3.5 Factores y Coeficientes de Forma

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3.5 Factores y Coeficientes de Forma"

Transcripción

1 Autoes: Patco Covalá Vea Jame eáez Palma 3.5 Factoes y Coecetes e Foma A es el slo XIX, Towa esaolla la ea e los actoes e oma como ua espuesta a las cultaes suas el uso e los sólos e evolucó. La ea e Towa platea ue el acto e oma elacoa oma y volume a tavés e ua elacó ete el volume eal el uste y el e u sólo e evolucó: uste sólo e evolucó clo Más tae, Reeke esaolló la oma más comú e los actoes e oma: uste clo Así: Vol uste Clo * * * oe áea basal ábol El volume e los sólos e evolucó es cooco: Tpo e cooe Volume Facto e oma Clo / * * Paaboloe / * * * / 0.5 Coo / * * * / Neloe / * * * / 0.5 / * (áea basal) / * * * volume el clo e base y altua Exste actoes e oma basaos e paaboloes, coos y otos sólos e evolucó, peo el más usao es sobe la base e u clo. El acto e oma es, e cosecueca, u acto e euccó el volume el clo al volume eal el ábol. Facto e Foma Nomal ( ) S tomamos las elacoes e la ucó eeatz y la expesó el acto e oma paa el caso e u paaboloe teemos ue el volume el uste puee escbse como: U. e Cle / Aputes e eometía / Factoes y Coecetes e Foma

2 U. e Cle / Aputes e eometía / Factoes y Coecetes e Foma Como: Etoces: e la ua se euce ue: oe es la altua a la ue se me el. Así: () e la msma oma el volume el clo: () Etoces el acto e oma omal ábol / Clo () / () : e la msma oma, se puee euc el acto e oma omal paa u coo: + x V uste - ap ap ap V c V uste x V ap uste + ap ap ap / / 3 + ap

3 Po lo tato la expesó eeal e es : + + ap / Como la elacó ap / o es costate, áboles e la msma oma peo eete tamaño ebe tee eete acto e oma. Paa solucoa este coveete el témo ap / es eemplazao po ua accó costate e la altua total ue comúmete es /0 ap / y po lo tato el acto e oma omal uea: (,05 + ) ebe evsase la elacó ap / ates e aplca la ecuacó ateo. Cómo eectua ua ápa ecó e s tee ue me too el ábol? Métoo e los tes putos (Relascopo) P % altua al P 0 P % altua al ámeto P o % altua al tope el ábol B ámeto (seccó) a B ámeto (seccó ) e la base (ejem: ) e la ua se tee ue: B B P0 P0 P P Po lo tato uea eo como: B l B P 0 P l P0 P P P B ( ) B () Ua vez cooco el se calcula, lueo el volume el clo cooceo el aea e la base y la altua total. Falmete se obtee el volume ustal como * vol. clo. U. e Cle / Aputes e eometía / Factoes y Coecetes e Foma 3

4 Facto e Foma Absoluto ( a ) Cosea sólo el volume sobe el, se tee las suetes expesoes (altua total,3): Fuste ual a u paaboloe: Fuste ual a u coo: Ecuacó eeal: a a a 3 + / / / Fuste ual a u eloe: a esvetajas ete al acto e oma omal: No etea omacó sobe el volume ue se ecueta bajo el AP. Paa coe se euee aea el volume altate Se puee ecu al cálculo e base al ámeto basal. Muco más vaable smuye coelacó co el volume Facto e Foma Veaeo ( v ) (oeal, 9 9) Cosste e v el uste e 5 pates uales y me el volume e caa uo e ellas e acueo a la oma e ube L L L L L L * 0. 0% 30% 50% 70% 90% 00% V / 0, ( V / 0. 0, ( ) ) Clo co base e 0. Facto e oma veaeo U. e Cle / Aputes e eometía / Factoes y Coecetes e Foma

5 Kee y Poa (9) eeo ua elacó e ámetos ue aclta el cálculo el acto e oma veaeo: 0. η v 0,89 η ,6 Este acto es mejo ue los ateoes, aú cuao asume oma e cooe tucao e caa seccó. Poía mejoase etemao el paámeto po pates el ábol y usalos sepaaamete e el cálculo e volúmees. Coecetes e oma () E oma paalela se eectuó ua apoxmacó al poblema e la oma ustal a tavés e los llamaos cuocetes o coecetes e oma (), ue coespoe a ua azó ete os ámetos el uste ( y ): abtualmete coespoe al y a alú ámeto e altua supeo (ejemplo: a la mta e la altua total). Po ello, estos coecetes so ua ápa oma e escb la oma el uste y su auzameto. Coecete e oma e Scel ( s ) ( Clase e oma ) Coespoe a uo e los pmeos coecetes e oma y ue esaollao po Scel e el año 899. Coceptualmete se ee como la popocó el ámeto a la mta e la altua / sobe el (00 %): s / El ámeto es asumo como auel e mayo mpotaca e la etemacó e la oma el uste y su compaacó co u clo e ual base y altua. Tee la ececa e eea el msmo esultao paa áboles e ual oma peo e altuas eetes. Paa su cálculo las altuas ebe se meas e oma pecsa. Exste aemás aluos poblemas paa áboles peueños. Po ejemplo, s el ábol tee altua total ual a,6 m el coecete e Scel es ual a. E estos casos, y e eeal paa oales co áboles e baja altua, la elacó e ámetos es esteca y el coecete pee sesbla a la oma. U. e Cle / Aputes e eometía / Factoes y Coecetes e Foma 5

6 Coecete e oma absoluto ( a ) (Joso, 9) Paa tata e coe aluos e los coveetes el coecete e oma e Scel, Joso popoe u coecete ue utlza el ámeto a la mta e la staca e la altua el y la altua total: a ( ) / Co ello se solucoa el poblema paa áboles e poca altua peo sue ecestáose mecoes pecsas e las altuas. Puto e oma Joso també eó el coecete eomao puto e oma, ue coespoe a la azó ete la altua el ceto e essteca al veto el ábol, apoxmaamete ual al ceto e avea e la copa, y su altua total. p Coecete e oma e Ga ( ) E 933, Ga esaolló u coecete e oma basao e la azó ete el ámeto s coteza e el extemo supeo e la pmea toza e 6 pes e lao (toza basal) y el co coteza. Lo ateo costtuyó u esuezo po ecota u coecete ue se puese obtee a tavés e mecoes e ámetos e ácl acceso: 6' s / c c / c (a) 7,3' s / c c / c (b) El ámeto 6 s/c ca ue es la pmea toza sobe el tocó. S se me ese el suelo ebe aease la altua el tocó y el coecete uea como está expesao e (b). Este coecete a ao oe a u cojuto e tablas e clases e oma e pocetaje ue se utlza e el cálculo e volúmees ustales. U. e Cle / Aputes e eometía / Factoes y Coecetes e Foma 6

7 Relacó ete actoes y coecetes e oma Puee estuase la elacó ete u acto y u coecete e oma asumeo ue poemos escb el volume el uste a tavés e la ecuacó e ube y ue el acto e oma se calcula e eeeca a u clo e base ual al y e altua ual a : Po ube el volume el uste: Po lo tato el acto e oma: Es ec: / v / / / v / / / vclo Esto es, u acto e oma euvale a u coecete e oma al cuaao. U. e Cle / Aputes e eometía / Factoes y Coecetes e Foma 7

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple:

En cualquier punto donde coloquemos nuestra segunda carga, su posición podrá darse con un vector de posición que cumple: CAMPO LCTRICO Cosdeemos e pcpo ua stuacó deal: l Uveso está vacío y o exste ada supogamos ue e el ceto de ese Uveso colocamos ua caga putual podemos pegutaos: Sufe algú cambo el Uveso? S o exste ota caga

Más detalles

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica CDENADAS VECTIALES DE LS SISTEAS DE FUEZAS Se etede po sstema de fuezas a u cojuto de fuezas como se dca La esultate geeal del sstema se obtee sumado los vectoes equpoletes de cada ua de las compoetes

Más detalles

ANEXO II. ECUACIONES DIFERENCIALES DEL MOVIMIENTO DE UN SISTEMA DE PARTÍCULAS CON COORDENADAS GENERALIZADAS. ECUACIONES DE LAGRANGE.

ANEXO II. ECUACIONES DIFERENCIALES DEL MOVIMIENTO DE UN SISTEMA DE PARTÍCULAS CON COORDENADAS GENERALIZADAS. ECUACIONES DE LAGRANGE. XO II. cuacioes ifeeciales el oiieto e u sistea e patículas co cooeaas geealizaas. cuacioes e Lagage. XO II. CUCIOS DICILS DL MOVIMITO D U SISTM D PTÍCULS CO COODDS GLIDS. CUCIOS D LGG. ste poyecto fi

Más detalles

Evento E es cualquier subconjunto de posibles resultados de un experimento (Ω o S también se le conoce como evento seguro).

Evento E es cualquier subconjunto de posibles resultados de un experimento (Ω o S también se le conoce como evento seguro). I. INTRODUION. oceptos báscos xpemeto: Ua stuacó que da luga a u esultado detfcable. muchos estudos cetífcos os efetamos co expemetos que so epettvos po atualeza o que puede se cocebdos como epettvos.

Más detalles

EL TEOREMA EGREGIUM. Introducción

EL TEOREMA EGREGIUM. Introducción CARLOS S CHIEA EL TEOREMA EGREGIUM DE GAUSS Itoduccó Joha Ca Fedch Gauss (30 de ab de 777 3 de febeo de 855) e sus Dsqustoes eeaes cca supefces cuvas de 88 expoe e teoea coocdo coo eeo Eeu que ha tedo

Más detalles

MANUAL DE PRÁCTICAS DE LABORATORIO DE HIDRÁULICA PROPAGACIÓN DE ERRORES. Escuela de Geociencias y Medio Ambiente

MANUAL DE PRÁCTICAS DE LABORATORIO DE HIDRÁULICA PROPAGACIÓN DE ERRORES. Escuela de Geociencias y Medio Ambiente ANUAL DE PRÁCTICAS DE LABORATORIO DE HIDRÁULICA 35 ANEXO A5 PROPAGACIÓN DE ERRORES Ramo abello Péez Escuela de Geocecas y edo Ambete 36 ANEXO 5 A5 PROPAGACIÓN DE ERRORES Tomado de la Ref. [0] Las magtudes

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejeccos de Selectvdad sobe Ifeeca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Facsco Roldá López de Heo * Covocatoa de 007 Las sguetes págas cotee las solucoes de los

Más detalles

MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMENTOS

MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMENTOS Julo Olva Coteo Estadístca TEMA 6 MEDIDA DE FORMA: AIMETRÍA Y CURTOI. MOMETO. Moetos de ua dstbucó Los oetos de ua dstbucó so eddas obtedas a pat de todos sus datos y de sus fecuecas absolutas. Estas eddas

Más detalles

UNIDAD 12: PROBLEMAS MÉTRICOS EN EL ESPACIO

UNIDAD 12: PROBLEMAS MÉTRICOS EN EL ESPACIO I.E.S. Iabel eillá y Quió atemática Depatameto e atemática UNIDAD 1: oblema mético e el epacio UNIDAD 1: ROBLEAS ÉTRICOS EN EL ESACIO Águlo Ditacia epeicula comú a o ecta que e cuza uto imético ÁNGULOS

Más detalles

Capítulo 2 Análisis de datos (Bivariados( Bivariados) Estadística Computacional I Semestre 2006 Parte II

Capítulo 2 Análisis de datos (Bivariados( Bivariados) Estadística Computacional I Semestre 2006 Parte II Uvesdad Técca Fedeco Sata Maía Uvesdad Técca Fedeco Sata Maía Depatameto de Iomátca ILI-80 Capítulo Aálss de datos (Bvaados( Bvaados) Estadístca Computacoal I Semeste 006 Pate II Poesoes: Calos Valle (cvalle@.utsm.cl)

Más detalles

CAPÍTULO 6 TEOREMAS ENERGÉTICOS

CAPÍTULO 6 TEOREMAS ENERGÉTICOS CPÍTULO 6 TEORES ENERGÉTICOS L ENERGÍ ELÁSTIC EXPRESD EN UNCIÓN DE LS CRGS PLICDS Hasta ahoa, habíamos utlao la sguete epesó e la esa e eegía elástca: ( σ ε σ ε σ ε τ γ τ γ τ γ ) ω Que, tegaa a lo lago

Más detalles

2. Medición de Índices de Refracción. Neil Bruce

2. Medición de Índices de Refracción. Neil Bruce . Medició de Ídices de Refacció Neil Buce Laboatoio de Optica Aplicada, Ceto de Ciecias Aplicadas y Desaollo Tecológico, U.N.A.M., A.P. 70-86, México, 0450, D.F. Objetivos Istumeta e el laboatoio métodos

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003 CÁLCULO Pime cuso de Igeieo de Telecomuicació Pime Exame Pacial. 7 de Eeo de 3 Ejecicio. Deducilafómuladeláeadeusegmetopaabólico e fució de su base y su altua. Se cosidea u coo cicula ecto co adio de la

Más detalles

SOLUCIÓN: cara. sale. Sea X i = cruz. sale. 1 p = ; con ello 2

SOLUCIÓN: cara. sale. Sea X i = cruz. sale. 1 p = ; con ello 2 Hojas de oblemas Estadístca VI. Calcula el úmeo de veces que se debe laa ua moeda de maea que se tega ua pobabldad supeo a 9 de que el cocete ete el úmeo de caas y el de laametos esté compeddo ete y 6.

Más detalles

a) [1,5 puntos] Discutir y resolver en función de los valores del parámetro m el sistema lineal = + + = + = + =

a) [1,5 puntos] Discutir y resolver en función de los valores del parámetro m el sistema lineal = + + = + = + = Puebas de Aptitud paa el Acceso a la Uivesidad. JUNIO 009. Matemáticas II.. ÁLGEBRA Opció A a) [,5 putos] Discuti y esolve e fució de los valoes del paámeto m el sistema lieal + y + z = + + = m + m y +

Más detalles

Bolilla 4: Rotación de los cuerpos rígidos. Movimiento circular

Bolilla 4: Rotación de los cuerpos rígidos. Movimiento circular Bollla 4: Rotacó de los cueos ígdos. Movmeto ccula Bollla 4: Rotacó de los cueos ígdos. Movmeto ccula 4. Vaables Agulaes Las vaables agulaes sve aa eeseta e foma mas smle e dóea al movmeto de otacó. La

Más detalles

8. EL CAMPO GRAVITATORIO.

8. EL CAMPO GRAVITATORIO. ísca. 8. El campo avtatoo. 1 Ley e la avtacón unvesal. 8. EL CMPO GVIOIO. Ley e la avtacón unvesal e Newton. Daas os patículas e masas m y m, sepaaas una stanca, la e masa m atae a la e masa m con una

Más detalles

Espacio Euclídeo real n-dimensional TEOREMA DE WEIERSTRASS

Espacio Euclídeo real n-dimensional TEOREMA DE WEIERSTRASS Espaco Euclídeo eal -desoal TEOREMA DE WEERSTRASS Se geealza peaete a R el pcpo de ecaje de ato e R que es el stueto paa deosta el teoea del puto de acuulacó o de Bolzao- Weestass del que se deduce el

Más detalles

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez

PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez Poblema º Calcula el ídce de efaccó elatvo del vdo al acete. Halla la velocdad de popagacó y la logtud de oda, e el acete y e el vdo de u ayo de

Más detalles

8- Estimación puntual

8- Estimación puntual Pate stmacó putual Pof. Maía B. Ptaell 8- stmacó putual 8. Itoduccó Supogamos la sguete stuacó: e ua fábca se poduce atículos el teés está e la poduccó de u día específcamete de todos los atículos poducdos

Más detalles

IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti. Serie 3

IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti. Serie 3 E Medteáeo de Málaga olucó Juo Jua Calos loso Gaoatt ee.- Dga aa qué alo del aáeto los laos π :, π : π : tee coo teseccó ua ecta. [ utos] Tee coo teseccó ua ecta cuado el sstea que foa sea coatle deteado

Más detalles

5 Puntos, rectas y planos en el espacio

5 Puntos, rectas y planos en el espacio 5 Putos, ectas y paos e e espacio Págia 145 Geometía eíptica a) Sea R 1 y R ectas e a geometía eíptica, y S a supeficie esféica. R 1 = π 1 S; R = π S Como os dos paos pasa po e ceto, se cota, uego π 1

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

Introducción a la Optoelectrónica

Introducción a la Optoelectrónica Cla 86.47 66.57 Itouccó a la Optolctóca Rpoabl la mata: Poo:. Ig. Matí G. Gozálz Cla N Cla Hoja uta la cla Rpao lctomagtmo Oa lctomagétca L Sll cuaco Fl Tazao ao poxmacó Paaxal Métoo Matcal ál cava óptca

Más detalles

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO ESACIOS AFÍN Y EUCLÍDEO Nota: Los pocedimietos expestos o so los úicos qe eselve los poblemas Defiició El espacio afí so los ptos coexistiedo jto al espacio vectoial V, co sistema de efeecia ( pto fijo

Más detalles

Electrostática ELECTROSTÁTICA TICA Y CORRIENTE ELÉCTRICA. CTRICA.-Tema Tema 4 CURSO INTRODUCCIÓN Griegos: ámbar elektron

Electrostática ELECTROSTÁTICA TICA Y CORRIENTE ELÉCTRICA. CTRICA.-Tema Tema 4 CURSO INTRODUCCIÓN Griegos: ámbar elektron ELETOSTÁTA TA Y OENTE ELÉTA. TA.Tema Tema 4 USO 00900 00 Bases Físcas el Meo Ambete º e ecas Ambetales Pofeso: Jua Atoo Ateuea Baoso Electostátca NTODUÓN Gegos: ámba elekto Bejam Fackl: Too objeto posee

Más detalles

SOBRE LA FORMULACION LAGRANGIANA DE LA APLICANDO EL PRINCIPIO DE LOS TRABAJOS VIRTUALES

SOBRE LA FORMULACION LAGRANGIANA DE LA APLICANDO EL PRINCIPIO DE LOS TRABAJOS VIRTUALES APLICADO EL PRICIPIO DE LOS TRABAJOS IRTUALES Cos S Che SOBRE LA ORMULACIO LAGRAGIAA DE LA MECÁICA APLICADO EL PRICIPIO DE LOS TRABAJOS IRTUALES COORDEADAS GEERALIZADAS Y ESPACIO DE COIGURACIÓ DESPLAZAMIETOS

Más detalles

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) TRANSFORMACIONES LINEALES UNIDAD Nº 5. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 2017 ÁLGEBRA II (LSI PI) UNIDAD Nº 5 RANSFORMACIONES LINEALES Facultad de Cecas Exactas y ecologías UNIERSIDAD NACIONAL DE SANIAGO DEL ESERO aa Error! No hay texto co el estlo especfcado e el documeto

Más detalles

TEMA 3: EL DESCUENTO SIMPLE Y EQUIVALENCIA DE CAPITALES 1.- INTRODUCCIÓN

TEMA 3: EL DESCUENTO SIMPLE Y EQUIVALENCIA DE CAPITALES 1.- INTRODUCCIÓN TEMA 3: EL ESCUENTO SIMPLE Y EQUIVALENCIA E CAPITALES 1.- INTROUCCIÓN El escueto es ua opeació fiaciea muy utilizaa e el ámbito mecatil. Las empesas cuao se ve co ificultaes e liquiez puee acui al escueto

Más detalles

Electrostática: Definición.

Electrostática: Definición. lectomagetsmo Cuso /3 lectostátca efcó Los coductoes e electostátca. Campo de ua caga putual. Aplcacoes de la Ley de Gauss Itegales de supeposcó paa el campo eléctco. Potecal electostátco. efcó e Itepetacó.

Más detalles

Electrostática: Definición.

Electrostática: Definición. lectcdad y Magetsmo / lectostátca efcó Los coductoes e electostátca. Campo de ua caga putual. Aplcacoes de la Ley de Gauss Itegales de supeposcó. Potecal electostátco. efcó e Itepetacó. cuacoes de Posso

Más detalles

TEMA 3: EL PLANO MÉTRICO

TEMA 3: EL PLANO MÉTRICO Matemática º achilleato. Geometía alítica TEM : EL PLNO MÉTRIO. DETERMINIÓN NORML DE UN RET. ÁNGULO QUE FORMN DOS RETS. FORM NORML DE LEUIÓN DE UN RET. DISTNI ENTRE DOS PUNTOS Popiedade de la ditacia mética.

Más detalles

Tema 8: Formulación matricial

Tema 8: Formulación matricial Tema 8: Fomulació maticial. Itoucció. atices e taslació, efacció y eflexió. acha e ayos a tavés e u ioptio. atiz e u sistema cetao 5. Cálculo e los elemetos caiales e u sistema 6. étoos e cálculo e ua

Más detalles

el blog de mate de aida MATEMÁTICAS I. Números complejos. Pág. 1 Diofanto, un adelantado a su época.

el blog de mate de aida MATEMÁTICAS I. Números complejos. Pág. 1 Diofanto, un adelantado a su época. el blog de mate de aida MATEMÁTICAS I. Númeos complejos. Pág. 1 AMPLIACIÓN DEL CAMPO NUMÉRICO Diofato, u adelatado a su época. Este tiágulo está costuido co ua cueda e la que se ha ealizado doce udos a

Más detalles

CAPÍTULO 4 MÉTODO DE PERTURBACIONES

CAPÍTULO 4 MÉTODO DE PERTURBACIONES CAPÍTULO : MÉTODO DE PERTURBACIONES 8 CAPÍTULO MÉTODO DE PERTURBACIONES. Resume Se ecueta solució aalítica a la ecuació ifeecial (.5) el pefil e oas e témios e las amplitues e los amóicos, que esulta e

Más detalles

Nombre del estudiante:

Nombre del estudiante: UNIVERSIDAD DE OSTA RIA ESUELA DE IENIAS DE LA OPUTAIÓN E INFORÁTIA I-0 ESTRUTURAS DISRETAS PROF. KRYSIA DAVIANA RAÍREZ BENAVIDES II Semeste 06 Fecha: /09/06 SOLUIÓN EXAEN PARIAL I Nombe del estudiate:

Más detalles

mientras que si la valoración se realiza al final de la operación entonces se denomina valor final y se simboliza por V

mientras que si la valoración se realiza al final de la operación entonces se denomina valor final y se simboliza por V Retas Fiacieas. aloació de ua eta 2. ALORACIÓN DE UNA RENTA: ALOR ACTUAL Y ALOR FINAL aloa ua eta e el dieiieto T cosiste e halla la sua del valo iacieo, e dicho dieiieto, de cada uo de los capitales que

Más detalles

ESTUDIO CIS Nº 3020 CIUDADANÍA ISSP 1 FICHA TÉCNICA

ESTUDIO CIS Nº 3020 CIUDADANÍA ISSP 1 FICHA TÉCNICA ESTUDIO CIS º 3020 CIUDADAÍA ISSP FICA TÉCICA Ámbto: acoal cludas las Cudades Autóomas de Ceuta y Mellla. Uveso: Poblacó esdete de ambos sexos de 8 años y más. Maco: Padó Mucpal de abtates a de eeo de

Más detalles

PARTICIONES DE ENTEROS Y DIAGRAMAS DE FERRER. José Luis Aguado. Facultad de Ciencias Exactas. UNICEN. Pcia. de Buenos Aires

PARTICIONES DE ENTEROS Y DIAGRAMAS DE FERRER. José Luis Aguado. Facultad de Ciencias Exactas. UNICEN. Pcia. de Buenos Aires V REPEM Memoras Sata Rosa, La Pampa, Argeta, Agosto 4 CB 8 PARTICIONES DE ENTEROS Y DIAGRAMAS DE FERRER José Lus Aguao Faculta e Cecas Exactas. UNICEN. Pca. e Bueos Ares jaguao@exa.uce.eu.ar Palabras Claves:

Más detalles

UNIDAD 7 Problemas métricos

UNIDAD 7 Problemas métricos Pág. 1 e x = 11 + 4l x = 11 9l 1 1 : y = + l : y = l z = 7 + l z = 7 7l a) Halla las istancias ente los puntos e cote e 1 y con π: x y + z 4 = 0. b) Halla el ángulo e 1 con. c) Halla el ángulo e 1 con

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Meddas de Tedeca Cetral Ua edda de tedeca cetral es u valor que se calcula a partr de u cojuto de datos y que se utlza para descrbr los datos e algua fora. Geeralete quereos que el valor sea represetatvo

Más detalles

Tema 5 Modos de convergencias de sucesiones de variables aleatorias

Tema 5 Modos de convergencias de sucesiones de variables aleatorias Tema 5 Modos de covegecias de sucesioes de vaiables aleatoias Itoducció Cuado se cosidea sucesioes y seies de vaiables aleatoias, es deci, sucesioes y seies de fucioes medibles, su covegecia puede se cosideada

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

Geometría euclídea en el espacio. Ángulos y distancias

Geometría euclídea en el espacio. Ángulos y distancias Geometía eclídea e el epacio. Áglo y ditacia Matemática Geometía eclídea e el epacio. Áglo y ditacia. Ditacia ete do pto Sea (x,y, z ) y B(x,y,z ), la ditacia ete ambo e igal al módlo del vecto B x x,

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar Matemátcas Aplcadas. SS. I -- I. E. S. Saba MATEMÁTIAS INANIERAS EN 1º BTO.. SS. 1. PORENTAJES 1.1 Aumetos y dsmucoes pocetuales. Ídce de vaacó 1.2 Aumetos y dsmucoes pocetuales ecadeados. Ídce de vaacó

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS

TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS ANGENCIAS ENRE RECAS Y CIRCUNFERENCIAS 1 RECA Y CIRCUNFERENCIA ANGENES. Una ecta y una cicunfeencia on tangente cuano tienen un único punto en común, llamao punto e tangencia. Ente una ecta y una cicunfeencia

Más detalles

TEMA 6 VALORACIÓN FINANCIERA DE RENTAS (III)

TEMA 6 VALORACIÓN FINANCIERA DE RENTAS (III) Facultad de.ee. Dpto. de Ecooía Facea I Dapostva Mateátca Facea TEMA 6 VALORAIÓN FINANIERA DE RENTAS III. Faccoaeto atétco y faceo de ua eta 2. Retas faccoadas 3. Retas cotuas Facultad de.ee. Dpto. de

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca paa Améca Lata y el Cabe (CEPAL Dvsó de Estadístcas y Poyeccoes Ecoómcas (DEPE Ceto de Poyeccoes Ecoómcas (CPE Modelo Clásco de Regesó Alguos Temas Complemetaos Chsta A. utado Navao Mayo,

Más detalles

Las densidades volumétricas de carga libre y de polarización en la región entre las placas conductoras son:

Las densidades volumétricas de carga libre y de polarización en la región entre las placas conductoras son: EXMEN FINL MPLICIÓN E FÍSIC - ELECTROMGNETISMO 16 e junio e 6 PRIMER PRTE Teoía puntos: a Vecto polaización: efinición y uniaes. ensiaes e caga e polaización: efinición y uniaes. Epesión el campo eléctico

Más detalles

PyE_ EF1_TIPO2_

PyE_ EF1_TIPO2_ SEMESTRE 9- TIPO DURACIÓN MÁIMA.5 HORAS JUNIO DE 9 NOMBRE. "Scram" es el térmo que utlza los geeros ucleares para descrbr u rápdo cerre de emergeca de u reactor uclear. La dustra uclear ha hecho esuerzos

Más detalles

Formulario 1: Teoría de Conjuntos = (1.1) Formulario 2: Propiedades de las Probabilidades y Métodos de Conteo = (2.1)

Formulario 1: Teoría de Conjuntos = (1.1) Formulario 2: Propiedades de las Probabilidades y Métodos de Conteo = (2.1) NVERSDD SMÓN OLÍVR O ROLDDES R NGENEROS FORMLRO Fomulaio : Teoía e ojutos Lees Distibutivas:. Le e omlemetos:. Lees e Moa:. Fomulaio : oieaes e las obabiliaes Métoos e oteo iomas e obabilia: L L L etoes

Más detalles

Momento lineal: Momento lineal: p = mv Principio de conservación del momento lineal: pi = p

Momento lineal: Momento lineal: p = mv Principio de conservación del momento lineal: pi = p Julá oeo este www.julweb.es tlf. 69886 Chuletao de físca º de Bachlleato y 4º de ESO Cemátca: ( t) + vt v ( t) v v v a( ) Cemátca del movmeto ccula: θ θ () t θ + ωt+ αt ω() t ω + αt ω ω α( θ θ) π π v f

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

TEMA 3: EQUIVALENCIA FINANCIERA DE CAPITALES

TEMA 3: EQUIVALENCIA FINANCIERA DE CAPITALES Maemácas Faceras Prof. Mª Mercees Rojas e Graca TEMA 3: EQUIVALENIA FINANIERA DE APITALE ÍNDIE. PRINIPIO DE EQUIVALENIA DE APITALE: ONEPTO. APLIAIONE DEL PRINIPIO DE EQUIVALENIA: UTITUIÓN DE APITALE....

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad.

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad. Parte : MECÁNICA CUÁNTICA 1. Los postulados de la Mecáca Cuátca.. Estados Estacoaros. 3. Relacó de Icertdumbre de Heseberg. 4. Teorema de compatbldad. 1 U breve repaso de Mecáca Clásca 1. Partícula clásca:

Más detalles

En consecuencia: Z=f(x,y)=f[ x(t) ; y(t) ]= F(t) (1) que resulta en definitiva una función de la variable t.la llamaremos Función Compuesta de t.

En consecuencia: Z=f(x,y)=f[ x(t) ; y(t) ]= F(t) (1) que resulta en definitiva una función de la variable t.la llamaremos Función Compuesta de t. TEMA 4 (Últma mocacó 8-7-05) CALCULO DIFERENCIAL E INTEGRAL II FUNCIONES COMPUESTAS DE UNA VARIABLE INDEPENDIENTE. Coseramos e prmer térmo a có e os arables Z=(;) spogamos, aemás qe é o so arables epeetes,

Más detalles

Ondas y Rotaciones. Dinámica de las Rotaciones III

Ondas y Rotaciones. Dinámica de las Rotaciones III Hoja de Tabajo Odas y Rotacoes Dáca de las Rotacoes Jae Felcao Heádez Uesdad Autóoa Metopoltaa - ztapalapa Méxco, D. F. 5 de agosto de 0 NTRODUCCÓN. Cosdeeos ua patícula de asa y cuya poscó (especto a

Más detalles

Identificación n de SIStemas

Identificación n de SIStemas Idetificació de SIStemas Idetificació e Lazo Ceado ISIS J. C. omez Idetificació e Lazo Ceado A eces es ecesaio ealiza los expeimetos de idetificació e lazo ceado co etoalimetació. Las azoes puede se ue

Más detalles

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte

Más detalles

ANEXO D. Cálculo del cortante basal

ANEXO D. Cálculo del cortante basal Cálculo del cortate basal CÁLCULO DEL CORANE BASAL El cálculo del cortate basal perte deterar la fuerza lateral total coo cosecueca de las fuerzas erca que se duce a u sstea de N rados de lbertad, dstrbuyédolo

Más detalles

Estadística Tema 9. Modelos de distribuciones. Pág. 1

Estadística Tema 9. Modelos de distribuciones. Pág. 1 Estadístca Tema 9. Modelos de dstbucoes. Pág. 9 Modelos de dstbucoes. 9. Modelos dscetos de vaables aleatoas. 9.. Epemetos y dstbucó de Beoull. 9.. Dstbucó bomal. 9.. Dstbucó ufome dsceta. 9.. Dstbucó

Más detalles

1. Propiedades molares y propiedades molares parciales

1. Propiedades molares y propiedades molares parciales erodáca. ea 9 Ssteas abertos y ssteas cerrados de coposcó varable. ropedades olares y propedades olares parcales Ua agtud olar se dee coo: Sepre está asocada a u sstea terodáco de u úco copoete (sstea

Más detalles

Ecuaciones de Lagrange. Ecuaciones de Lagrange: Cálculo de variaciones

Ecuaciones de Lagrange. Ecuaciones de Lagrange: Cálculo de variaciones Unvesa Són Bolíva. ees e ewon. Cneáca. Dnáca Ss. e paículas Cuepo ígo Defncones a le a le enso e neca a le unplana 3 a le Ecs. e agange Ecuacones e agange as ecuacones e agange peen la foulacón e las lees

Más detalles

EJERCICIOS SISTEMA FINANCIERO SIMPLE

EJERCICIOS SISTEMA FINANCIERO SIMPLE UNIVERSIDAD DE LOS ANDES FAULTAD DE IENIAS EONÓMIAS Y SOIALES DEPARTAMENTO DE IENIAS ADMINISTRATIVAS ÁTEDRA: ANÁLISIS DE LA INVERSIÓN ASIGNATURA: MATEMÁTIA FINANIERA PROFESOR: MIGUEL A. OLIVEROS V. EJERIIOS

Más detalles

Tema 7. Propiedades de la luz.

Tema 7. Propiedades de la luz. Tema 7. Popiedades de la luz. Poblemas esueltos. Poblema.- Se tiene un dioptio esféico convexo que sepaa una egión donde hay aie (n = ) de ota donde hay vidio (n =, 5). El adio del diptio esféico es de

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II UED FUTD DE. EOÓIS Y ERESRIES TEÁTI DE S OERIOES FIIERS II URSO / l uevo Eme e JUIO Dí // l ho TERI UXIIR: lulo fe DURIÓ: ho. El bo X oee u pétmo hpoteo l S. Y. utí el ptl peto e el % el peo e tó el po

Más detalles

y. Diferenciando la primera condición en (1) con respecto a x, la segunda respecto a y y sumando obtenemos

y. Diferenciando la primera condición en (1) con respecto a x, la segunda respecto a y y sumando obtenemos Sceta et Techca Año XIII, No 34, Mayo de 7 Uvesdad Tecológca de Peea ISSN -7 55 EL ESTUDIO DE ALGUNAS PROPIEDADES DE LAS FUNCIONES ARMÓNICAS PARA EL PROBLEMA DE DIRICHLET DE LA ECUACIÓN DE LAPLACE RESUMEN

Más detalles

La Carga Eléctrica Puntual, es una partícula cuya masa se supone está concentrada en un punto, y en el mismo se concentra su carga eléctrica.

La Carga Eléctrica Puntual, es una partícula cuya masa se supone está concentrada en un punto, y en el mismo se concentra su carga eléctrica. LEY DE COULOMB La Ley de Coulomb es la pmea ue se estuda en Electcdad ella consttuye una LEY UNIVERSAL poue es posble deducla del expemento y s ese expemento se ealza bajo las msmas condcones físcas cualuea

Más detalles

( v) Temario. Teorema de la energía a cinética. Objetivos. Leyes Fundamentales de la Mecánica de Fluidos (Tercera Parte) ( )

( v) Temario. Teorema de la energía a cinética. Objetivos. Leyes Fundamentales de la Mecánica de Fluidos (Tercera Parte) ( ) Leyes Funamentales e la Mecánca e Fluos (ecea Pate Joseh Foue Sa Canot (1768-1830 (1796-183 emao eoema e la Enegía Cnétca Ecuacón e Conseacón e la Enegía: Foma Integal Foma Local Enegía Potencal Funcón

Más detalles

Introducción al Algebra Lineal en Contexto Autor José Arturo Barreto M.A. Web:

Introducción al Algebra Lineal en Contexto Autor José Arturo Barreto M.A. Web: Itroduccó al Algebra Leal e Cotexto Autor José Arturo Barreto M.A. Web: www.abaco.com.e www.mprofe.com.e josearturobarreto@yahoo.com Descomposcó e Valor Sgular (SVD: Sgular Value Decomposto) El sguete

Más detalles

1. (JUN 04) Se consideran la recta y los planos siguientes: 4

1. (JUN 04) Se consideran la recta y los planos siguientes: 4 Matemáticas II Cuso.. (JUN ) Se considean la ecta los planos siguientes ; ;. Se pide (a) Detemina la posición elativa de la ecta con especto a cada uno de los planos. (b) Detemina la posición elativa de

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 30 CAPÍTULO Derivació.4 La regla e la caea Ecotrar la erivaa e ua fució compuesta por la regla e la caea. Ecotrar la erivaa e ua fució por la regla geeral e la potecia. Simplificar la erivaa e ua fució

Más detalles

( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) Oetvos El alumo coocerá aplcará y comparará alguos métodos de terpolacó umérca de ucoes. Al al de esta práctca el alumo podrá:. Oteer ua ucó que cotega u couto dado de putos e u plao utlzado los métodos

Más detalles

Cinemática del Robot Industrial

Cinemática del Robot Industrial Cemátca del Robot Idustal M.C. Mguel de J. Ramíe C. CMfgT Automatacó de Sstemas de Maufactua Adatacó: Glbeto Reoso Estuctua Mecáca del Robot Idustal Mecácamete u obot es ua cadea cemátca fomada de eslaboes

Más detalles

1. MEDIDA DE ÁNGULOS ENTRE RECTAS Y PLANOS.

1. MEDIDA DE ÁNGULOS ENTRE RECTAS Y PLANOS. IES Pae Poea (Guaix) UNIDAD 0: GEOMETRÍA MÉTRICA Si sólo tenemos en cuenta las elaciones existentes ente los puntos el espacio y los ectoes e V, la geometía estingiá su estuio a las posiciones elatias

Más detalles

Tema 4. Gráficos de control para variables

Tema 4. Gráficos de control para variables Cotrol e Calia Tema. Gráficos e cotrol para variables Douglas ivas Gráficos e cotrol para variables Cotrol e Calia Gráficos Douglas ivas Gráficos e cotrol para variables Cotrol e Calia Douglas ivas Gráficos

Más detalles

TAMIZADO

TAMIZADO http://louyaus.blogspot.com/ E-mal: wllamsscm@hotmal.com louyaus@yahoo.es TAMIZAO TAMIZAO U tamz cosste e ua malla o superce perorada, cuyos orcos tee u tamaño uorme. Mezcla de soldos Mezcla de soldos

Más detalles

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu y Tea 5: Equlbro Geeral Parte III OWC Ecooía para Mateátcos Ferado Perera Tallo ttp://bt.ly/8l8ddu Esteca de Equlbro Ferado Perera-Tallo A lo largo de esta presetacó os vaos a cocetrar e espacos Eucldos,

Más detalles

Teoría General de Cáscaras

Teoría General de Cáscaras Teoía Geneal e Cáscaas Teoía Geneal e Cáscaas El análisis teóico e las cáscaas, consiste en establece en pime luga las ecuaciones e equilibio e un elemento ifeencial cotao e la misma, bajo la acción e

Más detalles

EJERCICIOS GEOMETRÍA 2º BACHILLERATO

EJERCICIOS GEOMETRÍA 2º BACHILLERATO EJECICIOS GEOMETÍ º CHILLETO ) Coob qe lo vecoe () b (-) c () o lielee eeiee Eco l ecció el lo qe coiee eo vecoe l o (-) g( b c) g g g Lo vecoeolielee eeiee ) Se coie cico o e cooe (-) (-) (-) S(-) T(-)

Más detalles

Celdas lineales como un ejemplo de reuso de frecuencia en FDMA

Celdas lineales como un ejemplo de reuso de frecuencia en FDMA Celdas lieales oo u ejeplo de euso de feueia e FDM f f f f f f Celda Celda Celda Celda Celda Celda egió egió ea total dividida e egioes, que e-usa la isa atidad C de aales de adio feueia. Esto iplia que

Más detalles

Talleres de lectura para no olvidar. colegiopascal.com

Talleres de lectura para no olvidar. colegiopascal.com Talleres de lectura para no olvidar colegiopascal.com Fantabulario Introducción E l a r t e d e c o n t a r h a e x i s t i d o e n t o d a s l a s é p o c a s, e n c a d a p a r t e d e l m u n d o.

Más detalles

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C Ua empresa motadora de equpos electrócos está realzado u estudo sobre aluos de los compoetes que utlza. E partcular mde el tempo de vda e meses reales de los procesadores que mota, dode a aluos de ellos

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

FUNDAMENTOS DE LA TEORÍA DE LA

FUNDAMENTOS DE LA TEORÍA DE LA Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios FCULTD DE INGENIERÍ U N M PROBBILIDD Y ETDÍTIC Iee Paticia Valdez y lfao ieev@sevido.uam.mx FUNDMENTO DE L TEORÍ DE L PROBBILIDD CONCEPTO

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

Tema 4: Corrientes Estacionarias.

Tema 4: Corrientes Estacionarias. Electicidad y Manetismo uso / Tema 4: oientes Estacionaias. Definición. ompotamiento de los medios. Popiedades. oncepto de eneado, f.e.m. Intepetación eneética. ondiciones de contono en intefases. Resolución

Más detalles

ESTADÍSTICA DESCRIPTIVA BIVARIADA

ESTADÍSTICA DESCRIPTIVA BIVARIADA ESTDÍSTIC DESCRIPTI IRID ESTDÍSTIC DESCRIPTI IRID No coepode tata ahoa el poblema de aalza multáeamete do vaable etadítca de ua poblacó paa lo cual la ceamo o tomamo ua mueta de ella etudado e bae a tal

Más detalles

Aplicaciones de Balances de Energía en Reactores Batch

Aplicaciones de Balances de Energía en Reactores Batch plcacoes de Balaces de Eergía e Reactores Batch Para u reactor batch, el BdeM se epresa como la ecuacó para determar el tempo de resdeca: t N ( rv Separado varables: V N Esta es ua ecuacó dferecal ordara

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 5: Medidas de Dispersión para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 5: Medidas de Dispersión para Datos Agrupados por Valor Simple Curo de Etadítca Udad de Medda Decrptva Leccó 5: Medda de Dperó para Dato Agrupado por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 00 Derecho de Autor Objetvo. Calcular ampltud, varaza, devacó

Más detalles

La Derivada Geométrica y el Cálculo Geométrico Carlos Pereyda Pierre y Arnulfo Castellanos-Moreno Resumen I. Introducción

La Derivada Geométrica y el Cálculo Geométrico Carlos Pereyda Pierre y Arnulfo Castellanos-Moreno Resumen I. Introducción vel upeo La Devaa Geoméca el Cálculo Geoméco Calos Peea Pee Aulo Casellaos-Moeo Depaameo e Físca Uvesa e ooa Apaao Hemosllo ooa Méco Resume E ese aículo scumos el cocepo e evaa geoméca el eoema uameal

Más detalles

Resumen de Geometría. Matemáticas II GEOMETRÍA. w y los números a, b, c,, g, la expresión

Resumen de Geometría. Matemáticas II GEOMETRÍA. w y los números a, b, c,, g, la expresión Resmen e Geometía Matemáticas II GEOMETRÍA - BASE EN lr Daos los ectoes x,, z,, w los númeos a, b, c,, g, la expesión a x+ b + c z + + gw se llama combinación lineal e esos ectoes Dos ectoes son linealmente

Más detalles