EL TEOREMA EGREGIUM. Introducción

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EL TEOREMA EGREGIUM. Introducción"

Transcripción

1 CARLOS S CHIEA EL TEOREMA EGREGIUM DE GAUSS Itoduccó Joha Ca Fedch Gauss (30 de ab de de febeo de 855) e sus Dsqustoes eeaes cca supefces cuvas de 88 expoe e teoea coocdo coo eeo Eeu que ha tedo otabes cosecuecas e e desaoo de a posteo eoetía dfeeca E teoea e esue vee a poba que s dos supefces so supepobes a ua sobe a ota (soétcas) tee a sa cuvatua tota e dos putos coespodetes Esto es que s a puto P de ua de as supefces e coespode e puto P de a ota etoces a cuvatua aussaa (tota) e P es a sa que e P Dcho de oto odo e teoea vee a dca que e as fexoes de ua supefce que o supoa datacó cotaccó o asadua se cosevaá a cuvatua tota poducto de as cuvatuas pcpaes e e puto de efeeca Puesto que e estas fexoes se coseva as dstacas se cosevaá tabé os coefcetes de a pea foa fudaeta (teso étco) po o que se cosevaá tabé cuaque ete que depeda de eos S oaos poba que a cuvatua tota K depede excusvaete de os coefcetes dcados y de sus devadas quedaá pues pobado que dcha cuvatua se atee vaate e as fexoes La foa e a que expoeos aquí e teoea cosste speete e poba que a cuvatua tota de Gauss depede soaete de os coefcetes de a pea foa fudaeta de a teoía de supefces y de sus devadas esto es de teso étco y de sus devadas Paa eo obtedeos a ecuacoes de Codazz-Maad y Gauss Codazz coo paso pevo

2 CARLOS S CHIEA La cuvatua tota o de Gauss Paa ua supefce cuaquea dfeecabe ( x( u u ) y( u u ) z( u u )) du du du du esto es: 3 S : R R expesada po se tee que d S aaos a vecto utao oa a os vectoes taetes y se defe etoces as dos foas fudaetaes de suete odo: ª foa fudaeta: I ds d d du du du du aado se tee: ª foa fudaeta: I du du du du II d d du du du du aado se tee: II du du du du La cuvatua tota o de Gauss e e puto P vee dada po K dode so y as cuvatuas pcpaes de a supefce e dcho puto P (paa a deostacó ve e atícuo sobe a Idcatz de Dup e )

3 CARLOS S CHIEA E tedo e cada puto de a supefce: E cada puto de a supefce podeos cosdea e tedo foado po os vectoes eaete depedetes { } cupe que: e dode obvaete se 0 ( e eea) 0 Puesto que e tedo costtuye ua base de espaco tdesoa todo vecto v puede expesase coo cobacó ea de eos: v α α 3 α e patcua as devadas pacaes de os sos vectoes de a base: 3 3 α α α β β β A aaza as popedades de os coefcetes de estas útas expesoes se obtee de foa atua as aadas Ecuacoes de Gauss paa a expesó de as y Ecuacoes de Weate paa a expesó de Las ecuacoes de Gauss paa as devadas pacaes de os vectoes báscos taetes: Sabeos po defcó de síboos de Chstoffe de ª espece (ve Cácuo dfeeca absouto e espacos eucdaos paas 8 y 9 e esta sa web) que as devadas pacaes de os vectoes de ua base { } puede expesase e fucó de estos sos vectoes edate os síboos de Chstoffe: 3 Γ y coo sabeos que e dcha base es 0 y tabé ( : coefcetes de a ª foa fudaeta) se tee e deftva: Γ (Ecuacoes de Gauss) 3

4 CARLOS S CHIEA 4 De foa desaoada: Γ Γ Γ Γ (Ecuacoes de Gauss) Las ecuacoes de Wate paa as devadas pacaes de vecto utao oa: Puesto que es utao (óduo costate e ua a a udad) se tee: aes pepedcu u u 0 0 ) ( / R copaao co E deftva se tee que Podeos obtee a expesó de as coodeadas e fucó de os coefcetes ps de abas foas fudaetaes edate e suete Teoea: Se vefca as expesoes (Ecuacoes de Weate) Deostacó: Basta utpca a eacó po po y : Resovedo edate a Rea de Cae:

5 CARLOS S CHIEA (*) Po tato se vefca a ecuacoes Las ecuacoes de Weate po tato os da as devadas pacaes de vecto oa e cada puto coo cobacó ea de os vectoes taetes co as coodeadas e fucó de os coefcetes de as dos foas fudaetaes La uadad de as devadas seudas de os vectoes taetes Heos vsto e os dos apatados ateoes que as Ecuacoes de Gauss os da as devadas pacaes de os vectoes taetes coo cobacó ea de os vectoes de a base de espaco tdesoa costtuda po tedo óv { } y as Ecuacoes de Weate os da as devadas pacaes de vecto oa tabé coo cobacó ea de dchos vectoes Los coefcetes e e pe caso queda expesados e fucó de os síboos de Chstoffe de ª espece y coefcetes de a seuda foa fudaeta y e e caso de as ecuacoes de Weate e fucó de os coefcetes de abas foas fudaetaes S cosdeaos a uadad de as devadas seudas y podeos obtee a detfca coefcetes dos coutos de ecuacoes que aaeos Ecuacoes de Gauss-Codazz y Ecuacoes de Codazz-Maad que os petá ya evdeca a afacó de Teoea Eeo 5

6 CARLOS S CHIEA Patos de a expesó Γ Así devado a expesó de co especto a u se tee: Γ ( Γ ) ( ) ( Γ ) ( ) Γ Y obteeos e deftva paa a expesó de v : v Γ Γ Po aaoía a expesó de v seá: Iuaado abas expesoes: Γ Γ Γ Γ Γ 0 (**) Las Ecuacoes de Codazz-Maad Se obtee de uaa a ceo e coefcete de vecto oa e (**): Γ Γ 0 Estas ecuacoes so détcaete uas s 6

7 CARLOS S CHIEA Po ota pate esuta a sa ecuacó s que s Esto quee dec que soaete hay dos ecuacoes: Γ Γ Paa : Γ Γ 0 Paa : Γ Γ 0 (Ecuacoes de Codazz-Maad) 0 Las ecuacoes de Gauss-Codazz Se obtee a uaa a ceo os coefcetes de os vectoes báscos e (**): Así e coefcete de vecto : Γ o be: Y e coefcete de vecto : Γ O be: Γ Γ Γ 0 Γ Γ 0 Γ Γ Γ Γ Γ 0 Γ Γ Γ Se tee e deftva as ecuacoes de Gauss-Codazz: Γ Γ Γ Γ Γ Γ 7

8 CARLOS S CHIEA E Teoea eeu La cuvatua tota K depede excusvaete de os coefcetes de a pea foa fudaeta y de sus devadas Deostacó: S haceos e as ecuacoes de Gauss-Codazz se tee: Γ Γ Γ Γ Γ Γ Susttuyedo os coefcetes e a pea y e a seuda po as expesoes que fua e as ecuacoes de Weate (*) se tee que Γ Γ Γ Γ Γ Γ Es dec se cupe que Γ Γ Γ Γ Γ Γ y puesto que a cuvatua tota es as dos ecuacoes: K podeos expesa desde cuaquea de K K Γ Γ Γ Γ Γ Γ 8

9 CARLOS S CHIEA Esto os dce que a cuvatua tota depede de a étca (coefcetes de a pea foa fudaeta) y de os síboos de Chstoffe de ª espece os cuaes depede tabé de a étca y de sus devadas 9

TEMA 6 VALORACIÓN FINANCIERA DE RENTAS (III)

TEMA 6 VALORACIÓN FINANCIERA DE RENTAS (III) Facultad de.ee. Dpto. de Ecooía Facea I Dapostva Mateátca Facea TEMA 6 VALORAIÓN FINANIERA DE RENTAS III. Faccoaeto atétco y faceo de ua eta 2. Retas faccoadas 3. Retas cotuas Facultad de.ee. Dpto. de

Más detalles

Espacio Euclídeo real n-dimensional TEOREMA DE WEIERSTRASS

Espacio Euclídeo real n-dimensional TEOREMA DE WEIERSTRASS Espaco Euclídeo eal -desoal TEOREMA DE WEERSTRASS Se geealza peaete a R el pcpo de ecaje de ato e R que es el stueto paa deosta el teoea del puto de acuulacó o de Bolzao- Weestass del que se deduce el

Más detalles

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica CDENADAS VECTIALES DE LS SISTEAS DE FUEZAS Se etede po sstema de fuezas a u cojuto de fuezas como se dca La esultate geeal del sstema se obtee sumado los vectoes equpoletes de cada ua de las compoetes

Más detalles

MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMENTOS

MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMENTOS Julo Olva Coteo Estadístca TEMA 6 MEDIDA DE FORMA: AIMETRÍA Y CURTOI. MOMETO. Moetos de ua dstbucó Los oetos de ua dstbucó so eddas obtedas a pat de todos sus datos y de sus fecuecas absolutas. Estas eddas

Más detalles

1.3. Longitud de arco.

1.3. Longitud de arco. .. Logtud de arco. Defcó. Sea C ua curva suave defda paramétrcamete por la fucó vectoral f : R R / f () t = ( f() t, f() t,, f ( t) ) e el espaco R, co t [ a, b], que se recorre exactamete ua vez cuado

Más detalles

Ondas y Rotaciones. Dinámica de las Rotaciones III

Ondas y Rotaciones. Dinámica de las Rotaciones III Hoja de Tabajo Odas y Rotacoes Dáca de las Rotacoes Jae Felcao Heádez Uesdad Autóoa Metopoltaa - ztapalapa Méxco, D. F. 5 de agosto de 0 NTRODUCCÓN. Cosdeeos ua patícula de asa y cuya poscó (especto a

Más detalles

Solución Práctica Evaluable 2. Oligopolio y Competencia Monopolística. 16/11/2012

Solución Práctica Evaluable 2. Oligopolio y Competencia Monopolística. 16/11/2012 Solucó Práctca Evaluable. Olgopolo y Copeteca Moopolístca. 6//0 Cosdere u olgopolo de Courot co epresas que produce u be hoogéeo. La fucó versa de deada es p ) = 0 y todas las epresas tee el so coste argal

Más detalles

IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti. Serie 3

IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti. Serie 3 E Medteáeo de Málaga olucó Juo Jua Calos loso Gaoatt ee.- Dga aa qué alo del aáeto los laos π :, π : π : tee coo teseccó ua ecta. [ utos] Tee coo teseccó ua ecta cuado el sstea que foa sea coatle deteado

Más detalles

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple:

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple: CAMPO LCTRICO Cosdeemos e pcpo ua stuacó deal: l Uveso está vacío y o exste ada supogamos ue e el ceto de ese Uveso colocamos ua caga putual podemos pegutaos: Sufe algú cambo el Uveso? S o exste ota caga

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu y Tea 5: Equlbro Geeral Parte III OWC Ecooía para Mateátcos Ferado Perera Tallo ttp://bt.ly/8l8ddu Esteca de Equlbro Ferado Perera-Tallo A lo largo de esta presetacó os vaos a cocetrar e espacos Eucldos,

Más detalles

MANUAL DE PRÁCTICAS DE LABORATORIO DE HIDRÁULICA PROPAGACIÓN DE ERRORES. Escuela de Geociencias y Medio Ambiente

MANUAL DE PRÁCTICAS DE LABORATORIO DE HIDRÁULICA PROPAGACIÓN DE ERRORES. Escuela de Geociencias y Medio Ambiente ANUAL DE PRÁCTICAS DE LABORATORIO DE HIDRÁULICA 35 ANEXO A5 PROPAGACIÓN DE ERRORES Ramo abello Péez Escuela de Geocecas y edo Ambete 36 ANEXO 5 A5 PROPAGACIÓN DE ERRORES Tomado de la Ref. [0] Las magtudes

Más detalles

5 Puntos, rectas y planos en el espacio

5 Puntos, rectas y planos en el espacio 5 Putos, ectas y paos e e espacio Págia 145 Geometía eíptica a) Sea R 1 y R ectas e a geometía eíptica, y S a supeficie esféica. R 1 = π 1 S; R = π S Como os dos paos pasa po e ceto, se cota, uego π 1

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES Espacios Vectoiales Heamietas ifomáticas paa el igeieo e el estudio del algeba lieal. ESPACIOS VECTORIALES.. ESTRUCTURA DE ESPACIO VECTORIAL... Defiició..2. Ejemplos de espacios vectoiales..3. Popiedades

Más detalles

DISEÑO ÓPTIMO DE DIAGRAMAS EWMA.

DISEÑO ÓPTIMO DE DIAGRAMAS EWMA. Saber, Uversdad de Orete, Veeuela.Vol. 2. Nº 2: 44-49. (2000) DISEÑO ÓPTIMO DE DIAGRAMAS EWMA. NELSON BRACHO Departaeto de Estadístca Uversdad de Orete. RESUMEN E este artículo se descrbe el esquea de

Más detalles

ANEXO D. Cálculo del cortante basal

ANEXO D. Cálculo del cortante basal Cálculo del cortate basal CÁLCULO DEL CORANE BASAL El cálculo del cortate basal perte deterar la fuerza lateral total coo cosecueca de las fuerzas erca que se duce a u sstea de N rados de lbertad, dstrbuyédolo

Más detalles

ESTUDIO DE LA CONSISTENCIA

ESTUDIO DE LA CONSISTENCIA 6. ESTUDIO DE LA COSISTECIA 76 Caítulo 6 ESTUDIO DE LA COSISTECIA 6.. DESARROLLOS DE TAYLOR. Este caítulo tee coo obeto eseta u ocedeto de aálss geéco aa el estudo de la cossteca. Este ocedeto os ayudaá

Más detalles

8- Estimación puntual

8- Estimación puntual Pate stmacó putual Pof. Maía B. Ptaell 8- stmacó putual 8. Itoduccó Supogamos la sguete stuacó: e ua fábca se poduce atículos el teés está e la poduccó de u día específcamete de todos los atículos poducdos

Más detalles

3.5 OPERADORES DIFERENCIALES EN COORDENADAS CURVILÍNEAS ORTOGONALES.

3.5 OPERADORES DIFERENCIALES EN COORDENADAS CURVILÍNEAS ORTOGONALES. .5 OPERADORES DIFERENCIALES EN COORDENADAS CURVILÍNEAS ORTOGONALES..5. Opeado en coodenadas cuvíneas. Opeado naba en coodenadas catesanas: j + + x y z La foa de este opeado en coodenadas cuvíneas (no necesaaente

Más detalles

Espacios con producto interior

Espacios con producto interior Espacos co producto teror [Versó prelmar] Prof. Isabel Arrata Z. Algebra Leal E esta udad, todos los espacos ectorales será reales Sea V u espaco ectoral sobre. U producto teror (p..) e V es ua fucó

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Números Complejos PREGUNTAS MÁS FRECUENTES. Qué es la udad magara? Es u elemeto del que coocemos úcamete su cuadrado:.obvamete, o se trata de u úmero real.. Qué es u úmero complejo?

Más detalles

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór Capítulo 4 Iterpolacó polomal de Hermte E determadas aplcacoes se precsa métodos de terpolacó que trabaje co datos prescrtos de la fucó y sus dervadas e ua sere de putos, co el objeto de aumetar la aproxmacó

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍ NLÍTIC PLN / Ecuaciones de la ecta Un punto y un vecto Dos puntos Un punto y la pendiente,,,,,, Coodenadas del vecto diecto ECUCION VECTORIL (x, y) (p, p ) + τ (v, v ) ECUCION PRMETRIC x p + τ

Más detalles

LOS SIMBOLOS DE CHRISTOFFEL

LOS SIMBOLOS DE CHRISTOFFEL CRLOS S. CHINE LOS SIMBOLOS DE CHRISTOFFEL Lo íbolo ue etudao auí fueon ntoducdo en la ateátca, a fnale del lo XIX, o el aleán Elwn Buno Ctoffel (89 900, ue fue, unto con Benad Reann, el eo en etablece

Más detalles

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 2017 ÁLGEBRA II (LSI PI) UNIDAD Nº 5 RANSFORMACIONES LINEALES Facultad de Cecas Exactas y ecologías UNIERSIDAD NACIONAL DE SANIAGO DEL ESERO aa Error! No hay texto co el estlo especfcado e el documeto

Más detalles

3.5 Factores y Coeficientes de Forma

3.5 Factores y Coeficientes de Forma Autoes: Patco Covalá Vea Jame eáez Palma 3.5 Factoes y Coecetes e Foma A es el slo XIX, Towa esaolla la ea e los actoes e oma como ua espuesta a las cultaes suas el uso e los sólos e evolucó. La ea e Towa

Más detalles

FEM-OF: EDP Elíptica de 2 Orden

FEM-OF: EDP Elíptica de 2 Orden 9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk

Más detalles

mientras que si la valoración se realiza al final de la operación entonces se denomina valor final y se simboliza por V

mientras que si la valoración se realiza al final de la operación entonces se denomina valor final y se simboliza por V Retas Fiacieas. aloació de ua eta 2. ALORACIÓN DE UNA RENTA: ALOR ACTUAL Y ALOR FINAL aloa ua eta e el dieiieto T cosiste e halla la sua del valo iacieo, e dicho dieiieto, de cada uo de los capitales que

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003 CÁLCULO Pime cuso de Igeieo de Telecomuicació Pime Exame Pacial. 7 de Eeo de 3 Ejecicio. Deducilafómuladeláeadeusegmetopaabólico e fució de su base y su altua. Se cosidea u coo cicula ecto co adio de la

Más detalles

GUÍA DE EJERCICIOS. Área Matemática Álgebra lineal

GUÍA DE EJERCICIOS. Área Matemática Álgebra lineal GUÍA DE EJERCICIOS Área Matemátca Álgebra leal Resultados de apredzaje. Recoocer exsteca de subespaco vectoral. Cotedos 1. Espacos vectorales. 2. Subespacos vectorales. Debo saber Se debe recordar que

Más detalles

CAPÍTULO 6 TEOREMAS ENERGÉTICOS

CAPÍTULO 6 TEOREMAS ENERGÉTICOS CPÍTULO 6 TEORES ENERGÉTICOS L ENERGÍ ELÁSTIC EXPRESD EN UNCIÓN DE LS CRGS PLICDS Hasta ahoa, habíamos utlao la sguete epesó e la esa e eegía elástca: ( σ ε σ ε σ ε τ γ τ γ τ γ ) ω Que, tegaa a lo lago

Más detalles

EXÁMENES DE CURSOS ANTERIORES

EXÁMENES DE CURSOS ANTERIORES EXÁMENES DE CURSOS NTERIORES CURSO 8 LOQUE. GEOMETRÍ EXMEN. Geoetía afín euclídea en el epacio tidienional. RECUPERIÓN EXMEN. Geoetía afín euclídea en el epacio tidienional. º CT. MTEMÁTICS II. LOQUE.

Más detalles

Capítulo 2 Análisis de datos (Bivariados( Bivariados) Estadística Computacional I Semestre 2006 Parte II

Capítulo 2 Análisis de datos (Bivariados( Bivariados) Estadística Computacional I Semestre 2006 Parte II Uvesdad Técca Fedeco Sata Maía Uvesdad Técca Fedeco Sata Maía Depatameto de Iomátca ILI-80 Capítulo Aálss de datos (Bvaados( Bvaados) Estadístca Computacoal I Semeste 006 Pate II Poesoes: Calos Valle (cvalle@.utsm.cl)

Más detalles

EJERCICIOS SOBRE VECTORES

EJERCICIOS SOBRE VECTORES EJERCICIOS SOBRE VECTORES 1) Dados los puntos A = ( 2, 1,4) ( 3,1, 5) uuu vecto AB B =, calcula las componentes del 2) Dados los puntos A = ( 2, 1,4), B = ( 3,1, 5) ( 4,2, 3) C =, detemina las uuu uuu

Más detalles

Bolilla 4: Rotación de los cuerpos rígidos. Movimiento circular

Bolilla 4: Rotación de los cuerpos rígidos. Movimiento circular Bollla 4: Rotacó de los cueos ígdos. Movmeto ccula Bollla 4: Rotacó de los cueos ígdos. Movmeto ccula 4. Vaables Agulaes Las vaables agulaes sve aa eeseta e foma mas smle e dóea al movmeto de otacó. La

Más detalles

M PRY PUE /08

M PRY PUE /08 M PRY PUE 4 4/8 LIBRO: TEMA: PARTE: TÍTULO: CAPÍTULO: PRY. PROYECTO PUE. Puetos. ESTUDIOS 4. Estudos de Maeas 4. Pedó de la Maea Astoóca A. COTEIDO Este Maual cotee los étodos paa la pedó de la aea astoóca

Más detalles

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS:

ESPACIOS VECTORIALES SUBESPACIOS FINITAMENTE GENERADOS: SUBESPACIOS FINITAMENTE GENERADOS: Teorema S G={v, v,, v } es u sstema fto de geeradores de u subespaco S V K-EV, etoces G`= {v, v,, v,w} sedo w combacó leal de vectores de G, també geera a S. Demostracó

Más detalles

a) [1,5 puntos] Discutir y resolver en función de los valores del parámetro m el sistema lineal = + + = + = + =

a) [1,5 puntos] Discutir y resolver en función de los valores del parámetro m el sistema lineal = + + = + = + = Puebas de Aptitud paa el Acceso a la Uivesidad. JUNIO 009. Matemáticas II.. ÁLGEBRA Opció A a) [,5 putos] Discuti y esolve e fució de los valoes del paámeto m el sistema lieal + y + z = + + = m + m y +

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa Bábaa Cáovas Coesa 67 7 www.clasesalacata.com Reseva. 6 Dada la fució f() = + a + a, b R b + a) Detemia el valo de los paámetos a, b R sabiedo que y = + es ua asítota oblicua de f(). b) aa los valoes de

Más detalles

X = d representa la métrica (distancia) euclideana en R n, dada por: d T(X,Y) = X Y = 1.3 TOPOLOGÍA BÁSICA EN

X = d representa la métrica (distancia) euclideana en R n, dada por: d T(X,Y) = X Y = 1.3 TOPOLOGÍA BÁSICA EN 0.3. Cojutos abertos y cerrados.3 TOPOLOGÍA BÁSICA EN R El espaco eucldeao dmesoal se defe como: E ( R,,, d ) Dode (asumedo que X, Y R, co X = (x,..., x ), Y = (y,..., y )): El símbolo represeta el producto

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

Índice de materias 2.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3

Índice de materias 2.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3 Ídce de ateas.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3..- FUNDAMENTOS MATEMÁTICOS DE LA MECÁNICA CUÁNTICA...3 Álgeba Leal Opeadoes ucoes popas....3.- LOS POSTULADOS DE LA

Más detalles

EJERCICIOS DEL TEMA VECTORES

EJERCICIOS DEL TEMA VECTORES EJERCICIOS DEL TEMA VECTORES 1) Considea el vecto w, siguiente: w Dibuja, en cada caso uno de los siguientes casos, un vecto v, que sumado con u dé como esultado w : a) b) c) d) u u u u 2) A la vista de

Más detalles

NOMBRE Apellido Paterno Apellido Materno Nombre(s)

NOMBRE Apellido Paterno Apellido Materno Nombre(s) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS PROBABILIDAD ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE 009- DURACIÓN

Más detalles

FUNDAMENTOS FÍSICOS Y TECNOLÓGICOS DE LA INFORMÁTICA

FUNDAMENTOS FÍSICOS Y TECNOLÓGICOS DE LA INFORMÁTICA FUNDAMENTOS FÍSIOS Y TENOLÓGIOS DE LA INFORMÁTIA TEMA I.- ELETROSTÁTIA FUNDAMENTOS FÍSIOS Y TENOLÓGIO DE LA INFORMÁTIA Tema.ELETROSTÁTIA- Tecología de omputadoes-datsi-fi-upm-madd - M. A. Pascual Iglesas

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

TEMA: ANALISIS DE VELOCIDADES.

TEMA: ANALISIS DE VELOCIDADES. álss de velocdades. TEM: NISIS DE EOCIDDES. - INTRODUCCION. - NISIS GRFICO DE EOCIDDES..- olígoo de velocdades: método de las velocdades elatvas...- plcacó a ógaos deslzates...- Otos casos..- Método de

Más detalles

Tema 5 Modos de convergencias de sucesiones de variables aleatorias

Tema 5 Modos de convergencias de sucesiones de variables aleatorias Tema 5 Modos de covegecias de sucesioes de vaiables aleatoias Itoducció Cuado se cosidea sucesioes y seies de vaiables aleatoias, es deci, sucesioes y seies de fucioes medibles, su covegecia puede se cosideada

Más detalles

UNIDAD TEMÁTICA 9 REGRESIÓN LINEAL Y CORRELACIÓN ENUNCIADO 1

UNIDAD TEMÁTICA 9 REGRESIÓN LINEAL Y CORRELACIÓN ENUNCIADO 1 ESCUELA UNIVERSITARIA DE TÉCNICA INDUSTRIAL UNIDAD TEMÁTICA 9 REGRESIÓN LINEAL Y CORRELACIÓN ENUNCIADO La sguete tabla muestra la ota fal e los exámees de estadístca (E) e vestgacó operatva (IO) de ua

Más detalles

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro)

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro) UIDAD.- Dstrbucoes bdmesoales. Correlacó regresó (tema del lbro). VARIABLES ESTADÍSTICAS BIDIMESIOALES Vamos a trabajar sobre ua sere de feómeos e los que para cada observacó se obtee u par de meddas.

Más detalles

GENERALIDADES SOBRE ESPACIOS VECTORIALES

GENERALIDADES SOBRE ESPACIOS VECTORIALES GENERALIDADES SOBRE ESPACIOS VECTORIALES Po Jave de Motolu Ssca, D. Ig. Id. 4ª Edcó. Julo 003. PROLOGO E este esayo, se teta hace u esume de las pcpales popedades geeales de los espacos vectoales, así

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

i j k

i j k Ejemplos de oblems p evo I I. Descpcó del Movmeto de U tícul, Coodeds de u ptícul ví co el tempo de cuedo co ls fomuls: t s t, t cos t, t.) Demuéstese ue l tecto de ptícul es espl ubcd sobe supefce de

Más detalles

Breves apuntes sobre la teoría de errores.

Breves apuntes sobre la teoría de errores. Radar de subsuelo. Evaluacó para aplcacoes e arqueología y e patroo hstórco-artístco 903 Aexo 6 Breves aputes sobre la teoría de errores. A6.. Itroduccó. Se troduce breveete los coceptos fudaetales de

Más detalles

ERRORES EN LAS MEDIDAS (Conceptos elementales)

ERRORES EN LAS MEDIDAS (Conceptos elementales) ERRORES E LAS MEDIDAS (Coceptos elemetales). Medda y tpos de errores ormalmete, al realzar varas meddas de ua magtud físca, se obtee e ellas valores dferetes. E muchas ocasoes, esta dfereca se debe a causas

Más detalles

(Véase el Ejercicio 13 Beneficio de los bancos )

(Véase el Ejercicio 13 Beneficio de los bancos ) étodos de Regresó- Grado e Estadístca Empresa Tema 3 /3 étodos de Regresó- Grado e Estadístca Empresa Tema 3 /3 Tema 3. El modelo de regresó múltple. Hpótess báscas. El modelo. as pótess báscas. Estmacó

Más detalles

r r r dicha fuerza vale en módulo:

r r r dicha fuerza vale en módulo: Exaen de Física Magnetiso 3//4 ) a) Explique cóo es la fueza agnética que expeienta una caga La fueza agnética que expeienta una caga es: dicha fueza vale en ódulo: q v qvsen( α) donde: q es la caga de

Más detalles

SOBRE LAS APLICACIONES DE R n EN R m UTILIZANDO EL JACOBIANO

SOBRE LAS APLICACIONES DE R n EN R m UTILIZANDO EL JACOBIANO OBE LA APLICACIOE E E UTILIZAO EL ACOBIAO Ce ÁCHEZ ÍEZ Estdos qí ls codcoes báscs de deecbldd de ls coes deds desde e P ello seos l t cob costtd po ls deds pcles de ls coes copoetes de l plccó dd ls popeddes

Más detalles

1. Propiedades molares y propiedades molares parciales

1. Propiedades molares y propiedades molares parciales erodáca. ea 9 Ssteas abertos y ssteas cerrados de coposcó varable. ropedades olares y propedades olares parcales Ua agtud olar se dee coo: Sepre está asocada a u sstea terodáco de u úco copoete (sstea

Más detalles

Ley de Coulomb F = K 2 K = 9 10

Ley de Coulomb F = K 2 K = 9 10 Lcdo. Eleaza J. Gacía Ley de oulob La Ley de oulob se define así: el ódulo de la fueza de atacción o de epulsión ente dos cagas elécticas es, diectaente popocional al poducto de los valoes absolutos de

Más detalles

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad.

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad. Parte : MECÁNICA CUÁNTICA 1. Los postulados de la Mecáca Cuátca.. Estados Estacoaros. 3. Relacó de Icertdumbre de Heseberg. 4. Teorema de compatbldad. 1 U breve repaso de Mecáca Clásca 1. Partícula clásca:

Más detalles

Definición. una sucesión, definimos la sumatoria de los n primeros

Definición. una sucesión, definimos la sumatoria de los n primeros MATEMATICA GENERAL 00, HERALDO GONZALEZ S SUMATORIAS Suto sle Defcó U sucesó el es tod fucó co doo u sucouto de los úeos tules y co vloes e, sólcete, l sucesó es : N tl que Osevcó Deotos l sucesó o N,

Más detalles

El algoritmo EM para las estimacion de parametros en mezclas gaussianas. Una mezcla de distribuciones con K componentes tiene la forma

El algoritmo EM para las estimacion de parametros en mezclas gaussianas. Una mezcla de distribuciones con K componentes tiene la forma E agorto EM para as estaco de paraetros e ezcas gaussaas Edgar Acua. Ua ezca de dstrbucoes co copoetes tee a ora x π x... π x dode cada copoete es ua ucó de probabdad Posso, Boa, etc o ua uco de desdad

Más detalles

Los Teoremas de Cauchy

Los Teoremas de Cauchy Aálss IV Los Teoreas de Cauchy - Teorea Local de Cauchy Fucoes defdas por tegrales Cosdereos dos fucoes coplejas λ, µ defdas e el so cojuto Z del plao coplejo: λ: Z w λ( w) C, µ : Z w µ ( w) C Sea tabé

Más detalles

ÁLGEBRA LINEAL I LISTA DE EJERCICIOS 3. Página para el curso:

ÁLGEBRA LINEAL I LISTA DE EJERCICIOS 3. Página para el curso: ÁLGEBRA LINEAL I LISTA DE EJERCICIOS 3 DANIEL LABARDINI FRAGOSO DANIEL BALAM CRUZ HUITRÓN Página paa el cuso: www.matem.unam.mx/labadini/teaching.html A lo lago de los siguientes ejecicios, seá un campo.

Más detalles

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre Tema. La medda e Físca Estadístca de la medda Cfras sgfcatvas e certdumbre Cotedos Herrameta para represetar los valores de las magtudes físcas: los úmeros Sstemas de udades Notacó cetífca Estadístca de

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

4.- (1 punto) Como ya sabéis, el campo eléctrico creado por una carga en un punto P, es una magnitud vectorial que viene dada por la expresión E K u

4.- (1 punto) Como ya sabéis, el campo eléctrico creado por una carga en un punto P, es una magnitud vectorial que viene dada por la expresión E K u Nombe: Cuso: º Bachilleato B Examen I Fecha: 5 de febeo de 08 Segunda Evaluación Atención: La no explicación claa y concisa de cada ejecicio implica una penalización del 5% de la nota.- (,5 puntos) Halla

Más detalles

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_01. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D.

CAPITULO 2º FUNCIONES DE VECTORES Y MATRICES_01. Ing. Diego Alejandro Patiño G. M.Sc, Ph.D. CPIULO 2º FUNCIONES DE VECORES Y MRICES_ Ig. Dego lejadro Patño G. M.Sc, Ph.D. Fucoes de Vectores y Matrces Los operadores leales so fucoes e u espaco vectoral, que trasforma u vector desde u espaco a

Más detalles

2. Hay alguna diferencia entre decir que la masa de una persona es 75 kg o g?

2. Hay alguna diferencia entre decir que la masa de una persona es 75 kg o g? Físca y Quíca ºBachllerato UNIDAD : La actvdad cetífca CUESTIONES INICIALES-PÁG. 9. Sabrías expresar la velocdad de 0,0 /s e k/h? k 000 v = 0,0 = 0,0 s h s 3600s k 36,0 h. Hay algua dfereca etre decr que

Más detalles

Electrostática: Definición.

Electrostática: Definición. lectcdad y Magetsmo / lectostátca efcó Los coductoes e electostátca. Campo de ua caga putual. Aplcacoes de la Ley de Gauss Itegales de supeposcó. Potecal electostátco. efcó e Itepetacó. cuacoes de Posso

Más detalles

MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores

MATEMÁTICAS 2º Bach Tema 5: Vectores José Ramón BLOQUE 2: GEOMETRÍA DEL ESPCACIO. Tema 5: Vectores MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón BLOQUE : GEOMETRÍA DEL ESPCACIO Tema 5: Vectoes MATEMÁTICAS º Bach Tema 5: Vectoes José Ramón Definición de vecto Un sistema de ejes tidimensional se constuye

Más detalles

4. APLICACIONES LINEALES

4. APLICACIONES LINEALES Heamientas infomáticas paa el ingenieo en el estudio del algeba lineal 4. APLICACIONES LINEALES 4.1. DEFINICION DE APLICACIÓN LINEAL 4.2. EXPRESIÓN MATRICIAL DE UNA APLICACIÓN LINEAL 4.3. NÚCLEO E IMAGEN

Más detalles

Evento E es cualquier subconjunto de posibles resultados de un experimento (Ω o S también se le conoce como evento seguro).

Evento E es cualquier subconjunto de posibles resultados de un experimento (Ω o S también se le conoce como evento seguro). I. INTRODUION. oceptos báscos xpemeto: Ua stuacó que da luga a u esultado detfcable. muchos estudos cetífcos os efetamos co expemetos que so epettvos po atualeza o que puede se cocebdos como epettvos.

Más detalles

8. EL CAMPO GRAVITATORIO.

8. EL CAMPO GRAVITATORIO. ísca. 8. El campo avtatoo. 1 Ley e la avtacón unvesal. 8. EL CMPO GVIOIO. Ley e la avtacón unvesal e Newton. Daas os patículas e masas m y m, sepaaas una stanca, la e masa m atae a la e masa m con una

Más detalles

Raíces y álgebra de Lie semisimples diagramas de Dynkin

Raíces y álgebra de Lie semisimples diagramas de Dynkin Raíces y ágebra de Le semsmpes dagramas de Dy Ado Arroyo Motero* RESUMEN E e presete trabao desarroamos a teoría a as ágebras de Le. Empezamos dado e cocepto de ágebra de Le, uego os cetramos e e aáss

Más detalles

Aplicación de Boostrapping en Regresión I

Aplicación de Boostrapping en Regresión I Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores

Más detalles

Unidad didáctica 2: Interpolación 1. Diferencias divididas. Diferencias finitas.

Unidad didáctica 2: Interpolación 1. Diferencias divididas. Diferencias finitas. Udad ddáctca : Iterolacó. Derecas dvddas. Derecas tas. Israel añaó Valera Dto. de Mateátca Alcada y Métodos Iorátcos E.T.S.I. Mas ÍNDIE. Plateaeto del roblea.. Derecas dvddas. Fórula de Newto. Tablas.

Más detalles

Estadística descriptiva bidimensional

Estadística descriptiva bidimensional Estadístca descrptva bdesoa Estudaos sutáeaete dos característcas de os dvduos. Defcó 5. Ua varabe bdesoa (X, Y) es u par de síboos que represeta dos característcas de os dvduos de ua pobacó. Dada ua varabe

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

Momento lineal: Momento lineal: p = mv Principio de conservación del momento lineal: pi = p

Momento lineal: Momento lineal: p = mv Principio de conservación del momento lineal: pi = p Julá oeo este www.julweb.es tlf. 69886 Chuletao de físca º de Bachlleato y 4º de ESO Cemátca: ( t) + vt v ( t) v v v a( ) Cemátca del movmeto ccula: θ θ () t θ + ωt+ αt ω() t ω + αt ω ω α( θ θ) π π v f

Más detalles

TEMA10. VECTORES EN EL ESPACIO.

TEMA10. VECTORES EN EL ESPACIO. TEMA0. VECTORES EN EL ESPACIO..- Coodenadas en el espacio: En el espacio tidimensional, un punto P iene deteminado po tes coodenadas P(x, y, z) que epesentan las distancias diigidas desde los planos de

Más detalles

Cálculo con vectores

Cálculo con vectores Uidd didáctic 1 Cálculo co vectoes 1.- Mgitudes escles vectoiles. So mgitudes escles quells, como l ms, l tempetu, l eegí, etc., cuo vlo qued fijdo po u úmeo (co su uidd coespodiete). Gáficmete se epeset

Más detalles

CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA

CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA 55 CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA 4. INTRODUCCIÓN Los úmeros Complejos costtuye el mímo cojuto C, e el que se puede resolver la ecuacó x a

Más detalles

. Si vamos calculando así las potencias n-ésimas de la unidad imaginaria, descubriremos que son cíclicas y que cada 4 términos se repiten: ( )

. Si vamos calculando así las potencias n-ésimas de la unidad imaginaria, descubriremos que son cíclicas y que cada 4 términos se repiten: ( ) Los úmeros complejos surje a ra de ecuacoes de la forma x + 0 Exste u certo paralelsmo etre este cuerpo el plao, cocretamete, lo que ha es ua correspodeca buívoca, es decr, ua relacó bectva etre C R R

Más detalles

Regresión - Correlación

Regresión - Correlación REGRESIÓN Regresó - Correlacó Aálss que requere la cosderacó de o más varables cuattatvas e forma smultáea. Aálss de Regresó: estuda la relacó fucoal de ua o más varables respecto de otra Aálss de Correlacó:

Más detalles

Estadística Tema 9. Modelos de distribuciones. Pág. 1

Estadística Tema 9. Modelos de distribuciones. Pág. 1 Estadístca Tema 9. Modelos de dstbucoes. Pág. 9 Modelos de dstbucoes. 9. Modelos dscetos de vaables aleatoas. 9.. Epemetos y dstbucó de Beoull. 9.. Dstbucó bomal. 9.. Dstbucó ufome dsceta. 9.. Dstbucó

Más detalles

Métodos indirectos de estimación: razón, regresión y diferencia

Métodos indirectos de estimación: razón, regresión y diferencia Métodos drectos de estmacó: razó, regresó dfereca Cotedo. Itroduccó, defcó de estmadores drectos. Estmador de razó, propedades varazas. Límtes de cofaza. 3. Tamaño de la muestra e los estmadores de razó

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

GENERACIÓN TERMOELÉCTRICA. Cálculo de la toma de las extracciones de un ciclo de vapor

GENERACIÓN TERMOELÉCTRICA. Cálculo de la toma de las extracciones de un ciclo de vapor GNRCIÓN TRMOLÉCTRIC. Cálculo de la toa de las extraccoes de u cclo de apor ISML PRITO ÍNDIC D MTRIS CÁLCULO D LOS PUNTOS D TOM D LS XTRCCIONS PR QU L MJOR DL RNDIMINTO DL CICLO RGNRTIVO S MÁXIM. MJOR N

Más detalles

PyE_ EF1_TIPO2_

PyE_ EF1_TIPO2_ SEMESTRE 9- TIPO DURACIÓN MÁIMA.5 HORAS JUNIO DE 9 NOMBRE. "Scram" es el térmo que utlza los geeros ucleares para descrbr u rápdo cerre de emergeca de u reactor uclear. La dustra uclear ha hecho esuerzos

Más detalles

ESTUDIO CIS Nº 3020 CIUDADANÍA ISSP 1 FICHA TÉCNICA

ESTUDIO CIS Nº 3020 CIUDADANÍA ISSP 1 FICHA TÉCNICA ESTUDIO CIS º 3020 CIUDADAÍA ISSP FICA TÉCICA Ámbto: acoal cludas las Cudades Autóomas de Ceuta y Mellla. Uveso: Poblacó esdete de ambos sexos de 8 años y más. Maco: Padó Mucpal de abtates a de eeo de

Más detalles

Autovectores y Teorema de Cayley Hamilton

Autovectores y Teorema de Cayley Hamilton utovetoes eoe de Ce Hto Ce ÁNCHZ DÍZ. Oedoes ees Cosdeeos u eso veto sobe u ueo K V.K u edoofso e do eso : V V que eos oedo sobe e eso V que uede se tto u devó oo u tegó u ogto u eoe et. es de e oedo e

Más detalles