CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel"

Transcripción

1 x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la correcció mediada por tu profesor, ya que sólo e esta istacia podrás resolver cualquier duda subyacete. SGUICM05M-AV CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel E Aplicació C Aplicació A Aplicació 4 B Aplicació 5 A Aplicació E Aálisis D Aplicació 8 C Aplicació 9 B Aálisis 0 C Evaluació GUIA DE EJERCITACIÓN Medidas de dispersió y posició

2 TABLA DE CORRECCIÓN GUÍA MEDIDAS DE DISPERSIÓN Y POSICIÓN ÍTEM ALTERNATIVA HABILIDAD D Aplicació A Aplicació C Compresió 4 B Aplicació 5 D D Compresió E Aplicació 8 E Aplicació 9 A Aplicació 0 B C Compresió B Aplicació C 4 D 5 C A A Aplicació 8 E Compresió 9 C 0 B

3 . La alterativa correcta es D. Uidad temática Aplicació I) Verdadera, ya que el cuartil es el dato bajo el cual se ecuetra el 5% de la muestra, mietras que el quitil es aquel dato bajo el cual se ecuetra el 0% de la muestra. Como la muestra tiee 5 datos, y el dato abarca los 0 primeros lugares, etoces este dato correspode al quitil y cuartil. II) Falsa, ya que el percetil 0 es el dato bajo el cual se ecuetra el 0% de la muestra, mietras que la mediaa es el dato bajo el cual se ecuetra el 50% de la muestra. Como so 5 datos, la mediaa será el dato cetral, es decir, el dato que ocupa la posició 8 (que correspode al dato ), mietras que el percetil 0 es el dato que ocupa la posició (correspodiete al dato ). Verdadera, ya que el decil 8 correspode al dato bajo el cual se ecuetra el 80% de la muestra. Como la muestra tiee 5 datos, el dato que ocupa la posició 8 correspode al decil 8, ya que el 80% de 5 es 8. Por lo tato, el dato bajo el cual se ecuetra el 80% de la muestra es 4. Luego, solo I y III so verdaderas.. La alterativa correcta es A. Uidad temática Aplicació Traspasado los datos de la gráfica a ua tabla de datos: Putajes Frecuecia F. acumulada [400, 45[ 4 4 [45, 550[ 9 [550, 5[ 8 4 [5, 00[ 8 [00, 5[ 5 9 [5, 850] 00 Al ser 00 datos, el térmio que ocupa la posició 0 correspoderá al decil. Como el itervalo [5, 00[ agrupa los datos desde la posició 4 hasta la 8, etoces e este itervalo se ecuetra el decil.

4 . La alterativa correcta es C. Uidad temática Compresió A) Verdadera, ya que, segú el diagrama, los datos que toma la muestra varía etre 5 y. B) Verdadera, ya que el cuartil y correspode a 9 y 5, respectivamete. Por lo tato, el rago itercuartil correspode a la diferecia etre estos valores. C) Falsa, ya que k correspode a la mediaa, y este valor o es ecesariamete el promedio etre el primer y tercer cuartil. D) Verdadera, ya que la base iferior de la caja represeta al dato que correspode al primer cuartil. E) Verdadera, ya que el percetil 5 es equivalete al tercer cuartil, y este está represetado por la base superior de la caja y es La alterativa correcta es B. Uidad temática Aplicació Segú el diagrama, el valor de x correspode al tercer cuartil de la muestra. Ordeado los datos de la muestra de forma creciete, obteemos: {4, 5, 5, 5, 5,,,, 8, 8, 9, 9, 9,,, } Como la muestra tiee datos, el tercer cuartil (que es equivalete al percetil 5) correspode al dato que ocupa el lugar úmero (ya que es el dato bajo el cual se ecuetra el 5% de la muestra). Por lo tato, el valor de x es 9. 4

5 5. La alterativa correcta es D. Uidad temática I) Falsa, ya que o es posible determiar la catidad específica de alumos reprobados e cada ua de las pruebas, debido a que el diagrama muestra que los primeros cuartiles correspode a alumos aprobados, por lo que o es posible determiar el úmero de otas isuficietes e el primer 5%. II) Verdadera, ya que el primer cuartil es 4,, es decir, que u 5% del curso tiee ua ota meor o igual a 4,. Por lo tato, el 5% restate correspode a otas sobre 4,. Verdadera, ya que la máxima calificació e matemática fue u,5; mietras que e leguaje fue u,8. Por lo tato, II y III so verdaderas.. La alterativa correcta es D. Uidad temática Compresió Por defiició, el percetil correspode al valor bajo el cual se ecuetra u cierto porcetaje de los datos, ua vez que la muestra se ha ordeado de meor a mayor. Por lo tato, el percetil m correspode siempre al valor bajo el cual se ecuetra el m% de los datos. 5

6 . La alterativa correcta es E. Uidad temática Aplicació El decil correspode al valor bajo el cual está el 0% de los datos de la muestra. Obteiedo las frecuecias relativas porcetuales acumuladas, cosiderado que el total de datos es ( ) = 0, resulta: Dato Frecuecia Frecuecia relativa porcetual Frecuecia relativa porcetual acumulada 40 5 (5 00)/0 = 9,5 9, (0 00)/0 =,5 (9,5 +,5) = 4, (0 00)/0 =,5 (4,85 +,5) = 5, (0 00)/0 =,5 (5,5 +,5) = 5,5 0 5 (5 00)/0 = 5,5 (5,5 + 5,5) = 8,5 5 0 (0 00)/0 = 8,5 (8,5 + 8,5) = 00 Por lo tato, el valor bajo el cual está el 0% de los datos de la muestra (decil ) es La alterativa correcta es E. Uidad temática Aplicació El cuartil correspode al valor bajo el cual está el 5% de los datos de la muestra, para lo cual e primer lugar se debe calcular el valor de a. La suma de los porcetajes de cada uo de los cico datos debe ser igual a 00%. Luego: 8% + a% + 0% + 8% + a% = 00% a% + 4% = 00% a% = 54% a = Obteiedo las frecuecias relativas porcetuales acumuladas resulta: Por lo tato, el valor bajo el cual está el 5% de los datos de la muestra de los datos (cuartil ) es 5. Dato Frecuecia relativa porcetual Frecuecia relativa porcetual acumulada

7 9. La alterativa correcta es A. Uidad temática Aplicació E este caso, por ser 00 datos, la frecuecia acumulada coicide co la frecuecia relativa porcetual acumulada. Luego: I) Falsa, ya que el percetil 0 correspode al valor bajo el cual está el 0% de los datos de la muestra. Etoces, el percetil 0 es. Dato Frecuecia Frecuecia relativa porcetual acumulada (5 + 5) = 50 0 (50 + 0) = (0 + 0) = 00 II) Verdadera, ya que el decil 4 correspode al valor bajo el cual está el 40% de los datos de la muestra. Etoces, el decil 4 es. Falsa, ya que el cuartil correspode al valor bajo el cual está el 5% de los datos de la muestra. Etoces, el cuartil es. Por lo tato, solo la afirmació II es verdadera. 0. La alterativa correcta es B. Uidad temática I) Falsa, ya que el rago correspode a la diferecia etre el mayor y el meor valor de toda la muestra. Luego, el rago de la variable edad es 0 años. II) Falsa, ya que el total de datos es ( ) = 0. Luego, la mediaa correspode al promedio etre los datos e la posició 0 y. Como el primer itervalo tiee 0 datos y el segudo itervalo tiee 40 datos, etoces el segudo itervalo ocupa las posicioes de la a la 0. Etoces, la mediaa se ecuetra e el itervalo 4, 8. Verdadera, ya que correspode al itervalo que tiee la mayor frecuecia. Por lo tato, solo la afirmació III es verdadera.

8 . La alterativa correcta es C. Uidad temática Compresió La desviació estádar mide el grado de dispersió de los datos, por lo cual o depede de la porció de la recta dode estos se ecuetre. Etoces, si a todos los datos se les suma o resta ua catidad costate, la desviació estádar se matiee. Por otro lado, la desviació estádar se ve afectada por la proporció de los datos etre sí. Etoces, si todos los datos se multiplica o divide por ua costate, la desviació estádar se multiplica o divide por la misma costate. E el caso del cojuto {(s + ), (t + ), (u + )} co respecto al cojuto {s, t, u}, la desviació estádar se amplificará por, pero o se verá afectada por sumarle. Por lo tato, si la desviació estádar del cojuto {s, t, u} es m, etoces la desviació estádar del cojuto {(s + ), (t + ), (u + )} es m.. La alterativa correcta es B. Uidad temática Aplicació El promedio de los datos del cojuto es x. Luego, la variaza se calcula como: ( x x) ( x x) ( x x) = ² = 4 5 = = = Por lo tato, la variaza del cojuto {5,, 8} es. 9 8

9 9. La alterativa correcta es C. Uidad temática La desviació estádar es igual a la raíz cuadrada de la variaza. Si los úmeros so, y, co u úmero real positivo, etoces el promedio de los datos del cojuto es 4 x. Luego, la variaza se calcula como: ) ( ) ( ) ( x x x x x x 5 4 σ Por lo tato, su desviació estádar es siempre 8.

10 4. La alterativa correcta es D. Uidad temática I) Verdadera, ya que si los datos de ua muestra so iguales, o existe dispersió. Luego, la variaza es 0 y la desviació estádar tambié es 0. II) Falsa, ya que si los úmeros so y ( + ), co e los eteros positivos, etoces el promedio es x la variaza es la desviació estádar es 4 Verdadera, ya que si los úmeros so y ( + ), co etero positivo impar, etoces el promedio es x la variaza es la desviació estádar es 4 Por lo tato, solo I y III so verdaderas. 0

11 5. La alterativa correcta es C. Uidad temática b c I) Falsa, ya que la mediaa de la primera muestra es y la mediaa de la seguda muestra es c. Como b y c so úmeros distitos, etoces las muestras tiee distita mediaa. II) Verdadera, ya que si e ua muestra se extrae los datos que tiee el mismo valor que el promedio, etoces el promedio se matiee. Luego, si el promedio de la muestra {a, b, c, d} es b, etoces el promedio de la muestra {a, c, d} tambié es b. Verdadera, ya el rago se calcula como la diferecia positiva etre el mayor y el meor valor de la muestra. Etoces, e ambos casos el rago es (d a). Por lo tato, solo las afirmacioes II y III so verdaderas.. La alterativa correcta es A. Uidad temática Aalicemos las opcioes, segú la tabla: I) Verdadera, ya que la desviació estádar es más pequeña. II) Falsa, ya que los datos so más dispersos que el curso A. Falsa, o se puede determiar el promedio de los alumos de ambos cursos, si o se cooce la catidad de alumos de cada curso. Por lo tato, solo la afirmació I es verdadera.

12 . La alterativa correcta es A. Uidad temática Aplicació El rago de ua població estadística correspode a la distacia etre el meor y el mayor dato de la població, y se calcula como la diferecia positiva etre ambos valores. E este caso, el meor dato es 4 y el mayor es, etoces el rago de la població es ( 4) =. Para calcular la desviació estádar es ecesario primero obteer el promedio. El promedio de los datos es = 5. Etoces, la desviació estádar es: σ (4 5) (4 5) ( 5) ( ) ( ) () 4 Por lo tato, el rago y la desviació estádar de la població so, respectivamete, y. 8. La alterativa correcta es E. Uidad temática Compresió I) Verdadera, ya que la desviació estádar es ua medida de la dispersió de los datos co respecto al promedio. Si los datos está meos dispersos, la muestra es más homogéea. II) Verdadera, ya que si todos los datos de ua muestra tiee la misma frecuecia, etoces la muestra o tiee moda. Verdadera, por defiició. Por lo tato, las tres afirmacioes so verdaderas.

13 9. La alterativa correcta es C. Uidad temática Segú el diagrama de caja, a correspode al primer cuartil y b al tercer cuartil. Luego: () El rago itercuartil de la muestra es. Co esta iformació o es posible determiar el valor de a, ya que esta catidad se obtiee a partir de la diferecia etre el primer y tercer cuartil, es decir, b a =. () El percetil 5 de la muestra es 9. Co esta iformació o es posible determiar el valor de a, ya que el percetil 5 correspode al cuartil de la muestra, es decir, b = 9. Co ambas iformacioes, sí es posible determiar el valor de a, ya que b a = y b = 9, por lo tato, 9 a =. Es decir, a = 8. Por lo tato, la respuesta correcta es: Ambas jutas. 0. La alterativa correcta es B. Uidad temática El rago de ua muestra correspode a la diferecia etre el mayor valor y el meor valor de la muestra. Luego: () El promedio de los datos de la muestra es 5. Co esta iformació, o se puede determiar el rago de la muestra, ya que o permite calcular la diferecia etre el mayor valor y el meor valor de la muestra. () La muestra está compuesta por ueve elemetos. Co esta iformació, se puede determiar el rago de la muestra, ya que si el meor valor es, etoces el mayor es ( + 8). De esta maera, se puede determiar que el rago de la muestra es 8. Por lo tato, la respuesta es: () por sí sola.

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean ESTADÍSTICA Estadística: Es ua rama de la matemática que comprede Métodos y Técicas que se emplea e la recolecció, ordeamieto, resume, aálisis, iterpretació y comuicació de cojutos de datos. Població:

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill. GLOSARIO ESTADÍSTICO Fuete: Murray R. Spiegel, Estadística,, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio cietífico de los La estadística posee tres campos métodos para recoger, orgaizar,

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

PROFESOR: FRANCISCO HERNANDEZ LUGO PRIMERA PARTE ESTADISTICA

PROFESOR: FRANCISCO HERNANDEZ LUGO PRIMERA PARTE ESTADISTICA GUIA DEL TALLER DE PREPARACION DE PROBABILIDAD Y ESTADISTICA I (2015A) PROFESOR: FRANCISCO HERNANDEZ LUGO PRIMERA PARTE ESTADISTICA RECOPILACION DE LA INFORMACION Para el aálisis de u feómeo cualquiera

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

Prueba Matemática. Resolución. Proceso de admisión Documento Oficial. Universidad de Chile

Prueba Matemática. Resolución. Proceso de admisión Documento Oficial. Universidad de Chile Proceso de admisió 20 28 de octubre de 200 Documeto Oficial Uiversidad de Chile VicerrectorÍa de asutos académicos DEMRE Cosejo de rectores UNIVERSIDADES CHILENAS Resolució Prueba Matemática Parte IV E

Más detalles

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo.

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. Admítelo ua salchicha o es ua zaahoria. Así decía la revista El Cosumidor e u cometario sobre la baja calidad utricioal de las salchichas. Hay tres tipos

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL ) MEDIA ARITMÉTICA MEDIDAS DE TENDENCIA CENTRAL CON EXCEL Las medidas de tedecia cetral so medidas represetativas que como su ombre lo idica, tiede a ubicarse hacia el cetro del cojuto de datos, es decir,

Más detalles

Teoría de la conmutación. Álgebra de Boole

Teoría de la conmutación. Álgebra de Boole Álgebra de Boole Defiicioes y axiomas Propiedades Variables y fucioes booleaas Defiicioes Propiedades Formas de represetació Fucioes booleaas y circuitos combiacioales Puertas lógicas Puertas lógicas fudametales

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas:

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas: ESTADÍSTICA Ejercicio º.- Al pregutar a 0 idividuos por el úmero de persoas que vive e su casa, hemos obteido las siguietes respuestas: Elabora ua tabla de frecuecias. Ejercicio º.- E ua empresa de telefoía

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

Víctor Manuel Sirgo Manrique - 1 -

Víctor Manuel Sirgo Manrique - 1 - Víctor Mauel Sirgo Marique - 1 - INDICE Tema ágia Coteido de la Estadística 3 oblació y muestra 3 Variable 5 Distribució de frecuecias para datos o agrupados 6 Distribució de frecuecias para datos agrupados

Más detalles

Test de Wilcoxon de rangos signados

Test de Wilcoxon de rangos signados 5 Elea J. Martíez do cuat. 0 Test de Wilcoxo de ragos sigados Hemos visto que, co míimas hipótesis sobre la distribució subyacete (úica mediaa y distribució cotiua), el test del sigo es UMP para las hipótesis

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

Fórmulas Estadísticas. Recuerde: Hay k Categorías; n Datos en una muestra, N datos en una población.

Fórmulas Estadísticas. Recuerde: Hay k Categorías; n Datos en una muestra, N datos en una población. Uiversidad Diego Portales Facultad de Ecoomía y Negocios Fórmulas Estadísticas Capítulo 2 Recuerde: Hay k Categorías; Datos e ua muestra, N datos e ua població. Frecuecia Relativa de Clase (f) Cuátas Clases

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA POBLACIÓN, INDIVIDUO Y MUESTRA ESTADÍSTICA DESCRIPTIVA 1. El director del istituto se ha llevado ua sorpresa cuado el represetate de ua coocida marca de artículos deportivos etra e su despacho y le dice

Más detalles

Muestreo Estratificado.

Muestreo Estratificado. Muestreo Estratificado. 1.- Itroducció: Para aplicar este diseño, se precisa que la població esté dividida e subpoblacioes, estratos, que o se solape. Se seleccioa ua muestra probabilística e cada estrato

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

MATEMÁTICA. Unidad 3 Utilicemos funciones Reales de variable Real. Utilicemos medidas de tendencia central. Trabajemos con medidas de posición

MATEMÁTICA. Unidad 3 Utilicemos funciones Reales de variable Real. Utilicemos medidas de tendencia central. Trabajemos con medidas de posición MATEMÁTICA Uidad Utilicemos fucioes Reales de variable Real. Utilicemos medidas de tedecia cetral. Trabajemos co medidas de posició Objetivos de la Uidad: Resolverás situacioes que implique la utilizació

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

Olimpiadas Matem aticas, U. de A.

Olimpiadas Matem aticas, U. de A. OLIMPIADAS DE MATEMATICA, 04 Uiversidad de Atioquia Cotextos AVISO: Los textos aquí publicados so resposabilidad total de sus creadores Estos so materiales e costrucció Errores y/o cometarios por favor

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

9 SUCESIONES. LÍMITES DE SUCESIONES

9 SUCESIONES. LÍMITES DE SUCESIONES 9 SUCESIONES. LÍMITES DE SUCESIONES EJERCICIOS PROPUESTOS 9. Co ua calculadora, forma térmios de las siguietes sucesioes y estudia a qué valores tiede. a) a b) b c) c 5 a) a a 8 5,6 a 0 00,98 a 0 00 0

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

CAPITULO 2. Aritmética Natural

CAPITULO 2. Aritmética Natural CAPITULO Aritmética Natural Itroducció 1 Sumatorias Iducció Matemática Progresioes Teorema del Biomio 1. Coteidos. Itroducció 1) Asumiremos que el cojuto de úmeros reales R, +,, ) es u cuerpo ordeado completo.

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones.

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones. TÉNIAS DE ONTEO. ara obteer el úmero total de los resultados, es ecesario desarrollar alguas técicas de coteo, las cuales so:. ricipio fudametal de coteo. Diagramas de árbol.. Aálisis combiatorio. ermutacioes.

Más detalles

T. 4 Estadísticos de dispersión

T. 4 Estadísticos de dispersión T. 4 Estadísticos de dispersió 1 1. Variables categóricas: la razó de variació y el ídice de variació cualitativa.. Variables ordiales: el rago y el rago itercuartil. 3. Variables cuatitativas: la variaza,

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

LAS MUESTRAS ESTADÍSTICAS

LAS MUESTRAS ESTADÍSTICAS 11 LAS MUESTRAS ESTADÍSTICAS Págia 266 1. Ua gaadería tiee 3 000 vacas. Se quiere extraer ua muestra de 120. Explica cómo se obtiee la muestra: a) Mediate muestreo aleatorio simple. b) Mediate muestreo

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

SOLUCIÓN EXAMEN I PARTE II

SOLUCIÓN EXAMEN I PARTE II Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes

Más detalles

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+ Problema. E el diagrama se preseta los tres primeros cuadriláteros de ua secuecia que iicia e u puto e el cetro del tablero crece desde ese puto hacia fuera, cuál es el úmero de putos que está e el perímetro

Más detalles

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z < Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

Figuras geométricas y números enteros. Introducción

Figuras geométricas y números enteros. Introducción Revista del Istituto de Matemática y Física Figuras geométricas y úmeros eteros Juaa Cotreras S. 6 Claudio del Pio O. 7 Istituto de Matemática y Física Uiversidad de Talca Itroducció Etre las muchas relacioes

Más detalles

Probabilidad y Estadística. Introducción a la Inferencia Estadística. Raúl D. Katz 2013

Probabilidad y Estadística. Introducción a la Inferencia Estadística. Raúl D. Katz 2013 Probabilidad y Estadística Itroducció a la Iferecia Estadística Raúl D. Katz 013 Ídice 1. Itroducció 3. Muestreo 3.1. Muestras aleatorias simples.................................... 4 3. Iferecia estadística

Más detalles

Números naturales, enteros y racionales

Números naturales, enteros y racionales Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles

v f = L f k Sobre la matemática de la afinación musical

v f = L f k Sobre la matemática de la afinación musical La matemática de la aiació musical Carlos S Chiea Sobre la matemática de la aiació musical Itroducció: Los pitagóricos estudiaro la aturaleza del soido musical, descubriedo que existía relació umérica

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

4. TÉCNICAS PARA CONTAR Cardinal de un conjunto. Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM.

4. TÉCNICAS PARA CONTAR Cardinal de un conjunto. Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. .1. Cardial de u cojuto. TÉCNICAS PARA CONTAR Fucioes etre cojutos Se llama fució o aplicació del cojuto A e el cojuto B a cualquier relació f : A B que a cada elemeto a A le hace correspoder u úico elemeto

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es MATEMÁTICAS I 1º Bachillerato Capítulo 9: 393 Ídice 1. ESTADÍSTICA DESCRIPTIVA UNIDIMENSIONAL 1.1. INTRODUCCIÓN 1.. MÉTODO ESTADÍSTICO 1.3. CONCEPTOS BÁSICOS 1.4. TIPOS DE VARIABLES 1.5. DISTRIBUCIONES

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL.

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. E estadística, la distribució biomial es ua distribució de probabilidad discreta que mide el úmero de éxitos e ua secuecia de esayos

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

Teorema del Muestreo

Teorema del Muestreo Teorema del Muestreo Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice 1.1. Itroducció 1.2. Coversió aalógico-digital y digital-aalógico 1.3. Proceso

Más detalles

Cuadro II.1 Valores absolutos de peso (kg) de niños y niñas < 5 años de Costa Rica, 1966. pc3. pc25 5.3 5.6 5.7 6.1 7.2 5.5 7.6 7.8 8.4 6.4 7.4 9.

Cuadro II.1 Valores absolutos de peso (kg) de niños y niñas < 5 años de Costa Rica, 1966. pc3. pc25 5.3 5.6 5.7 6.1 7.2 5.5 7.6 7.8 8.4 6.4 7.4 9. II. CRECIMIENTO FÍSICO EN CENTROAMÉRICA Y REPÚBLICA DOMINICANA: MEDIDAS ABSOLUTAS PESO Y TALLA, POR EDAD Y SEXO Y COMPARACIÓN CON EL PATRÓN CRECIMIENTO LA OMS (2005) A. Por países 1. Costa Rica E los cuadros

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS

APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS APLICACIÓN DEL PROGRAMA SPSS EN EL CONTROL DE CALIDAD DE PROCESOS Y PRODUCTOS QUÍMICOS Esperaza Mateos, Aa Elías, Gabriel Ibarra Uiversidad del País Vasco iapmasae@lg.ehu.es Resume Ua de las asigaturas

Más detalles

ONDAS SOBRE UNA CUERDA

ONDAS SOBRE UNA CUERDA ONDAS SOBRE UNA CUERDA Objetivo: Aalizar el comportamieto de las odas estacioarias e ua cuerda relacioado la tesió, la frecuecia de oscilació, la logitud de la cuerda y el úmero de segmetos que se forma

Más detalles

PROBABILIDAD Y ESTADÍSTICA BÁSICA

PROBABILIDAD Y ESTADÍSTICA BÁSICA PROBABILIDAD Y ESTADÍSTICA BÁSICA PARA INGENIEROS Co el soporte de MATLAB para cálculos y gráficos estadísticos Luis Rodríguez Ojeda lrodrig@espol.edu.ec Istituto de Ciecias Matemáticas Escuela Superior

Más detalles