TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales"

Transcripción

1 TEMA : Métodos tertvos de resolucón TEMA. Métodos tertvos de resolucón de Sstems de Ecucones Lneles. Métodos tertvos: ntroduccón Aplcr un método tertvo pr l resolucón de un sstem S A b, consste en trnsformrlo en lo que se denomn un sstem de punto fjo, que se equvlente l ddo y cuy solucón se prom pso pso. Pr obtener el sstem de punto fjo equvlente l ddo se elge un mtrz M que se fácl de nvertr y se escrbe l mtrz A como: A M + (A M Entonces el sstem A b se trnsform en: (M + (A M b M (M A + b S desgnmos N M-A, qued M N + b (*. L promcón -ésm de l solucón,, se obtene, en l tercón, prtr de l promcón nteror (- : Es decr: M N (- + b B (- + c Sendo B M - N M - (M-A y c M - b. Cundo este proceso es convergente el límte de ls promcones cundo es l solucón del sstem de punto fjo plntedo y, en consecuenc, del sstem S ncl. Los métodos tertvos son más decudos que los métodos drectos pr grndes sstems A b con mtrz de los coefcentes dspers y que en los métodos drectos los elementos de l mtrz A se vn modfcndo y elementos que ern nulos dejn de serlo lo lrgo del proceso de resolucón, mentrs que en los métodos tertvos sólo se hce uso de l mtrz orgnl A. El error de redondeo no tene tnt mportnc quí como en los métodos drectos. L solucón obtend es promd y hy que estblecer un crtero de prd, dependendo de l precsón requerd, del tpo: ( ε En cd tercón, el sstem (* es fácl de resolver s M es dgonl o trngulr, o en generl fáclmente nversble. Est cuestón es fundmentl en l práctc pues, unque no hy que clculr M -, sí es precso resolver sstems lneles en los que M es l mtrz de los coefcentes. Ls tres opcones pr M que presentn mejores resultdos son: M D, donde D es l mtrz dgonl cuy dgonl es l de A (Método de Jcob Undd Docente de Mtemátcs de l ETSITGC Asgntur: Cálculo II

2 TEMA : Métodos tertvos de resolucón M L+D, donde L+D es l prte trngulr nferor de A (Método de Guss-Sedel M L+D/ω, donde ω es un número elegdo pr pondercón (Método de Sobrerreljcón El Método de Guss-Sedel es un cso prtculr del de Sobrerreljcón cundo se tom ω. El método de Sobrerreljcón con 0 < ω <, se utlz pr obtener l convergenc cundo Guss-Sedel no converge. Se tom < ω < pr celerr l convergenc cundo Guss-Sedel converge. S w < 0 ó w >, el método de Sobrerreljcón dverge. Observcones: L precsón de l solucón obtend por un método tertvo dependerá del número de tercones y de l convergenc del método. Todos los métodos tertvos requeren un estmcón ncl que desgnmos por (0 pr comenzr l tercón. (0 puede ser culquer vector (n-úpl rbtrro pero s se dspone de un buen estmcón ncl el proceso de convergenc se celer. En cso de no dsponer de un buen estmcón ncl se puede tomr (0 como el vector 0.. Convergenc de los métodos tertvos Como se h ndcdo nterormente los métodos tertvos solo se pueden plcr quellos sstems de ecucones lneles cuys propeddes grntcen l convergenc, lo que no sempre es posble...defncón Se dce que un sucesón de vectores { } converge respecto de cert norm y se escrbe lm, (o ben, s cundo: lm 0, (o ben, 0 s s respecto de l norm, s y solo s, lo hce componente componente, es decr,,,, n n cundo. Ls epresones escrts son ndependentes de l norm elegd... Teorem de crcterzcón de l convergenc Son equvlentes:. El método tertvo converge. ρ B <, pr B M - N M - (M-A.. 3. B <, pr l menos lgun norm mtrcl subordnd. Undd Docente de Mtemátcs de l ETSITGC Asgntur: Cálculo II

3 TEMA : Métodos tertvos de resolucón Not: El coste operconl de cd pso en los métodos tertvos es del orden de n opercones. Recordemos (tem que l resolucón por métodos drectos conllev un número de opercones del orden de n 3 por lo que los métodos tertvos resultn rentbles s l solucón puede hllrse en bstnte menos de n psos. 3. Método de Jcob Ddo un sstem S A b, el método de Jcob consste en terr el sstem de punto fjo D (D A + b, es decr, D (D A (- + b donde D es l mtrz dgonl cuyos elementos son los de l dgonl de A. Observemos que equvle despejr ls ncógnts de los elementos de l dgonl en S. ( b 3 3 n n nn b ( b 33 n n nn b S n + n + + nnn b n n n n n ( b nn n El método de Jcob se plc sguendo l sguente secuenc de psos: Prmer pso: se susttuye en el segundo membro ls ncógnts por l estmcón ncl,,,,, n n Los vlores obtendos en el prmer membro consttuyen l prmer promcón ( ( (,, 3,,n Segundo pso: se susttuye en el segundo membro ls ncógnts por l promcón obtend en el pso nteror,,,,, 3 3 n n Los vlores obtendos en el prmer membro consttuyen l segund promcón ( En generl: ( (,, 3,,n y sí sucesvmente. nn Undd Docente de Mtemátcs de l ETSITGC Asgntur: Cálculo II 3

4 TEMA : Métodos tertvos de resolucón ( b 33 nn n ( b 33 nn ( bn n n nn n nn Cuándo prmos?: Crtero de convergenc (crtero de prd Se utlz como crtero un cot de l dferenc en norm entre dos promcones (terdos consecutvs. ( Tol < (tolernc O ben ( < Tol Como norm hbtul se us l norm del supremo (, es decr má ( ( n Ejercco: Pr el sstem lnel Se pde clculr ls dos prmers tercones pr el método de Jcob, tomndo como estmcón ncl (0 (,, (Usr 3 cfrs decmles pr redondeo en ls opercones 4. Método de Guss-Sedel Ddo S A b, el método de Guss-Sedel consste en terr el sstem de punto fjo (L+D (L+D A + b, Obsérvese que A-(L+D es l mtrz trngulr superor cuyos elementos no nulos son los que están por encm de l dgonl superor, es decr, Undd Docente de Mtemátcs de l ETSITGC Asgntur: Cálculo II 4

5 TEMA : Métodos tertvos de resolucón 0 n 0 0 n A-(L+D U Luego, l ecucón nteror qued de l form (L+D -U + b, y ls sucesvs tercones se obtenen mednte (L+D U (- + b ( b 3 3 n n nn b ( b 33 nn nn b S n + n + + nnn b n n ( b n n n nn n L secuenc de psos es semejnte l segud en el método de Jcob con l dferenc de que los vlores obtendos pr j, j,,, se utlzn pr promr +. Prmer pso: se susttuye en l prmer ecucón del segundo membro ls ncógnts en negro por l estmcón ncl,,, pr obtener, 3 3 n n nn A contnucón, se susttuye en l segund ecucón pr obtener,,, n n Segudmente sustturímos en l tercer ecucón,, ,,n n pr obtener 3 y sí sucesvmente hst obtener ( (,, 3,,n Segundo pso: se procede ecucón por ecucón del sstem de mner nálog l prmer pso pr obtener ( (,, 3,,n y sí sucesvmente. En generl: ( ( ( ( b 33 nn n ( ( ( b 33 nn ( bn n n nn n nn Undd Docente de Mtemátcs de l ETSITGC Asgntur: Cálculo II 5

6 TEMA : Métodos tertvos de resolucón Se utlz el msmo crtero de convergenc (o de prd que en el método de Jcob. 4.. Teorem S A es un mtrz estrctmente dgonlmente domnnte, entonces pr culquer estmcón ncl (0, ls tercones de Jcob y de Guss-Sedel convergen l solucón del sstem ncl S A b. S A es un mtrz smétrc defnd postv, Guss-Sedel converge sempre l solucón del sstem ncl S A b. 5. Método de Sobrerreljcón S pr un sstem determndo, S A b, el método de Guss-Sedel converge, entonces h de verfcrse, en generl, que cd promcón de cd ncógnt estrá más cerc de l solucón que ( pr cd n. El método de sobrerreljcón se bs en l de de que el proceso de convergenc puede ( celerrse ponderndo l dferenc entre los vlores y pr cd n, es decr, ( + ω d pr cd n, donde d ˆ (denotndo por ( sobrerreljcón y por Susttuyendo y operndo, qued: ( + ω d l promcón obtend por el método de ˆ l que se obtendrí plcndo Guss-Sedel ( ( + ω ( ˆ ω + ωˆ pr cd n ( El proceso consste, en consecuenc, en hllr cd tercón de Guss-Sedel y ponderrl con el ω elegdo. L secuenc de psos es l sguente: Prmer pso: prtendo de l estmcón ncl (0 se obtene l prmer tercón de Guss-Sedel como se h eplcdo nterormente y se l desgn ( 3 n ˆ ˆ, ˆ, ˆ,,ˆ ( A contnucón, se hll l prmer tercón de sobrerreljcón según l fórmul de dcho método ω + ω ˆ ω ω ( ω + ω ˆ ( (0 ( ( (0 ( ˆ + ( (0 ( n n Undd Docente de Mtemátcs de l ETSITGC Asgntur: Cálculo II 6

7 TEMA : Métodos tertvos de resolucón Segundo pso: con est promcón obtend ( (,, 3,,n segund tercón con Guss-Sedel y l denotmos ˆ ( ( ˆ, ˆ ˆ ˆ, 3,,n se clcul l y se plc l fórmul de sobrerreljcón pr obtener l segund tercón ( (,, 3,,n ω + ω ˆ ω + ω ˆ ( ω + ω ˆ ( ( ( ( ( ( ( ( ( n n y sí sucesvmente. Es decr, en generl: ω + ω ˆ ω + ω ˆ ( ω + ω ˆ ( ( ( n n ( Y desrrollándol completmente: ( ( ( ( b 33 nn ( ( ω + ω ( ( ( ( ˆ b 33 nn ( ω + ω ( b ˆ ˆ ( n n n nn ˆ n n ( ω n + ω nn L ecucón mtrcl del método se obtene prtr de l ecucón de sobrerreljcón ( ( ( ˆ ω + ω L solucón Operndo: ˆ de Guss-Sedel se obtene l despejr (L+D U (- + b en l ecucón L + D U (- + b D - L U (- + b ( D - (- L U (- + b ( ( ( ω ω D ( L U b + + Undd Docente de Mtemátcs de l ETSITGC Asgntur: Cálculo II 7

8 TEMA : Métodos tertvos de resolucón ( D ( ( + + ( D ω ω DD ( L U b D ( ω ω ω ( ( + ( D L U b D ω ω ω ( L+ D U + b El crtero de convergenc (o de prd es el msmo que en los métodos nterores. 5.. Teorem S A es un mtrz smétrc defnd postv y 0 < ω <, entonces pr culquer estmcón ncl (0, ls tercones obtends con el método de sobrerreljcón convergen l únc solucón del sstem ncl S A b. 5.. Estmcón del error Prtendo del sstem A b, se construye el sstem de punto fjo M N+b. Despejndo M - N + M - b y desgnndo por B M - N qued B + M - b y en cd tercón B (- + M - b con n. Restndo membro membro: ( ( B Y, nálogmente, ( + ( B( Aplcndo que en generl b + b, se verfc: ( ( + ( ( + ( ( ( + ( ( + B( B ( ( ( + ( B Clculndo est últm epresón: ( 0 ( + B C B C B B B Susttuyendo rrb, se tene: 0 0 B B B B Undd Docente de Mtemátcs de l ETSITGC Asgntur: Cálculo II 8

9 TEMA : Métodos tertvos de resolucón Sempre que B > 0, es decr, B <. B 0 ( B Undd Docente de Mtemátcs de l ETSITGC Asgntur: Cálculo II 9

TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales

TEMA 2. Métodos iterativos de resolución de Sistemas de Ecuaciones Lineales TEMA : Métodos tertvos de resolucó TEMA. Métodos tertvos de resolucó de Sstems de Ecucoes Leles. Métodos tertvos: troduccó Aplcr u método tertvo pr l resolucó de u sstem S A = b, cosste e trsformrlo e

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Tem : Sstems de ecucones lneles A Condconmento del prolem. Cá álculo umérco Tem : Resolucón de sstems lneles B Métodos terdos: Jco, Guss-Sedel Reljcón C Métodos drectos: Fctorzcón LU Fctorzcón QR D Sstems

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Sstems de Ecucones Lneles www.tgors.es SISTEMS DE ECUCIONES LINELES Estudr un Sstem de Ecucones Lneles S.E.L.) es responder ls pregunts: tene solucón?. s es sí,, cuánts tene cuáles son?. l vst de ests

Más detalles

SISTEMAS DE ECUACIONES LINEALES. TEMA 3. Métodos iterativos para Sistemas de Ecuaciones Lineales

SISTEMAS DE ECUACIONES LINEALES. TEMA 3. Métodos iterativos para Sistemas de Ecuaciones Lineales TEMA3: Métodos tertvos pr Sstems de Ecucoes Leles TEMA 3. Métodos tertvos pr Sstems de Ecucoes Leles 3. Métodos tertvos: troduccó Aplcr u método tertvo pr l resolucó de u sstem S A=b, cosste e trsformrlo

Más detalles

TEMA 4: RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES. MÉTODOS ITERATIVOS.

TEMA 4: RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES. MÉTODOS ITERATIVOS. Tem 4: esolucón de sstems de ecucones lneles y no lneles. étodos tertvos. TEA 4: ESLUCIÓ DE SISTEAS DE ECUACIES LIEALES Y LIEALES. ÉTDS ITEATIVS. 4..- AS VECTIALES Y ATICIALES Tnto en el estudo del condconmento

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reles y Complejos C.. Los números reles Suponemos conocdo el conjunto de los números reles. Vmos defnr y estudr en lgunos conceptos como relcones de orden, ntervlos, cots y vlor bsoluto.

Más detalles

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura

Calcular el equivalente Thevenin y Norton entre los puntos a y b en el circuito de la figura Ejemplos de cálculo de crcutos equlentes. Aplccón de los teorems de Theenn y Norton Clculr el equlente Theenn y Norton entre los puntos y en el crcuto de l fgur Ω 4Ω 3 6Ω L Ω 5Ω V L Pr clculr el equlente

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE NGENEÍA EÉCTCA José Frncsco Gómez González Benjmín González Díz Mrí de l Peñ Fn Bendcho Ernesto Pered de Plo Tem 1: Generlddes y CC en régmen estconro PUNTOS OBJETO DE ESTUDO 3 Generlddes

Más detalles

Práctica 2: Codificación Aritmética.

Práctica 2: Codificación Aritmética. TRANMÓN DE DATO 006/07 Práctc : Codfccón Artmétc. Apelldos, nombre Apelldos, nombre Grupo Puesto Fech 0 Octubre/ Novembre 006 El objetvo de est práctc es ntroducr l lumno en los fundmentos de ls codfccón

Más detalles

EJERCICIOS NÚMEROS COMPLEJOS. 3+4i 20º

EJERCICIOS NÚMEROS COMPLEJOS. 3+4i 20º EJERCICIOS NÚMEROS COMPLEJOS Represent gráfcmente pr: --- -- - -- - - / - Hll ls rones trgonométrcs del ángulo AOB sendo que A es el fjo del complejo ε B el fjo del complejo σ O ˆ â B - ε ; ˆ rg sen ˆ

Más detalles

FUNDAMENTOS TICOS TEMA 5: CÁLCULO INTEGRAL DE FUNCIONES DE UNA Y DOS VARIABLES

FUNDAMENTOS TICOS TEMA 5: CÁLCULO INTEGRAL DE FUNCIONES DE UNA Y DOS VARIABLES FUNDAMENTOS MATEMÁTICOS TICOS TEMA 5: CÁLCULO INTEGRAL DE FUNCIONES DE UNA Y DOS VARIABLES CÁLCULO INTEGRAL DE FUNCIONES DE UNA VARIABLE Integrl defnd Dd un funcón f, exste otr F tl que F = f? Integrcón

Más detalles

INTEGRACION DE ECUACIONES DIFERENCIALES

INTEGRACION DE ECUACIONES DIFERENCIALES INTEGRACION DE ECUACIONES DIFERENCIALES Métodos que no comenzn por s msmos Métodos Numércos G. Pce Edtorl EUDENE -997. Métodos Numércos pr Ingeneros.- Cpr Cnle. Ed. McGrw Hll Intermercn.007. Análss Numérco.-

Más detalles

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo José Frncsco Gómez González Benjmín González Díz Mrí de l Peñ Fn Bendcho Ernesto Pered de Plo PUNTOS OBJETO DE ESTUDO Generlddes Análss de crcutos por el método mtrcl. Teorems de crcutos: Superposcón

Más detalles

Dado el sistema de ecuaciones lineales de la forma

Dado el sistema de ecuaciones lineales de la forma Aálss del Error e Solucó de Sstems de Ecucoes Leles Ddo el sstem de ecucoes leles de l form R A b, dode A ; b R E reldd teemos: A δa δ b δb A Aδ δa δa δ A δb S desprecmosδa δ : δ A - δb δa Métodos Numércos

Más detalles

i = -1 / i = 1 se pueden calcular las raíces de índice par con cantidad subradical negativa, las que no tienen solución en IR. Ejemplos: d) 81 e) 121

i = -1 / i = 1 se pueden calcular las raíces de índice par con cantidad subradical negativa, las que no tienen solución en IR. Ejemplos: d) 81 e) 121 Los números gnros: Clse-15 En hy stucones que no tenen solucón; por ejemplo no exste nngún número cuyo cudrdo se gul -1. Pr dr solucón est stucón recurrremos l conjunto de los números mgnros, donde se

Más detalles

8. 3 2a = 0 a = 3 / 2 3b 4 = 0 b = 4 / 3. Página a) (2, 4) b) (4, 1) c) ( 3, 4) d) (5, 0)

8. 3 2a = 0 a = 3 / 2 3b 4 = 0 b = 4 / 3. Página a) (2, 4) b) (4, 1) c) ( 3, 4) d) (5, 0) TEMA. NÚMEROS COMPLEJOS SOLUCIONES DE LAS ACTIVIDADES Págs. 9 55 Págn 9. S x es un número dferente de 0, x > 0. S x 0, x 0. Por lo tnto, no exste nngún número rel cuyo cudrdo se.. Debe ser menor que 0.

Más detalles

INDICE. Operaciones básicas. Matrices. Matriz cuadrada. Traza de una matriz. Suma y resta de matrices. Producto de matrices.

INDICE. Operaciones básicas. Matrices. Matriz cuadrada. Traza de una matriz. Suma y resta de matrices. Producto de matrices. Fculltd de Cencs Agrrs - MATERIIALL PPREPPARADO PPOR LL cc Mss Scc Abbbb tttt Noorr IInngg Aggrr.. Mss Scc.. Boocc Teerreess IInngg Zoooott.. FFeerrnnáánnddeezz Edduurrddoo IInngg.. Aggrr.. Mss Scc.. PPeerreerr

Más detalles

MATEMÁTICA 4º. Prof. Sandra Corti

MATEMÁTICA 4º. Prof. Sandra Corti L rdccón de se negtv e índce pr no tene solucón en el conjunto de los números reles ( 4; 25, 16, etc.), y que no exste nngún número rel que elevdo un potenc pr dé por resultdo un número negtvo. Se defne

Más detalles

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA

RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA RAÍCES COMPLEJAS DE LAS FUNCIONES CUADRÁTICAS: INTERPRETACIÓN GRÁFICA Hydeé Blnco Insttuto Superor del Profesordo "Dr. Joquín V. González" Buenos Ares (Argentn) RESUMEN En este rtículo se present un form

Más detalles

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Enero de 2011 Cuestiones (Un punto por cuestión). Exmen de Físc-1, 1 Ingenerí Químc Enero de 211 Cuestones (Un punto por cuestón). Cuestón 1: Supong que conocemos l poscón ncl x y l velocdd ncl v de un oscldor rmónco cuy frecuenc ngulr es tmén conocd;

Más detalles

MALLAS EN CIRCUTOS CC

MALLAS EN CIRCUTOS CC LECCIÓN Nº 03 MALLAS EN CICUTOS CC 1. EDES ELECTICAS Cundo los elementos áscos de un crcuto se conectn pr formr un crcuto, l nterconexón resultnte se descre en térmnos de nodos, cmnos, rms, lzos y mlls.

Más detalles

Resolución de sistemas de congruencias

Resolución de sistemas de congruencias Resolucó de sstems de cogruecs E este prtdo veremos cómo utlzr l rtmétc modulr pr resolver u problem muy tguo, coocdo como problem cho de los restos, que reformulremos hor utlzdo el leguje modero de ls

Más detalles

En general puede representarse por : Clase 6 3

En general puede representarse por : Clase 6 3 Encontrar raíces de uncones es uno de los problemas más comunes en ngenería Los métodos numércos para encontrar raíces de uncones son utlzados cuando las técncas analítcas no pueden ser aplcadas. Esto

Más detalles

EJERCICIOS REPASO II

EJERCICIOS REPASO II EJERCICIOS REPASO II Profesor: Jun Antono González Díz Deprtmento Métodos Cuntttvos Unversdd Pblo de Olvde EJERCICIO 4: El S. Sous h percbdo un herenc vlord en 90.000. L entdd que geston el cobro de l

Más detalles

LONGITUD DE ARCO. Una aproximación es una línea recta desde el punto x=a hasta el punto x=b, como se indica en la figura:

LONGITUD DE ARCO. Una aproximación es una línea recta desde el punto x=a hasta el punto x=b, como se indica en la figura: LONGITUD DE ARCO Clculr l longtud de rco o de un curv dd por un funcón f en un ntervlo x, tene muchs plccones en ls cencs. Es necesro que hgmos un reve estudo del cálculo de ells. Un proxmcón es un líne

Más detalles

Interpolación Polinómica

Interpolación Polinómica .- Dd l tbl de vlores: Interpolcón Polnómc - y 7 9 ) Encontrr el splne cúbco nturl que nterpol estos dtos, mponendo ls condcones requerds y resolvendo el sstem. b) Msm cuestón resolvendo prevmente el sstem

Más detalles

Tema 10: Variables aleatorias

Tema 10: Variables aleatorias Análss de Dtos I Esquem del Tem Tem : Vrbles letors. VARIABLES ALEATORIAS DISCRETAS FUNCIÓN DE PROBABILIDAD, f(x ) FUNCIÓN DE DISTRIBUCIÓN, F(x ) CARACTERÍSTICAS DE LAS VARIABLES DISCRETAS UNA VARIABLE:

Más detalles

TEMA: EXPRESIONES ALGEBRAICAS

TEMA: EXPRESIONES ALGEBRAICAS TEMA: EXPRESIONES ALGEBRAICAS CONCEPTO Son quells epresones en ls que ls opercones que se usn son sólo ls de dcón, sustrccón, multplccón, dvsón, potenccón, rdccón entre sus vrbles en un número lmtdo de

Más detalles

ALGEBRA VECTORIAL. cúbico Caudal de volumen Metro cúbico por segundo. m 3 /s CAP Magnitudes físicas. Pág. 1

ALGEBRA VECTORIAL. cúbico Caudal de volumen Metro cúbico por segundo. m 3 /s CAP Magnitudes físicas. Pág. 1 FISI I P 1 LGER VETORIL 11 Mgntudes físcs Ls mgntudes físcs, son ls propeddes que le crctern los cuerpos o los fenómenos nturles que se pueden medr, E: L longtud, l ms, l velocdd, l tempertur, etc Mentrs

Más detalles

TEORÍA DE RENTAS DISCRETAS 1 Rentas Constantes (teoría)

TEORÍA DE RENTAS DISCRETAS 1 Rentas Constantes (teoría) TEORÍA DE RENTAS DISCRETAS 1 Rents Constntes (teorí) Profesor: Jun Antono González Díz Deprtmento Métodos Cuntttvos Unversdd Pblo de Olvde www.clsesunverstrs.com Concepto y clsfccón En generl, un rent

Más detalles

Programación y Métodos Numéricos: Integración Numérica- Fórmulas de de tipo interpolatorio

Programación y Métodos Numéricos: Integración Numérica- Fórmulas de de tipo interpolatorio Progrmcón y Métodos Numércos: Integrcón Numérc- Fórmuls de de tpo nterpoltoro Prof. Crlos Conde LázroL Prof. Arturo Hdlgo LópezL Prof. Alfredo LópezL Mrzo, 27 Deprtmento de Mtemátc Aplcd y Métodos Informátcos

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA (Aputes s revsó pr oretr el predzje) CÁLCULO INTEGRAL LA INTEGRAL DEFINIDA Y LA INTEGRAL INDEFINIDA Sumtor Pr represetr e form revd determdo tpo de sums, se utlz como símolo l letr greg sgm. Ejemplos.

Más detalles

, , ia Prestación real del acreedor Contraprestación real para el acreedor 0, ,6701

, , ia Prestación real del acreedor Contraprestación real para el acreedor 0, ,6701 Determnr los tntos efectvos e un préstmo smple e 0.000 euros, mortzr los ños con un tpo e nterés nul el %, s en l opercón ncen ls sguentes crcterístcs comercles: Gstos crgo el euor en el orgen y l fnl

Más detalles

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 8 FISICA TOMO Tercer y qunt edcón Rymond A. Serwy CIRCUITOS DE CORRIENTE CONTINUA 8. Fuerz electromotrz 8. Resstores en sere y en prlelo 8.3

Más detalles

Métodos computacionales Solución de sistemas de ecuaciones

Métodos computacionales Solución de sistemas de ecuaciones Métodos computconles Solucón de sstems de ecucones Método de Guss Sedel Introduccón Breve repso de métodos drectos Método de Guss Sedel Comprcón de Guss Sedel con Jcob Convergenc del método Conclusones

Más detalles

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- DETERMINANTES MATRIZ INVERSA. Anulamos. pivotando

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- DETERMINANTES MATRIZ INVERSA. Anulamos. pivotando º DE HLLERTO MTRES Y DETERMNNTES Soluones -- DETERMNNTES MTRZ NVERS. lulr el vlor del determnnte. Hllr, en funón de, el vlor del determnnte: en Sndo on votndo nulmos en Sndo ( ( en Sndo ( ( (. Enontrr

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

6. INTERPOLACIÓN POLINOMIAL: SPLINES

6. INTERPOLACIÓN POLINOMIAL: SPLINES 6. INTERPOLACIÓN POLINOMIAL: SPLINES Jorge Edurdo Ortz Trvño jeortzt@unl.edu.o http:/www.doentes.unl.edu.o/jeortzt/ Coeentes de un polnomo de nterpolón Un método dreto pr lulr los oeentes de un polnomo

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Tercera evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Tercera evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 0-03 FÍSICA C Tercer evlucón SOLUCIÓN Pregunt (5 puntos) Un eser conductor con rdo nteror de 7 cm y rdo exteror de 8 cm

Más detalles

Resolución de sistemas lineales por métodos directos

Resolución de sistemas lineales por métodos directos Resolucón de sstemas lneales por métodos drectos Descomposcón LU S la matr del sstema Ax = b se expresa como producto de una matr trangular nferor, L, de una superor, U, la resolucón del msmo se reduce

Más detalles

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y

10 1 deca da 10 2 hecto h 10 3 kilo k 10 6 Mega M 10 9 Giga G Tera T Peta P Exa E Zetta Z Yotta Y Un mgntud es culquer cos que puede ser medd medr no es más que comprr un mgntud con otr de l msm espece que se tom como referenc. Ls mgntudes se epresn con un número uns unddes. En lguns ocsones el número

Más detalles

Aprendizaje en redes neuronales. Inteligencia Artificial Josué Jesús Pedroza Almaguer Profr. Alfonso Garcés Báez BUAP-FCC, Verano 2003

Aprendizaje en redes neuronales. Inteligencia Artificial Josué Jesús Pedroza Almaguer Profr. Alfonso Garcés Báez BUAP-FCC, Verano 2003 Aprendze en redes neuronles. Intelgenc Artfcl Josué Jesús Pedroz Almguer Profr. Alfonso Grcés Báez BUAP-FCC, Verno 2003 Introduccón Como funcon el cerebro Ls neurons Axones Snpss Potencl de ccón, exctdores,

Más detalles

LA RIOJA / JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO

LA RIOJA / JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO LA RIOJA / JUNIO 1. LOGS / FÍSICA / XAMN COMPLTO l luno elegá un de ls opcones de pobles y cuto de ls cnco cuestones popuests. Cd poble puntú sobe tes puntos y cd cuestón sobe uno. Opcón de pobles 1 A.

Más detalles

Matemáticas Avanzadas para Ingeniería Convergencia de Series de Potencias

Matemáticas Avanzadas para Ingeniería Convergencia de Series de Potencias Mateátcas Avanzadas para Ingenería Convergenca de Seres de Potencas. Para la sere de potencas + ( + 2 + z) ( + ) = converge sólo para su centro z o = 2 + 3 y rado R = 4 Tenendo la varable z, teneos una

Más detalles

Te c n o l o g í a d e l o s S e r v i c i o s A u x i l i a r e s - A p u n t e s d e C l a s e - 1

Te c n o l o g í a d e l o s S e r v i c i o s A u x i l i a r e s - A p u n t e s d e C l a s e - 1 ENTALPA NORMAL DE FORMACÓN : f L entlpí norml de formcón de un compuesto es el clor que se extre durnte su reccón de formcón sempre que se mnteng constnte l presón durnte todo el proceso y ls temperturs

Más detalles

I Resolución de sistemas de ecuaciones lineales

I Resolución de sistemas de ecuaciones lineales ESCUELA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS I Resolución de sistems de ecuciones lineles Objetivo: El lumno deberá tener

Más detalles

PRÉSTAMOS HIPOTECARIOS J 12 = 4,5 % (NOMINAL) T.A.E. 4,6386 %

PRÉSTAMOS HIPOTECARIOS J 12 = 4,5 % (NOMINAL) T.A.E. 4,6386 % Escuel Técnc Superor de Informátc Convoctor de Juno - Prmer Semn Mterl Auxlr: Clculdor fnncer GESTIÓN FINANCIERA 5 de Myo de 7-8,3 hors Durcón: hors. Ley de descuento compuesto: expresón mtemátc, vlor

Más detalles

OCW-V.Muto Técnicas iterativas para resolver sistemas lineales Cap. XVII CAPITULO XVII. TECNICAS ITERATIVAS PARA RESOLVER SISTEMAS LINEALES

OCW-V.Muto Técnicas iterativas para resolver sistemas lineales Cap. XVII CAPITULO XVII. TECNICAS ITERATIVAS PARA RESOLVER SISTEMAS LINEALES CAPITULO XVII. TECNICAS ITERATIVAS PARA RESOLVER SISTEMAS LINEALES. INTRODUCCION Y METODO Una técnca teratva para resolver un sstema lneal A x = b de n n empeza con una aproxmacón ncal x (0) a la solucón

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información

Lenguaje humano. Representación de la información. Utiliza un conjunto de símbolos alfanuméricos. Puede representar Información Leguje humo Represetcó de l formcó Utlz u cojuto de símbolos lfumércos Crcteres lfbétcos:, B, C,.Z,, b, c,...z Símbolos umércos 9 sgos de putucó... Puede represetr Iformcó umérc lfumérc Leguje del ordedor

Más detalles

Ondas y Rotaciones. Dinámica de las Rotaciones V

Ondas y Rotaciones. Dinámica de las Rotaciones V Hoj de Trjo Onds Rotcones Dnámc de ls Rotcones V Jme Felcno Hernández Unversdd Autónom etropoltn - ztplp éco, D. F. de gosto de 0 A. ACTVDAD NDVDUAL. En est Hoj de trjo veremos otro conjunto de prolems

Más detalles

MICROSOFT EXCEL EN LA SOLUCIÓN DE PROBLEMAS DE ÁLGEBRA LINEAL

MICROSOFT EXCEL EN LA SOLUCIÓN DE PROBLEMAS DE ÁLGEBRA LINEAL Revst Pedgogí Unverstr Vol. 8 o. MICROSOFT EXCEL E LA SOLUCIÓ DE PROBLEMAS DE ÁLGEBRA LIEAL Lc. Mrels Rsú López Proesor Asstente Dpto Mtemátcs Comptcón ISMM mrs@smm.ed.c RESUME El objetvo del presente

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y ENUNCADOS DE LOS EJERCCOS PROPUESTOS EN 011 EN MATEMÁTCAS APLCADAS A LAS CENCAS SOCALES. EJERCCO 1 a (5 puntos Raconalce las epresones y. 7 b (5 puntos Halle el conjunto de solucones de la necuacón EJERCCO

Más detalles

Uno de los problemas que dio origen al concepto de integral definida fue de origen geométrico:

Uno de los problemas que dio origen al concepto de integral definida fue de origen geométrico: Mtemátc II 7 Modulo 5 Integrcón. L ntegrl defnd Uno de los prolems que do orgen l concepto de ntegrl defnd fue de orgen geométrco: Hllr el áre de un regón pln lmtd por l gráfc de un funcón f() postv y

Más detalles

Análisis Poblacional de Mulliken y Löwdin

Análisis Poblacional de Mulliken y Löwdin nálss Poblconl de Mullken y Löwdn Densdd de Mtrz de crg (defncón): consderemos el cso de cp cerrd entonces sbemos que l probbldd de encontrr un electrón en l poscón r en el entorno dr que est en un orbtl

Más detalles

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales

Métodos Matemá5cos en la Ingeniería Tema 1. Ecuaciones no lineales Métodos Matemá5cos en la Ingenería Tema. Ecuacones no lneales Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

(4 3 i)(4 3 i)

(4 3 i)(4 3 i) E.T.S.I. Industrales y Telecomuncacón Curso 00-0 Grados E.T.S.I. Industrales y Telecomuncacón Asgnatura: Cálculo I Ejerccos resueltos Calcular el valor de a y b para que b a 4 sea real y de módulo undad

Más detalles

C Capacitores e inductores. Circuitos de Primer Orden

C Capacitores e inductores. Circuitos de Primer Orden C Cpctores e nductores. Crcutos de Prmer Orden C El crcuto que se muestr en l fgur c h llegdo ls condcones de estdo estle ( l corrente en el cpctor es cero ) con el nterruptor en l poscón. S el nterruptor

Más detalles

Práctica 4ª: RESOLUCIÓN DE SISTEMAS LINEALES. METODOS ITERATIVOS.

Práctica 4ª: RESOLUCIÓN DE SISTEMAS LINEALES. METODOS ITERATIVOS. practca4srnb Apelldos Nombre: Práctca 4ª: RESOLUCIÓN DE SISTEMAS LINEALES METODOS ITERATIVOS Normas vectorales normas matrcales Número de condcón de una matr Cuando se construe una sucesón de vectores

Más detalles

Universidad Técnica Federico Santa María

Universidad Técnica Federico Santa María Unversdd Técnc Federco Snt Mrí Vrles Aletors Cpítulo 5: Vrles Aletors Dstrucones stdístc Computconl II Semestre Profesor : Héctor Allende Págn : www.nc.nf.utfsm.cl/~hllende e-ml : hllende @nf.utfsm.cl

Más detalles

UNIVERSIDAD DIEGO PORTALES Instituto de Ciencias Básicas. Álgebra Lineal. Isabel Arratia Zárate

UNIVERSIDAD DIEGO PORTALES Instituto de Ciencias Básicas. Álgebra Lineal. Isabel Arratia Zárate UNIVERSIDD DIEGO PORTLES Insttuto de Cencs Báscs Álgebr Lnel Isbel rrt Zárte Mtrces y Sstems de ecucones lneles [Versón prelmnr] Un mtrz con componentes en un cuerpo es un rreglo en fls y columns de elementos

Más detalles

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel Conceptos báscos de optmzacón Problemas de Optmzacón Prof. Cesar de Prada Dpt. Ingenería de Sstemas y Automátca UVA prada@autom.uva.es mn J() h() = g() Problema general NPL Para encontrar una solucón al

Más detalles

Métodos Numéricos. Resolución de sistemas de ecuaciones

Métodos Numéricos. Resolución de sistemas de ecuaciones Al flzr est udd el prtcpte estrá e cpcdd de resolver u sstem de ecucoes leles o o leles de ecucoes co cógts por los métodos drectos e tertvos. Itroduccó Prolem clásco del álger lel: se quere solucor u

Más detalles

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO.

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. Dado un numero n de puntos del plano ( a, b ) es posble encontrar una funcón polnómca

Más detalles

Problemas de Dinámica del Sólido Rígido

Problemas de Dinámica del Sólido Rígido E.T.S... T Deprtento de ísc e ngenerí ucler robles de Dnác del Sóldo ígdo 1 étodo de ls celercones étodo de los oentos 3 étodo de l energí ro. J. rtín 3 1 étodo de ls celercones 1.1 Un plc rectngulr unore

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

1. Definición. Formas de definir una sucesión.

1. Definición. Formas de definir una sucesión. . Definición. Forms de definir un sucesión. Un sucesión es un plicción que nos relcion los números nturles con un conjunto, de form que orden los elementos de tl conjunto. Ejemplos:. : selección espñol

Más detalles

METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil

METODOS NUMERICOS CATEDRA 0 6. Ingeniería Civil ING.CRISTIANCASTROP. Facultad de Ingeniería de Minas, Geología y Civil ING.CRISTIANCASTROP. CATEDRA 0 6 Facultad de Ingenería de Mnas, Geología Cvl Departamento académco de ngenería de mnas cvl METODOS NUMERICOS Ingenería Cvl ING.CRISTIANCASTROP. Captulo VI Sstema de Ecuacones

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Máximos y mínimos de una función real de dos variables reales

Máximos y mínimos de una función real de dos variables reales Mámos mínmos de una uncón real Dencón Sea D una regón del plano Sea :D R Se dce que alcanza su valor mámo absoluto M en un punto P =, ) D cuando M =, ),),) D Se dce que tene un mámo relatvo en un punto

Más detalles

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel...

5 Métodos iterativos para la resolución de ecuaciones algebraicas lineales Método de Gauss-Jacobi Método de Gauss-Seidel... CONTENIDO 5 Métodos teratvos para la resolucón de ecuacones algebracas lneales 95 5.1 Método de Gauss-Jacob................................ 95 5.2 Método de Gauss-Sedel................................

Más detalles

Minimizando el error cuadrático medio se calculan los coeficientes a k : [ ] a, queda [ ] [ ] = [ ] [ ]

Minimizando el error cuadrático medio se calculan los coeficientes a k : [ ] a, queda [ ] [ ] = [ ] [ ] TCNOLOGÍ DL HBL. CUSO 9/ TM : PDICCIÓN LINL. Los vlores de se uede romr or u combcó lel de ls últms muestrs. co.. Método de l utocorrelcó. rror e Mmzdo el error cudrátco medo se clcul los coefcetes : e

Más detalles

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante

POLINOMIOS ORTOGONALES Apuntes y Ejercicios RESUMEN DE CONTENIDOS POLINOMIOS ORTOGONALES. Se define, en primer lugar, el operador proyección mediante Uversdd de Stgo de Chle Fcultd de Cecs Deprtmeto de Mtemátcs y Cecs de l Computcó Aputes y Ejerccos RESUMEN DE CONTENIDOS. Recordr: Proceso de ortogolzcó de Grm-Schmdt: Se defe, e prmer lugr, el operdor

Más detalles

Ejercicios T2- ANÁLISIS DE DATOS UNIDIMENSIONALES

Ejercicios T2- ANÁLISIS DE DATOS UNIDIMENSIONALES Ejerccos T- NÁLII DE DTO UNIDIMENIONLE.- El número de clentes qe cden n estblecmento en cert hor hn sdo lo lrgo del últmo mes h sdo:,,,,7,,,,,,6,,6,,8,,,,,6,,8,,9,,,, Representr l tbl de frecencs, el dgrm

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un epermento, un número real.

Más detalles

En este capítulo se describe el problema de máxima cobertura sin capacidad (MCLP) y con

En este capítulo se describe el problema de máxima cobertura sin capacidad (MCLP) y con CAPITULO 3 Descrcón del roblem En este cítulo se descrbe el roblem de mám cobertur sn ccdd (MCLP) con ccdd (CMCLP). Posterormente se resentn los modelos de rogrmcón mtemátc r mbos. 3.1 Descrcón del MCLP

Más detalles

MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA

MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA MICROTÚBULOS, FUNCIONES CEREBRALES Y LA MECÁNICA CUÁNTICA Dr. José A. Peñlbert Unversdd de Puerto Rco en Croln Deprtmento de Cencs Nturles Introduccón Hn surgdo un sere de teorís sobre el funconnmento

Más detalles

ESTIMACIÓN DE DEMANDA DE TRANSITO EN CARRETERAS COMBINANDO ESTUDIOS ORIGEN-DESTINO CON AFOROS

ESTIMACIÓN DE DEMANDA DE TRANSITO EN CARRETERAS COMBINANDO ESTUDIOS ORIGEN-DESTINO CON AFOROS ISS 088797 ESIMACIÓ DE DEMADA DE RASIO E CARREERAS COMBIADO ESUDIOS ORIGEDESIO CO AFOROS Roberto de l LLt Gómez Publccón écnc o. 5 Snfndl, Qro, 99 SECREARIA DE COMUICACIOES Y RASPORES ISIUO MEXICAO DEL

Más detalles

El estudio de los determinantes será el hilo conductor de la unidad, los alumnos aprenderán a trabajar con ellos y comprobarán

El estudio de los determinantes será el hilo conductor de la unidad, los alumnos aprenderán a trabajar con ellos y comprobarán DETERMINANTES El estudo de los deternntes será el lo conductor de l undd, los lunos prenderán trbjr con ellos y coprobrán su plccón en l resolucón de probles y en prtculr en l resolucón de sstes de ecucones

Más detalles

DESARROLLO DE UN SOFTWARE EN

DESARROLLO DE UN SOFTWARE EN DESARROO DE UN SOFTWARE EN EEMENTOS FINITOS COMPATIBE CON GID PARA RESOUCIÓN DE PROBEMAS EÁSTICO INEAES. Verónc Gllego Otlvro Coordndor Sntgo Corre Grupo de Bongenerí EAFIT //9 Contendo INTRODUCCIÓN...

Más detalles

Factorizar un polinomio consiste en convertir un polinomio en un producto de expresiones algebraicas.

Factorizar un polinomio consiste en convertir un polinomio en un producto de expresiones algebraicas. Fctorizr un polinomio consiste en convertir un polinomio en un producto de epresiones lgebrics. Cso 1. Monomio como fctor común. Un polinomio tiene fctor común sí y sólo sí todos los términos del polinomio

Más detalles

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3 8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7

Más detalles

4. Movimiento Relativo: Sistemas de Coordenadas en Rotación (SCR)

4. Movimiento Relativo: Sistemas de Coordenadas en Rotación (SCR) DINMIC PR INGENIERI: NOTS DE CLSE 4. Momento Relto: Sstems e Coorens en Rotcón (SCR) Ultm resón 31052005 En este ocumento se presentn l euccón e l ecucón generl el momento relto. L plccón e est ecucón

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a

es toda la línea determinada por estos dos puntos, mientras que el conjunto de todas las combinaciones convexas es el segmento de línea que une a 5 dsttos Cosecuetemete el cojuto de tods ls combcoes fes de dos putos R es tod l líe determd por estos dos putos metrs que el cojuto de tods ls combcoes coves es el segmeto de líe que ue y. Obvmete cd

Más detalles

Procesamiento de Imágenes Satelitales. Clase Teórico

Procesamiento de Imágenes Satelitales. Clase Teórico Proesmento de Imágenes Steltles Clse Teóro ro-prát Nro. Georreferenón L georreferenón de mágenes steltles es el proeso mednte el ul se dot de vldez rtográf un mgen dgtl orrgendo geométrmente l posón de

Más detalles

ANÁLISIS EXPERIMENTAL DE ESTRUCTURAS RESPUESTA SÍSMICA DE UNA ESTRUCTURA MÉTODO MODAL ESPECTRAL

ANÁLISIS EXPERIMENTAL DE ESTRUCTURAS RESPUESTA SÍSMICA DE UNA ESTRUCTURA MÉTODO MODAL ESPECTRAL ANÁISIS EXPERIMENTA DE ESTRUCTURAS RESPUESTA SÍSMICA DE UNA ESTRUCTURA MÉTODO MODA ESPECTRA CONCEPTOS ACCIÓN SÍSMICA r ESPECTRO DE RESPUESTA PROCEDIMIENTO DETERMINISTA O ESTOCÁSTICO. MODEO DINÁMICO - MASAS

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles