Práctica 3: Convolución
|
|
|
- María Dolores Cáceres Silva
- hace 7 años
- Vistas:
Transcripción
1 Práctica 3: Covolució Apellidos, ombre Apellidos, ombre Grupo Puesto Fecha El objetivo de esta práctica es familiarizar al alumo co la suma de covolució, fudametal e el estudio de los sistemas lieales, mediate la realizació de ejercicios que ilustre las propiedades de dicha operació. Para llevar a cabo la práctica, desarrolle cada ejercicio e u fichero de comados ejercicio_x.m separado (salvo cuado se le solicite desarrollar ua fució, e cuyo caso el fichero llevará el ombre de la fució). Justo ates de fializar la práctica, comprima los ficheros.m geerados e u úico fichero practica_3_puesto_xx. zip, coéctese al sistema de etrega de prácticas de la Itraet y etréguelo e el grupo que correspoda. Salvo que se le idique lo cotrario e algú apartado cocreto, o está permitido utilizar e los scripts las fucioes de cotrol de flujo del programa de MATLAB (for, if-else, etc.). 3.1 Covolució de señales discretas Ejercicio 1: covolució maual de señales causales fiitas El objetivo de este ejercicio es llevar a cabo la covolució de dos señales desarrollado directamete el sigificado de la operació. Sea las señales: x [] h [] El objetivo es calcular y[] = x[] h[ ]. Para ello, geere las señales x [ ] y h [] e el itervalo [ 0,20]. Teiedo e cueta que la señal x [ ] sólo toma valor e u úmero fiito de putos, y [ ] puede escribirse: y [ ] x[ k] h[ - k] = x[ 0] h[ ] + x[ 1] h[ -1] x[ 9] h[ - 9] + x[ 10] h[ -10] = k= Para obteer y [], geere, si utilizar bucles, cada ua de las oce fucioes (es decir, sumados) que idica la expresió aterior y a cotiuació súmelas. Para poder sumarlas, todas ellas ha de estar defiidas e el mismo itervalo de, e decir, [ 0,20]. Como guía para llevar a cabo esta operació, observe que para geerar u vector co la señal y [ ] = x[ 5] h[ 5] e el mismo itervalo que esté 5 defiida h [] y teiedo e cueta que los ídices e Matlab comieza e 1, se puede escribir: >> y5=x(5+1).*[zeros(1,5) h(1:ed-5)];
2 Tega e cueta que esta operació de desplazamieto e la señal h [ ] es válida porque h [] se defiió e u itervalo mucho mayor que el que ocupa sus valores o ulos. Represete e ua figura co 12 gráficas (12 filas) las 11 señales desplazadas y k [] y la suma y[]. Como resultado de la suma de las oce subseñales habrá obteido y [ ] e el mismo itervalo [ 0,20]. Represete e otra figura, e u mismo gráfico de tres filas o subgráficos (utilice subplot), las señales x [], h [] e y [], y dibuje esta última e la gráfica adjuta: y[] Idique cuál es la duració de la señal y [ ] y e qué ídice comieza. A la vista de la expresió aalítica de y [], idique tambié qué relació tiee su duració e ídice de comiezo co las respectivas duracioes e ídices de comiezo de las señales [ ] x y [ ] h : Ejercicio 2: covolució maual de señales o causales fiitas Repita el ejercicio aterior, pero utilizado esta vez ua respuesta al impulso uidad defiida por: h [] + 2, 0, 2 3 Defia ahora las señales ivolucradas e el itervalo o vector de ídices [ 5,20], y desarrolle la covolució siguiedo el mismo procedimieto. Tega e cueta que e este caso el valor x [ k] correspode e MATLAB co el ídice x(k-(-5)+1) del vector x. Represete e u mismo gráfico de tres filas o subgráficos (utilice subplot), la señal x [] y las uevas señales [] h e y [], y dibuje esta última e la gráfica adjuta, idicado claramete qué ídices
3 abarca los valores o ulos de y [] : y[] Observe que las tres señales comparte u mismo vector de ídices, que es suficietemete amplio como para coteer los valores o ulos de todas ellas. Idique de uevo qué relació tiee la duració e ídice de comiezo de y[] co las respectivas duracioes e ídices de comiezo de las señales x [] y h [] : Ejercicio 3: la fució cov de MATLAB La ivocació de esta fució de MATLAB se realiza del siguiete modo: x=... x=... h=... h=... y=cov(x,h); y=... % Itervalo x de valores o ulos de la señal x % Defiició del vector x e el itervalo x % Itervalo h de valores o ulos de la respuesta al impulso h % Defiició del vector h e el itervalo h % Devuelve u vector y de logitud x+h-1 % Itervalo y de valores o ulos de la salida y Observe que la fució cov toma como parámetros las señales x y h pero o sus vectores de ídices. Por lo tato, la fució o puede obteer i devolver el vector de ídices correcto para la señal y; es resposabilidad del que llama a la fució el defiir de qué ídice a qué ídice va el vector de ídices de la señal y para poder represetarlo adecuadamete. E coclusió, y lo ha de defiir usted. Repita los ejercicios 1 y 2 e dos scripts, ejercicio_3a.m y ejercicio_3b.m, utilizado la fució cov. Para ello defia los vectores x y h segú se ha idicado más arriba, realice la covolució, y defia el vector de ídices que correspode a la señal y (teiedo e cueta e qué ídice debe comezar y qué logitud ha de teer). Represete al fial de cada script las tres señales ivolucradas (como e los ejercicios ateriores), pero todas ellas sobre el vector de ídices mayor, o sea, sobre y (para ello, añada ceros ates y/o después de x y h, segú covega). Compruebe que las señales obteidas so iguales a las de los ejercicios ateriores.
4 3.1.4 Ejercicio 4: covolució de señales de duració ifiita Sea las señales de duració ifiita: N k = 0 x h [] = u[ 2] [] = u[ + 2] Calcule y[] x[] h[] a k 1 a = 1 a + 1 = de forma aalítica e idíquela a cotiuació (recuerde que ) Expresió aalítica El objetivo es calcular y[] x[] h[ ] cuado x [] y [] se truca a itervalos fiitos. Para ello, geere la señal x [ ] e el itervalo [ 0,24] el itervalo [ 2,14] Obtega a cotiuació su covolució y [ ] x [ ] h [ ] = utilizado la fució cov y evaluar la validez del resultado h o se geera e itervalos ifiitos (algo que o es posible e la práctica) sio que y la señal h [] e, es decir, geere versioes trucadas de estas dos señales: x T [] y h T [ ]. T =, defia su vector de ídices, y represete T las tres señales ivolucradas (x T [], h T [], y T []) e y[] sobre u vector de ídices que permita represetar las cuatro señales. Si x [] y h [] tiee logitud ifiita, y[ ] x[ ] h[ ] = tambié ha de teerla. Al trucar las señales ivolucradas, el resultado tambié habrá quedado trucado. Deduzca e qué itervalo de valores de se y = y, y compruebe que sus deduccioes se correspode co lo observado. verifica que [] T [] Modifique los itervalos a que se ha trucado las señales [ ] coclusioes so correctas. Explique el resultado obteido: T x y [ ] h para comprobar que sus
5 3.2 Operacioes sobre sistemas LTI discretos Sea las señales: x [] 1, 0, 0 4, h [] 1 1, 1, 3, 1, 0, = 0 = 1 = 2 = 4, h [] 2 2, 5, 4, 1, 0, Geere x [] e el itervalo [ 0,9] y las otras dos e el itervalo [ 0,20] utilice siempre la fució cov para efectuar covolucioes Ejercicio 5: comutatividad Obtega la señal y1[ ] x[ ] h1 [ ] [] h [] x[] = 1 = 2 = 3 = 4. A partir de ahora, = y defia su vector de ídices. Obtega a cotiuació la señal y 2 = 1 y defia su vector de ídices. Represete las cuatro señales ivolucradas sobre el vector de ídices de mayor logitud (e u mismo gráfico, como e los ejercicios ateriores), y verifique que y1 [] = y2 []. Si o se verificara, explique el motivo Ejercicio 6: distribució respecto de la suma Compruebe que la covolució de la señal x [ ] co u sistema cuya respuesta al impulso uidad sea [] = h [] h [], es la misma que la suma de las señales resultates [ ] h [ ] y [] h []. Para h x 1 x 2 ello, represete e cada caso, e dos gráficos idepedietes, las señales ivolucradas (cico e el primer caso y seis e el segudo), todas ellas sobre el vector de ídices de mayor logitud Ejercicio 7: asociatividad Sea u sistema S1 cuya relació etrada salida está defiida por y[ ] = + 1) x[ ] (, y otro sistema S2 totalmete caracterizado por h S 2 = h 1 []. El objetivo es ver si la propiedad asociativa de la covolució se verifica para estos dos sistemas, es decir, si: ( x[] h [] ) h [ ] = x[ ] ( h [ ] h [ ] ) S1 S 2 S1 S 2 Para obteer la señal resultate de las operacioes a la izquierda de la igualdad, proceda del siguiete modo: Obtega la señal y [ ] aplicado directamete su expresió e fució de la etrada, es decir y [] = + 1) x[] (, e vez de aplicado la covolució. Obtega la señal resultate w [] = y[ ] h [ ] A S 2 Para obteer la señal resultate de las operacioes a la derecha de la igualdad, proceda del siguiete modo: Obtega la respuesta al impulso uidad del sistema S1, es decir, obtega la respuesta de este sistema al = ( + 1) δ x. impulso uidad: 1 [ ] [ ]. Para ello defia δ [ ] e el mismo itervalo que lo estaba [ ] h S Obtega la respuesta al impulso del sistema S1 e serie co S2, es decir h[ ] h [ ] h [ ] =. Observe S1 S 2
6 que para ello tedrá que ampliar el rago de defiició de h S1 [ ]. Obtega la respuesta de este uevo sistema a la señal de etrada: [ ] x[ ] h[ ] w B =. Represete e cada caso, e dos gráficos idepedietes, las señales ivolucradas (cuatro e ambos casos), todas ellas sobre el vector de ídices de mayor logitud. Compruebe que las señales w A [] y w B [] so idéticas. Si o lo fuera, explique el motivo.
LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO
LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que
Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG
Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas
Tema 1 Los números reales Matemáticas I 1º Bachillerato 1
Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma
INTERÉS SIMPLE COMO FUNCIÓN LINEAL.
INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por
Límite y Continuidad de Funciones.
Límite Cotiuidad de Fucioes. Eleazar José García. [email protected]. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por
FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y
CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos
4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.
Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base
Práctica 2: Periodicidad
Práctica 2: Periodicidad Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es explorar las utilidades de representación gráfica de MATLAB para observar las especiales
Series de potencias. Desarrollos en serie de Taylor
Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de
OPCIÓN A EJERCICIO 1_A
IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede
( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7
LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.
MEDIDAS DE TENDENCIA CENTRAL. _ xi
EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee
2.- ESPACIOS VECTORIALES. MATRICES.
2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces
DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN
DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3
CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES
MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar
Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes.
ESPACIOS VECTORIALES 1. INTRODUCCIÓN Escalares y Vectores E la técica existe catidades como Logitud, Área, Volume, Temperatura, Presió, Masa, Potecial, Carga eléctrica que se represeta por u úmero real.
TEMA 3.- OPERACIÓN FINANCIERA
. DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,
INTRODUCCIÓN A LA PROBABILIDAD
INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado
Señales en Tiempo Discreto
Señales e Tiempo Discreto Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció.. Señales e tiempo discreto.3. Clasificació de las señales
Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004
Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos
UNEFA C.I.N.U. Matemáticas
RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el
c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5
Aexo Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores
SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)
IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre
Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos
ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales
PRÁCTICA POLINOMIOS DE TAYLOR. RESTO DE LAGRANGE CURSO Práctica 6 (5- XI-2014)
PRÁCTICA POLINOMIOS DE TAYLOR. RESTO DE LAGRANGE CURSO 04-05 Prácticas Matlab Práctica 6 (5- XI-04) Objetivos Represetar ua sucesió de térmios Itroducir el cocepto de serie como suma ifiita de los térmios
UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior
UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que
2 CARTAS DE CONTROL POR ATRIBUTOS
2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o
OPCIÓN A EJERCICIO 1_A
IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe
ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:
Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/
IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A
IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma
P(U)=, 5, 8, 9, b, 5, 8, 5, 9, 5, b, 8, 9, 8, b, 9, b, 5, 8, 9, 5, 8, b, 5, 9, b, 8, 9, b, U. {8,b} Figura 1
Algebras de Boole Cojuto de partes. Dado u cojuto =,, podemos eumerar todos los subcojutos posibles de A, o dicho de otro modo todos los cojutos icluídos e A. Costruímos etoces u uevo cojuto co todos esos
Medidas de Tendencia Central
1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida
UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda
UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar
Tema 4 Sucesiones numéricas
Tema 4 Sucesioes uméricas Objetivos 1. Defiir sucesioes co wxmaxima. 2. Calcular elemetos de ua sucesió. 3. Realizar operacioes co sucesioes. 4. Iterpretar la defiició de límite de ua sucesió. 5. Calcular
PROGRESIONES ARITMÉTICAS.-
PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.
IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:
6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES
6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:
ORGANIZACIÓN DE LOS DATOS.
ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar
SUCESIONES DE NÚMEROS REALES. PROGRESIONES
www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos
Muestreo sistemático
Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo
Mó duló 21: Sumatória
INTERNADO MATEMÁTICA 16 Guía del estudiate Mó duló 1: Sumatória Objetivo: Coocer y aplicar propiedades para el cálculo de sumatorias. Para calcular alguas sumatorias es ecesario coocer sus propiedades
Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación
Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:
Teoría de la conmutación. Álgebra de Boole
Álgebra de Boole Defiicioes y axiomas Propiedades Variables y fucioes booleaas Defiicioes Propiedades Formas de represetació Fucioes booleaas y circuitos combiacioales Puertas lógicas Puertas lógicas fudametales
FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0
DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 1. Itroducció al cálculo de
2. LEYES FINANCIERAS.
TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),
LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En
LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)
Capítulo 2. Operadores
Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática
ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas).
ÁLGEBRA ELEMENTAL 1.- EXPRESIONES ALGEBRAICAS (GENERALIDADES) 1.1.- Alguas defiicioes Ua epresió algebraica es ua epresió matemática que cotiee úmeros, letras que represeta úmeros cualesquiera sigos matemáticos
TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:
TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II
INTEGRALES DE RIEMANN
NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-
ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.
ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,
Prácticas Matlab ( 1) Práctica 7. Objetivos
PRÁCTICA SERIES DE POTENCIAS Prácticas Matlab Práctica 7 Objetivos Estudiar la covergecia putual de ua serie de potecias. Estimar gráficamete el itervalo de covergecia de ua serie de potecias. Aproimar
Qué es la estadística?
Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma
ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos
ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica
ESTADISTICA UNIDIMENSIONAL
ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate
Cálculo de límites Criterio de Stolz. Tema 8
Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que
Física II (Biólogos y Geólogos)
Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras
Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi
u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo
3Soluciones a los ejercicios y problemas PÁGINA 79
Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.
6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices.
Edgar Acuña/ ESMA 6665 Lecc 8 75 6.3. Uso de la SVD para determiar la estructura de ua matriz Primero defiiremos alguas características de matrices. Rago de ua matriz: Sea A ua matriz m x se etoces su
Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios
Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua
Técnicas para problemas de desigualdades
Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,
Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:
Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.
El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.
Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,
= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3
IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de
IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir
IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)
SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.
CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio
Planificación contra stock
Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica
SUCESIONES Y SERIES DE FUNCIONES
CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes
Matemáticas I - 1 o BACHILLERATO Binomio de Newton
Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete
Análisis en el Dominio del Tiempo para Sistemas Discretos
OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.
Estadística Descriptiva
Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se
Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.
CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió
CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007
CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y
Tema 5 Series numéricas
Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular
PRÁCTICA No. 1 INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRES EN LAS MEDICIONES
PRÁCTICA No. 1 INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRES EN LAS MEDICIONES 1 INTRODUCCIÓN E las ciecias aturales los resultados de las medidas experimetales sirve para verificar la validez de modelos,
Aplicaciones del cálculo integral vectorial a la física
Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua [email protected] Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el
Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1
Probabilidad BENITO J. GONZÁLEZ RODRÍGUEZ ([email protected]) DOMINGO HERNÁNDEZ ABREU ([email protected]) MATEO M. JIMÉNEZ PAIZ ([email protected]) M. ISABEL MARRERO RODRÍGUEZ ([email protected]) ALEJANDRO SANABRIA
OPCIÓN A EJERCICIO 1 (A)
IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) -1-1 1 Sea las matrices A =
Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)
Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos
OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con
Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE
Tema 1: Números Complejos
Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto
