existe lím n n b , mas aun lím n

b) a n = n + 1 2n 5 n c) a n = f ) a e n α R g) a n = 3n + ( 2) n b n = 1. Sea c n una sucesión real, probar que si existe lím n n b , mas aun lím n Uiversidad de la Repúblia Cálulo 1 Faultad de Igeiería - IMERL Segudo semestre 016 Prátio 3 - Suesioes y Series 1. Suesioes 1. Estudiar mootoía, aotaió y overgeia de las siguietes suesioes (a ) N, dode:

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

Unidad 7. Estimación de medias, proporciones y varianzas

Unidad 7. Estimación de medias, proporciones y varianzas Uidad 7 Estimació de medias, roorcioes y variazas Itroducció E las uidades ateriores se ha veido desarrollado el sigificado y la utilidad de las medidas de tedecia cetral; éstas so medidas descritivas

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se deomia valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la

Más detalles

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1 Biomio de Newto I Itroducció al Biomio de Newto (para expoete etero y positivo ZZ + ) Teorema Sea: x; a 0 y ZZ + (x + a) = Desarrollado los iomios: C x -.a 0 (x + a) 1 = x + a (x + a) = x + xa + a (x +

Más detalles

Fracciones. Prof. Maria Peiró

Fracciones. Prof. Maria Peiró Fraccioes Prof. Maria Peiró Recordemos Las partes de ua divisió so Dividedo Residuo divisor Cociete Defiició Ua fracció o querado, es ua divisió de la uidad e u determiado úmero de partes, de las cuales

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

Cálculo del poder estadístico de un estudio

Cálculo del poder estadístico de un estudio Metodología de la Ivestigaió: Cálulo del oder estadístio de u estudio /8 Cálulo del oder estadístio de u estudio Autor: Pértegas Día, S. sertega@aalejo.org, Pita Feráde, S. sita@aalejo.org Uidad de Eidemiología

Más detalles

Tema 5. Funciones de una variable. Diferenciación y aplicaciones.

Tema 5. Funciones de una variable. Diferenciación y aplicaciones. Tema 5. Fuioes de ua variable. Difereiaió y apliaioes. 5. Fuioes de ua variable: límites y otiuidad. 5. Derivada de ua fuió. Apliaioes. 5. Derivaió implíita. 5.4 Resoluió uméria de euaioes: método de Newto.

Más detalles

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS.

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS. SEMAA 9 TEORÍA DE LOS ÚMEROS ÚMEROS PRIMOS. Sea A = 3...( 6) cifras Calcule si A tiee 444 divisores compuestos. A) 3 B) C) D) E) 6 A = 3 6 6 = 6 ( ) A = 3 + A = 3 CD( A) = 444 + 4 CD( A) = 448 ( A) ( )

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1 1º Bachillerato - Matemáticas I Dpto de Matemáticas- I.E.S. Motes Orietales (Izalloz)-Curso 2011/2012 TEMS 1 y 3.- NÚMEROS RELES Y ÁLGEBR- 1 1.- TIOS DE NÚMEROS. ROXIMCIONES DECIMLES 1.1.- Tipos de úmeros

Más detalles

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,... SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles