Formulario 1: Teoría de Conjuntos = (1.1) Formulario 2: Propiedades de las Probabilidades y Métodos de Conteo = (2.1)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Formulario 1: Teoría de Conjuntos = (1.1) Formulario 2: Propiedades de las Probabilidades y Métodos de Conteo = (2.1)"

Transcripción

1 NVERSDD SMÓN OLÍVR O ROLDDES R NGENEROS FORMLRO Fomulaio : Teoía e ojutos Lees Distibutivas:. Le e omlemetos:. Lees e Moa:. Fomulaio : oieaes e las obabiliaes Métoos e oteo iomas e obabilia: L L L etoes : e evetos mutuamete eluetes e ua seueia es Si 0 S S. obabilia el omlemeto:. obabilia e la uió e os evetos ualesquiea:. obabilia e la uió e tes evetos ualesquiea:.4 obabilia e la iteseió e u eveto u omlemeto ualesquiea:.5

2 Fomas o maeas e obtee elemetos tomaos e u total e : Oeaos Si estituió!! No imota el! oe!! o estituió!!!.6 Resultaos iualmete obables: úmeo e omas e que el eveto uee oui.7 úmeo total e omas osibles Fomulaio : obabilia oiioal Teoema e aes e ieeeia obabilia oiioal:. Teoema e multiliaió e obabilia: L L. obabilia Total. Sea ua atiió el esaio muestal S etoes:. j j j Teoema e aes. Sea ua atiió el esaio muestal S etoes: i i i.4 j j j eeeia. Dos evetos so ieeietes si solo si: lo ual es equivalete a :.5

3 Fomulaio 4: Distibuió e ua Vaiable leatoia Diseta La uió e istibuió aumulaa e obabilia e la vaiable aleatoia se eie omo: F aa toa. 4. La uió e masa e obabilia e la vaiable aleatoia iseta se eie omo: aa toa. 4. Distibuió iseta iome :. 4. Distibuió eoulli : 0 ; Distibuió iomial : 0 ; Distibuió iomial Neativa : ; Distibuió Geométia : ; Distibuió Hieeométia N : N N 0 ;. 4.8 Distibuió oisso λ:! e λ λ 0 ; 0 λ < 4.9

4 Fomulaio 5: Distibuió e Vaiables leatoias otiuas Fuió e esia e obabilia e la vaiable aleatoia otiua : F 5. Fuió e istibuió aumulaa e obabilia e la vaiable aleatoia otiua : F t t 5. obabilia e u itevalo e la vaiable aleatoia otiua : Desia e la istibuió iomea b: Desia e la istibuió Eoeialα: b a< < b F b F a. 5. a a b. 5.4 b a αe α 0 < ; 0 < α < 5.5 Desia e la istibuió Nomalµ σ²: µ σ e < < ; < µ < ; σ > σ π Desia e la istibuió Gammaα β: Γ α β α / β e α Γ e α 0 α 0 < < ; α β > Desia e la istibuió etaα β: Γ α β Γ α Γ β α β 0 < < ; α β >

5 5 Fomulaio 6: Distibuioes Multivaiaas. Distibuioes Maiales oiioales. eeeia Fuió e obabilia ojuta el veto aleatoio iseto : 6. Fuió e istibuió aumulaa ojuta e obabilia el veto aleatoio iseto : s t t s F 6. obabilia e u eveto el veto aleatoio iseto : [ ] 6. Fuió e istibuió aumulaa ojuta el veto aleatoio otiuo : st t s F 6.4 Fuió e esia e obabilia ojuta e los vetoes aleatoios otiuos : F F L 6.5 obabilia e ua eió e el lao el veto aleatoio otiuo : [ ] 6.6 Fuioes e obabilia Maial e los vetoes aleatoios isetos : 4 L 6.7 Desiaes e obabilia Maial e los vetoes aleatoios otiuos : L L 6.8 obabiliaes oiioales e los vetoes aleatoios : 6.9 Las vaiables so ieeietes si: ó e oma equivalete si: 6.0

6 Fomulaio 7: Valo Eseao. Meia. Vaiaza. ovaiaza. oelaió. Eseaza oiioal. Fuió Geeaoa e Mometos. Valo Eseao e ua uió h e la vaiable aleatoia : h h [ h ] Si es iseta E 7. h Si es otiua Meia ó Valo Eseao e la vaiable aleatoia : Si es iseta µ 7. Si es otiua E Vaiaza e la vaiable aleatoia : { E } E [ E ] E va σ E µ 7. Desviaió Estáa e la vaiable aleatoia : esv.est. σ va 7.4 luos esultaos útiles aa la meia la vaiaza. Si a b so ostates etoes: E a b E a E b ae b 7.5 va a b a va a σ 7.6 Fuió Geeaoa e Mometos e la vaiable aleatoia : t M t E e 7.7 Obteió el Mometo e oe -ésimo E a ati e la Fuió Geeaoa e Mometos: t M t t 0 M 0 E 7.8 Valo Eseao e ua uió h el veto aleatoio : [ h ] h Si es iseta E 7.9 h Si es otiua 6

7 ovaiaza el veto aleatoio : [ E E ] E E E E ov σ E µ µ 7.0 oeiiete e oelaió el veto aleatoio : ov σ ρ va va σ σ ρ 7. luos esultaos útiles aa la suma e vaiables aleatoias. Si a b so ostates etoes: E a b ae be 7. va a b a va b va ab ov 7. Eseaza oiioal e ua uió h ao que la vaiable aleatoia : [ h ] h Si es iseta E 7.4 h Si es otiua Meia oiioal e la vaiable aleatoia ao : Si es iseta E µ 7.5 Si es otiua Vaiaza oiioal e la vaiable aleatoia ao : [{ E } ] E [ E ] E va σ µ 7.6 E luos esultaos útiles o eseazas oiioales: Si las vaiables so ieeietes etoes: [ E ] E E 7.7 va E[va ] va[ E ] 7.8 E E E o lo tato: ov va a b a va b va 7.0 E E E E 7. 7

8 Fomulaio 8: Fuioes e Vaiables leatoias. Desiuala e hebshev. Le eeal e los aes úmeos. Teoema el Límite etal. oimaió Nomal a la iomial. Desia e obabilia e ua vaiable aleatoia eiia omo uió e ota vaiable aleatoia otiua. Doe aemás es la uió ivesa e. Métoo e la uió e istibuió: Métoo e tasomaió: Desiuala e hebshev: σ 8. µ σ µ Meia muestal e vaiables aleatoias ieeietes e iualmete istibuias: i i 8.4 Vaiaza muestal e vaiables aleatoias ieeietes e iualmete istibuias: S i i i i 8.5 Valo eseao e la meia muestal: E µ E 8.6 i Vaiaza e la meia muestal: va va i σ 8.7 Valo eseao e la vaiaza muestal: Le ébil Geeal e los Gaes Númeos: S va σ E 8.8 i aa too ε > 0 lim µ < ε 8.9 8

9 Teoema el Límite etal: Sea la meia muestal e vaiables aleatoias ieeietes iualmete istibuias o meia Ei µ o vai σ² <. Sea Z ua vaiable aleatoia eiia omo: µ o uió e istibuió aumulaa Fz etoes: Z 0 < σ² < 8.0 σ lim F z z e π / 8. lo ual siiia que la vaiable Z tiee a istibuise omo N0 a meia que tiee a. Nota: E la obteió e Z 8.0 oíamos eemlaza σ o S el esultao 8. se matiee sieme uao 0 < σ² <. E la átia uao 0 S suele se ua buea aoimaió e σ. oimaió Nomal a la Distibuió iomial. Sea ua vaiable aleatoia o istibuió iomial o aámetos. Sea la vaiable aleatoia eiia omo: 8. o uió e istibuió aumulaa F etoes: lim F z e π / z. 8. Esto siiia que la vaiable se aoima a ua istibuió N0 a meia que tiee a. Nota : E la atia ua buea aoimaió omal e la vaiable se obtiee uao so ambos maoes que 5. Nota : La aoimaió se mejoa osieablemete uao se usa la oeió o otiuia la ual osiste e que aa valo eteo o eativo e es eesetao o el itevalo que va e ½ a ½. 9

Unidad III: Series de Fourier

Unidad III: Series de Fourier // Uia III: Series e Fourier Fuioes ortogoales. Series e Fourier. Series e Fourier e oseos y seos. Forma omleja e la serie e Fourier. eorema e Parseval. Esetro e freueia isreta. Esetro e oteia. FVC- Reaso

Más detalles

B o l e t í n d e J u r i s p r u d e n c i a d e l T r i b u n a l A d m i n i s t r a t i v o d e

B o l e t í n d e J u r i s p r u d e n c i a d e l T r i b u n a l A d m i n i s t r a t i v o d e B o l e t í n d e J u r i s p r u d e n c i a d e l T r i b u n a l A d m i n i s t r a t i v o d e A t e n a s T R I B U N A L A D M I N I S T R A T I V O D E A T E N A S B O L E T I N D E J U R I S P

Más detalles

Tema 7: ANÁLISIS FACTORIAL Y ANÁLISIS DE COMPONENTES PRINCIPALES

Tema 7: ANÁLISIS FACTORIAL Y ANÁLISIS DE COMPONENTES PRINCIPALES Tema 7: ANÁLISIS FACTORIAL Y ANÁLISIS DE COMPONENTES PRINCIPALES. Intoducción al Análisis Multivaiante.. Distibuciones multivaiantes.. Estimación untual en distibuciones multivaiantes..3 Ejemlos en distibuciones

Más detalles

CONCEPTOS CLAVE DE LA UNIDAD 1

CONCEPTOS CLAVE DE LA UNIDAD 1 CONCEPTOS CLAVE DE LA UNIDAD 1 1. Proeso iterativo. La idea fudametal de u proeso iterativo osiste e lo siguiete: Dada ua o varias situaioes iiiales (etapa 1), se les aplia algua trasformaió iterativa,

Más detalles

FUNDAMENTOS DE LA TEORÍA DE LA

FUNDAMENTOS DE LA TEORÍA DE LA Pepaado po Iee Paticia Valdez y lfao eptiembe 2006 Coceptos pevios FCULTD DE INGENIERÍ U N M PROBBILIDD Y ETDÍTIC Iee Paticia Valdez y lfao ieev@sevido.uam.mx FUNDMENTO DE L TEORÍ DE L PROBBILIDD CONCEPTO

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES Espacios Vectoiales Heamietas ifomáticas paa el igeieo e el estudio del algeba lieal. ESPACIOS VECTORIALES.. ESTRUCTURA DE ESPACIO VECTORIAL... Defiició..2. Ejemplos de espacios vectoiales..3. Popiedades

Más detalles

Análisis Geostadístico. de datos funcionales

Análisis Geostadístico. de datos funcionales á í á - á é í : í é : á ó í ( ). é í á ó,,,., í é.,, é ó., í á. í., ó, ó. é ó., á, ó.., ó - ()., é á í. é á., á. ó, ó á. é ó é. í á ó. : ; ; ó ; ; ; ó. ó í............................... á..............................................................

Más detalles

5. Estimación puntual. Curso Estadística

5. Estimación puntual. Curso Estadística 5. stmacó utual Cuso - stadístca Poblacó % DFCTUOSA Pobabldad Coocdo cuato vale? Muesta Nº Defectuosa Coocdo cuato vale? Ifeeca stmacó utual N Paámetos? MUSTRA... Datos Coocdos? stmacó utual 3 sesoes de

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

S7: Series numéricas II

S7: Series numéricas II Dada la serie S = k= a k, si la suma es fiita diremos que es ua serie covergete y e caso cotrario ua serie divergete. A la siguiete sucesió de úmeros la llamaremos la sucesió de sus sumas parciales: S

Más detalles

25 EJERCICIOS de RADICALES 4º ESO opc. B

25 EJERCICIOS de RADICALES 4º ESO opc. B EJERCICIOS de RADICALES º ESO opc. B RECORDAR: Definición de raíz n-ésima: Consecuencia: n n x n a x x x, y también ( ) n n x n a x Equivalencia con una potencia de exponente fraccionario: Simplificación

Más detalles

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora): EJERCICIOS de RADICALES º ESO académicas FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la

Más detalles

5 Puntos, rectas y planos en el espacio

5 Puntos, rectas y planos en el espacio 5 Putos, ectas y paos e e espacio Págia 145 Geometía eíptica a) Sea R 1 y R ectas e a geometía eíptica, y S a supeficie esféica. R 1 = π 1 S; R = π S Como os dos paos pasa po e ceto, se cota, uego π 1

Más detalles

Transporte de portadores. Corriente en los semiconductores

Transporte de portadores. Corriente en los semiconductores Trasporte de portadores Corriete e los semicoductores Movimieto térmico de los portadores Detro del semicoductor los portadores de corriete está sometidos a u movimieto de agitació térmica (movimieto browiao).

Más detalles

Principio de multiplicación: Sean A 1, A 2,..., A n, una colección de conjuntos finitos no vacíos, entonces A 1 xa 2 x...xa n = A 1 A 2... A n.

Principio de multiplicación: Sean A 1, A 2,..., A n, una colección de conjuntos finitos no vacíos, entonces A 1 xa 2 x...xa n = A 1 A 2... A n. Matemática Disceta: Método combiatoio MATEMATICA DISCRETA 3 Método Combiatoio 3 Técicas básicas Sea S u cojuto fiito o vacío Se desiga po S el cadial de S (el úmeo de elemetos de S) Picipio de adició:

Más detalles

Intersección Cono-Esfera - Oposición Hoja 1/3. NOTA: Por razones de espacio, los dibujos se han realizado a la escala 3:4.

Intersección Cono-Esfera - Oposición Hoja 1/3. NOTA: Por razones de espacio, los dibujos se han realizado a la escala 3:4. NOTA: Por razones de espacio, los dibujos se han realizado a la escala 3:4. V 2 En la intersección del cono y de la esfera, dada la posición de sus ejes, que son paralelos y están contenidos en un proyectante

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

2 Modelos de probabilidad discretos sobre R

2 Modelos de probabilidad discretos sobre R UN CATÁLOGO DE MODELOS DE POBABILIDAD Julián de la Horra Departamento de Matemáticas U.A.M. Introducción En este capítulo vamos a dar un catálogo de algunos de los modelos de probabilidad más utilizados,

Más detalles

si G es abierto. La función del conjunto m tiene las siguientes propiedades: de partes de se dice que es una , entonces E.

si G es abierto. La función del conjunto m tiene las siguientes propiedades: de partes de se dice que es una , entonces E. LA INTGRAL D LBSGU PARA FUNCIONS D UNA SOLA VARIABL RSULTADOS TÓRICOS LA MDIDA D LBSGU CONJUNTOS MDIBLS Dado u couto abierto o vació G de la recta real, existe ua amilia iita o umerable {V: œl}, ormada

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS

INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS Maste de Cotabilidad, Auditoía y Cotol de Gestió INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS Cuso 007/008 Cuso 007/008 Maste de Cotabilidad, Auditoía y Cotol de Riesgos DEPÓSITO FORWARD-FORWARD Acuedo

Más detalles

Mecánica de Materiales II: Análisis de Esfuerzos

Mecánica de Materiales II: Análisis de Esfuerzos Mecáica de Materiales II: Aálisis de Adrés G. Clavijo V., Coteido Itroducció Fueras de volume Coveció de sigos de cauch Estado Triaial Circulo de Mohr Método gráfico Estado plao de Circulo de Mohr - Reglas

Más detalles

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora):

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora): EJERCICIOS de RADICALES º ESO HOJA 1: Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añade estas fórmulas al formulario, juto co la lista de los

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Primer Examen Parcial. 27 de Enero de 2003 CÁLCULO Pime cuso de Igeieo de Telecomuicació Pime Exame Pacial. 7 de Eeo de 3 Ejecicio. Deducilafómuladeláeadeusegmetopaabólico e fució de su base y su altua. Se cosidea u coo cicula ecto co adio de la

Más detalles

FORMULARIO DE ESTADÍSTICA

FORMULARIO DE ESTADÍSTICA Reúmee de Matemática paa Bachilleato I.E.S. Ramó Gialdo FORMULARIO DE ESTADÍSTICA Cocepto báico Població: cojuto de todo lo elemeto objeto de ueto etudio Mueta: ubcojuto, extaído de la població,(mediate

Más detalles

LA SERIE GEOMETRICA Y SU DERIVADA

LA SERIE GEOMETRICA Y SU DERIVADA Scietia et Techica Año XVII, No 7, Abil de 0. Uivesidad Tecológica de Peeia. ISSN 0-70 96 LA SERIE GEOMETRICA Y SU DERIVADA The Geometic seies ad it deivative RESUMEN E este atículo hallaemos el valo al

Más detalles

3.5 Factores y Coeficientes de Forma

3.5 Factores y Coeficientes de Forma Autoes: Patco Covalá Vea Jame eáez Palma 3.5 Factoes y Coecetes e Foma A es el slo XIX, Towa esaolla la ea e los actoes e oma como ua espuesta a las cultaes suas el uso e los sólos e evolucó. La ea e Towa

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD ESTADÍSTICA, CURSO 008 009 TEMA : DISTRIBUCIONES DE PROBABILIDAD LEYES DE PROBABILIDAD. SUCESOS ALEATORIOS Experimetos aleatorios, espacio muestral. Sucesos elemetales y compuestos. Suceso imposible Ø,

Más detalles

LEY FINANCIERA DE DESCUENTO SIMPLE COMERCIAL

LEY FINANCIERA DE DESCUENTO SIMPLE COMERCIAL LEY FINANIERA DE DESUENTO SIMPLE OMERIAL Profesor: Jua Atoio Gozález Díaz Departameto Métoos uatitativos Uiversia Pablo e Olavie www.clasesuiversitarias.com LEY FINANIERA DE DESUENTO SIMPLE (V,p) p (,t)

Más detalles

Tema 6: Teoremas Asinto ticos

Tema 6: Teoremas Asinto ticos Tema 6: Teoremas Asito ticos Teorı a de la Comuicacio Curso 27-28 Coteido 1 Teorema del Límite Cetral 2 Teorema de DeMoivre-Laplace 3 Desigualdad de Chebychev 4 Ley de Los Grades Números Coteido 1 Teorema

Más detalles

MMII_c5_MSV: Método de Separación de Variables para la ecuación de Laplace en un círculo.

MMII_c5_MSV: Método de Separación de Variables para la ecuación de Laplace en un círculo. MMII_5_MSV: Método de Sepaaió de Vaiables paa la euaió de Laplae e u íulo. Guió: U poblema defiido po la euaió de Laplae muy feuete e las apliaioes es que el domiio sea u íulo, el poblema equiee de estiioes

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

ENCUESTA NACIONAL DE PROTECCION Y SEGURIDAD SOCIAL (ENAPROSS)

ENCUESTA NACIONAL DE PROTECCION Y SEGURIDAD SOCIAL (ENAPROSS) ENCUESTA NACIONAL DE PROTECCION SEGURIDAD SOCIAL (ENAPROSS METODOLOGÍA DEL DISEÑO DE MUESTRA ASESORÍA ESTADÍSTICA: DATA EXPLORER Íie. Itouió. Objetivos 3. Poblaió y omiios 3.. Poblaió objetivo 3.. Domiio

Más detalles

Conjunto R 3 y operaciones lineales en R 3

Conjunto R 3 y operaciones lineales en R 3 Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en

Más detalles

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores Ejercicios para exámees de Matemáticas (CCAA y CTA Vectores Jua-Miguel Gracia 7 de octubre de 014 Ejercicio Sea a, b vectores de R 5 que satisface a = 10, a + b = 11, a b = 9 Demostrar que existe u β R

Más detalles

Sucesiones. Límite de una

Sucesiones. Límite de una Capítulo 3 Sucesioes. Límite de ua sucesió 3.. Itroducció La oció de sucesió es u istrumeto importate para el estudio de u gra úmero de problemas relativos a las fucioes. Ua sucesió es, simplemete, ua

Más detalles

Distribuciones unidimensionales continuas

Distribuciones unidimensionales continuas Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Distribución uniforme continua 2 Estándar 3 Distribución χ 2 de Pearson 4 Distribución uniforme continua Definición Es una variable continua

Más detalles

Identificación de Sistemas

Identificación de Sistemas Departameto de Electróica Facultad de Ciecias Eactas Igeiería y Agrimesura Uiversidad Nacioal de osario Idetificació de Sistemas Coceptos Fudametales de robabilidad Variables Aleatorias y rocesos Aleatorios

Más detalles

Tema 0 Conocimientos previos al curso de Física

Tema 0 Conocimientos previos al curso de Física Tema 0 Conocimientos pevios al cuso de Física Conocimientos básicos de matemáticas Geometía y tigonometía Álgeba vectoial Conocimientos básicos de física Magnitudes y unidades físicas. Sistema Intenacional

Más detalles

5 Variables aleatorias bidimensionales y de mayor dimension.

5 Variables aleatorias bidimensionales y de mayor dimension. 5 Variables aleatorias bidimesioales de maor dimesio. Edgar Acua ESMA 4 Edgar Acua Sea S el esacio muestral de u eerimeto aleatorio. Sea s s dos ucioes que asiga u umero real a cada elemeto s de S. Etoces

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

1. a) Mostrar que los siguientes conjuntos están acotados. x b) Mostrar que los siguientes conjuntos no están acotados superiormente

1. a) Mostrar que los siguientes conjuntos están acotados. x b) Mostrar que los siguientes conjuntos no están acotados superiormente FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 3 1. a) Mostrar que los siguietes cojutos

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Estadística Tema 9. Modelos de distribuciones. Pág. 1

Estadística Tema 9. Modelos de distribuciones. Pág. 1 Estadístca Tema 9. Modelos de dstbucoes. Pág. 9 Modelos de dstbucoes. 9. Modelos dscetos de vaables aleatoas. 9.. Epemetos y dstbucó de Beoull. 9.. Dstbucó bomal. 9.. Dstbucó ufome dsceta. 9.. Dstbucó

Más detalles

Expresiones Regulares

Expresiones Regulares Conjuntos Regulares y Una forma diferente de expresar un lenguaje Universidad de Cantabria Conjuntos Regulares y Esquema 1 Motivación 2 Conjuntos Regulares y 3 4 Conjuntos Regulares y Motivación El problema

Más detalles

EJERCICIO DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 5

EJERCICIO DE ANÁLISIS FUNCIONAL (Asignatura VCAF) HOJA 5 EJECICIO DE ANÁLISIS FUNCIONAL (Asigatura VCAF) HOJA 5 Ejercicio : Demostrar que e el espacio C[, ] los siguietes fucioales so lieales, cotiuos, y hallar sus ormas: a) F (x) = x(t)dt x(); b) F (x) = x(t)dt

Más detalles

el blog de mate de aida CSII: Inferencia estadística. Pág. 1

el blog de mate de aida CSII: Inferencia estadística. Pág. 1 el blog de mate de aida CSII: Ifeecia estadística ág INTRODUCCIÓN La ifeecia estadística estudia cómo saca coclusioes geeales paa toda la població a pati del estudio de ua muesta, y el gado de fiabilidad

Más detalles

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO ESACIOS AFÍN Y EUCLÍDEO Nota: Los pocedimietos expestos o so los úicos qe eselve los poblemas Defiició El espacio afí so los ptos coexistiedo jto al espacio vectoial V, co sistema de efeecia ( pto fijo

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

la radiación lección 2 Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz 1 Ingeniería Técnica en Topografía

la radiación lección 2 Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz 1 Ingeniería Técnica en Topografía Dpto. de Ingenieía Catogáfica la adiación Calos Pinilla Ruiz 1 lección 2 Ingenieía Técnica en Topogafía la adiación Calos Pinilla Ruiz 2 Dpto. de Ingenieía Catogáfica sumaio Ingenieía Técnica en Topogafía

Más detalles

Apéndice Números Complejos

Apéndice Números Complejos Aédice Números Comlejos 1 Números comlejos. Geeralidades. Oeracioes co úmeros comlejos Potecia y raíz de úmeros comlejos. 4 Fució exoecial y forma exoecial. E.U.Politécica de Sevilla. Fudametos Matemáticos

Más detalles

Aplicaciones de la Optimización Convexa al análisis de redes

Aplicaciones de la Optimización Convexa al análisis de redes Aplicaciones de la Optimización Convea al análisis de edes Intoducción Repaso de conceptos básicos de unciones de vaias vaiables y conveidad Repaso : Función deivada pacial La deivada pacial de con especto

Más detalles

Resumen No Distribución Conjunta de Variables Aleatorias (contin.) Ma34a Prob. y Proc. Estocásticos 29 de Junio, 2006

Resumen No Distribución Conjunta de Variables Aleatorias (contin.) Ma34a Prob. y Proc. Estocásticos 29 de Junio, 2006 Ma34a Prob. y Proc. Estocásticos 29 de Juio, 2006 Resume No. 3 Prof. Cátedra: M. Kiwi Prof. Auxiliares: A. Cotreras, R. Cortez 1. Distribució Cojuta de Variables Aleatorias (coti. Defiició 1 [Variables

Más detalles

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora):

1. Calcular, aplicando mentalmente la definición de raíz (no usar calculadora): EJERCICIOS de RADICALES º ESO FICHA : Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a x x a x x (Añadir estas fórmulas al formulario, juto co la lista de los

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

Cinemática del Robot Industrial

Cinemática del Robot Industrial Cemátca del Robot Idustal M.C. Mguel de J. Ramíe C. CMfgT Automatacó de Sstemas de Maufactua Adatacó: Glbeto Reoso Estuctua Mecáca del Robot Idustal Mecácamete u obot es ua cadea cemátca fomada de eslaboes

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

Tablas y Fórmulas Estadísticas 1 TABLAS Y FORMULAS ESTADISTICAS. Carlo Magno Araya Profesor de Estadística Sede de Occidente Universidad de Costa Rica

Tablas y Fórmulas Estadísticas 1 TABLAS Y FORMULAS ESTADISTICAS. Carlo Magno Araya Profesor de Estadística Sede de Occidente Universidad de Costa Rica Tablas y Fómulas Estadístas TABAS Y FORMUAS ESTADISTICAS Calo Mago Aaya Pofeso de Estadísta Sede de Odete Uvesdad de Costa Ra MEDIDAS DE POSICIO Tablas y Fómulas Estadístas Datos s agupa Datos agupados

Más detalles

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: MADRID

DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: MADRID C/ Gal. Auda, 6 Tléf.: 9 5 8 4-9 55 9 800 MADRID ORMULARIO DE ESTADÍSTICA. DISTRIBUCIONES UNIDIMENSIONALES. Esaza atátca. Sdo ua vaabl alatoa g ( ua fucó d la sa, dfos: E ( g ( ( g Caso dscto g ( f ( Caso

Más detalles

Análisis de respuesta en frecuencia

Análisis de respuesta en frecuencia Aálisis de respuesta e freueia Co el térmio respuesta e freueia, os referimos a la respuesta de u sistema e estado estable a ua etrada seoidal. E los métodos de la respuesta e freueia, la freueia de la

Más detalles

Figura 1.63: letra i superpuesta con los símbolos = e. Figura 2.1: donde dice δc debe decir δs.

Figura 1.63: letra i superpuesta con los símbolos = e. Figura 2.1: donde dice δc debe decir δs. Fe de eatas Debido a poblemas técicos duate la impesió de esta pimea edició de lectomagetismo elemetal, vaias iguas peseta eoes ue o existía e el mauscito oigial pesetado po el auto. uellas e las cuales

Más detalles

CAPÍTULO 6 TEOREMAS ENERGÉTICOS

CAPÍTULO 6 TEOREMAS ENERGÉTICOS CPÍTULO 6 TEORES ENERGÉTICOS L ENERGÍ ELÁSTIC EXPRESD EN UNCIÓN DE LS CRGS PLICDS Hasta ahoa, habíamos utlao la sguete epesó e la esa e eegía elástca: ( σ ε σ ε σ ε τ γ τ γ τ γ ) ω Que, tegaa a lo lago

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scietia Et Techica ISSN: 01-1701 scietia@utp.edu.co Uivesidad Tecológica de Peeia Colombia GONZALEZ PINEDA, CAMPO ELIAS; MILENA GARCIA, SANDRA; OSORIO ACEVEDO, LUIS EDUARDO LA SERIE GEOMETRICA Y SU DERIVADA

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES MATE 3032 - DR. UROYOÁN R. WALKER. Sucesioes Teorema.. Sucesioes mootóicas acotadas coverge. Ejemplo.2. Sea {a } la sucesió deida recursivamete

Más detalles

Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales. x n

Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales. x n Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales 1. Función de distribución binomial: Si X distribuye bin ( n, p), entonces f n x x n

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Series de números reales

Series de números reales Series de úmeros reales Covergecia de series uméricas Ejercicio. series: a) ) + b) 3 3 ) c) +) Aplicar el criterio de la raíz para estudiar la posible covergecia de las siguietes Solució. a) Aplicamos

Más detalles

CI2612: Algoritmos y Estructuras de Datos II. Espacio de probabilidad. Objetivos. Blai Bonet

CI2612: Algoritmos y Estructuras de Datos II. Espacio de probabilidad. Objetivos. Blai Bonet CI2612: Algoritmos y Estructuras de Datos II Blai Boet Aálisis probabiĺıstico Uiversidad Simó Boĺıvar, Caracas, Veezuela Objetivos Espacio de probabilidad Ituitivamete, utilizamos la idea de probabilidad

Más detalles

INTEGRACIÓN POR FRACCIONES PARCIALES

INTEGRACIÓN POR FRACCIONES PARCIALES Profesor: Jaime H. Ramírez Rios Págia INTEGRIÓN POR FRIONES PRILES 8 Hay oasioes dode es eesario ivertir el proeso. Para ver ómo fuioa e geeral el método de fraioes pariales, trabajaremos sobre ua fuió

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Intersección y suma de subespacios

Intersección y suma de subespacios Intersección y suma de subespacios Objetivos Demostrar que la intersección y la suma de dos subespacios de un espacio vectorial también son sus subespaicios Requisitos Espacio vectorial, subespacio vectorial

Más detalles

APLICACIONES DE LA DIFERENCIAL

APLICACIONES DE LA DIFERENCIAL DEINICIÓN DE UNCIÓN DIERENCIABLE Se die que u uió es diereible e u puto si su iremeto puede esribirse de l orm g η es tl que g o depede de los iremetos η udo. Ejemplo: Determir si l uió es diereible. Clulemos

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Celdas lineales como un ejemplo de reuso de frecuencia en FDMA

Celdas lineales como un ejemplo de reuso de frecuencia en FDMA Celdas lieales oo u ejeplo de euso de feueia e FDM f f f f f f Celda Celda Celda Celda Celda Celda egió egió ea total dividida e egioes, que e-usa la isa atidad C de aales de adio feueia. Esto iplia que

Más detalles

25 EJERCICIOS de RADICALES 4º ESO opc. A

25 EJERCICIOS de RADICALES 4º ESO opc. A EJERCICIOS de RADICALES º ESO opc. A RECORDAR: Definición de raíz n-ésima: Consecuencia: n n n a, y también ( ) n n n a Equivalencia con una potencia de eponente fraccionario: Simplificación de radicales/índice

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

PROBLEMAS DE OPOSICIONES MADRID (25/06/2010)

PROBLEMAS DE OPOSICIONES MADRID (25/06/2010) Academia DEIMOS OPOSIIONES A PROFESORES DE SEUNDARIA Y DIPLOMADOS EN ESTADÍSTIA DEL ESTADO.I.F. B409770 / Ferádez de los Ríos 75, º Izda. (Metro : Mocloa) 669 64 06 805 MADRID www.academiadeimos.es academia@academiadeimos.es

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Georgina Flesia FaMAF 3 de mayo, 2012 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles

Buscapalabras Circula las palabras que escribiste como respuestas

Buscapalabras Circula las palabras que escribiste como respuestas El cocinero babilónico está cocinando algo más rico que sopa de verduras. Es sopa de la Palabra de Dios. Encuentra y marca solo las palabras del versículo en la sopa y escribe el versículo de Lucas 11:28

Más detalles

Paréntesis: Una aplicación en lenguajes formales

Paréntesis: Una aplicación en lenguajes formales Paréntesis: Una aplicación en lenguajes formales Vamos a ver una aplicación del Teorema de Immerman-Szelepcsényi en la área de lenguajes formales. IIC3242 Clases de Complejidad 35 / 69 Paréntesis: Una

Más detalles

Paredes Delgadas. Clase 6 Recipiente de Revolución de Paredes Delgadas. Facultad de Ingeniería - UNA

Paredes Delgadas. Clase 6 Recipiente de Revolución de Paredes Delgadas. Facultad de Ingeniería - UNA Paedes Delgadas Clase 6 Recipiente de Revolución de Paedes Delgadas Impotancia páctica de la evolución de los cálculos Catedal de San Pedo, edificada en el siglo XVI, Luz 40 m, espeso pomedio de 3 metos

Más detalles

10 EJERCICIOS de FRACCIONES ALGEBRAICAS 4º ESO opc. B

10 EJERCICIOS de FRACCIONES ALGEBRAICAS 4º ESO opc. B 0 EJERCICIOS de FRACCIONES ALGEBRAICAS º ESO opc. B. Utilizado idetidades otables, desarrollar las siguietes epresioes: () (-) ()(-) () (-5) () (-) ( (a- (-) (5) (-5) (-) (--) m) ( )( ) ) ( ) o) ( ). Razoar

Más detalles

Competencia Matemática E. Paenza. Sexta Realización 1991

Competencia Matemática E. Paenza. Sexta Realización 1991 Competecia Matemática E. Paeza Seta Realizació 99 Resolució de los problemas Participate N : Problema. Sea C u cuadrilátero coveo. Si el área del cada uo de los cuatro triágulos determiados por las dos

Más detalles

Resumen que puede usarse en el examen

Resumen que puede usarse en el examen Resume que puede usarse e el exame ema. Optimizació Irrestrigida. Codicioes ecesarias y suficietes de optimalidad. Proposició (C. Necesarias) Sea x* u míimo local irrestrigido de f :!! y supogamos que

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I - Ferado Sáchez - - Números Cálculo I complejos 09 0 07 E el cuerpo de los úmeros reales ecuacioes como x + = 0 o tiee solució: el poliomio x + o tiee raíces reales. Hace falta exteder el cocepto de úmero

Más detalles

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función Tema 8 Derivabilidad y reglas de derivació 8. Derivada de ua fució f : I R es derivable e a I si eiste el límite que llamaremos f 0 (a) f() f(a) lim a a Ejercicio 8.. Si f() 3 calcular f 0 () f(a + ) f(a)

Más detalles

ANEXO II. ECUACIONES DIFERENCIALES DEL MOVIMIENTO DE UN SISTEMA DE PARTÍCULAS CON COORDENADAS GENERALIZADAS. ECUACIONES DE LAGRANGE.

ANEXO II. ECUACIONES DIFERENCIALES DEL MOVIMIENTO DE UN SISTEMA DE PARTÍCULAS CON COORDENADAS GENERALIZADAS. ECUACIONES DE LAGRANGE. XO II. cuacioes ifeeciales el oiieto e u sistea e patículas co cooeaas geealizaas. cuacioes e Lagage. XO II. CUCIOS DICILS DL MOVIMITO D U SISTM D PTÍCULS CO COODDS GLIDS. CUCIOS D LGG. ste poyecto fi

Más detalles