ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean"

Transcripción

1 ESTADÍSTICA Estadística: Es ua rama de la matemática que comprede Métodos y Técicas que se emplea e la recolecció, ordeamieto, resume, aálisis, iterpretació y comuicació de cojutos de datos. Població: Es u cojuto, cuyos elemetos posee algua característica comú que se quiere estudiar, ya sea de idividuos, de aimales, de objetos, de métodos, de medidas, de produccioes, de acotecimietos o de sucesos. Las poblacioes puede ser fiitas o ifiitas Muestra: es u subcojuto de la població, que debe ser represetativa y aleatoria. Variable Cualitativa: Se refiere a u atributo (o so uméricas), por ejemplo: sexo, acioalidad, profesió, etc Variable cuatitativa: Tiee u valor expresado por u úmero real, por ejemplo: peso, temperatura, salario, etc Las variables cuatitativas puede ser de dos tipos: Discretas: Toma solo valores eteros, por ejemplo: úmero de hijos, úmero de departametos e u edificio, etc Cotiuas: Susceptibles de tomar cualquier valor, por ejemplo: el peso, la estatura, etc. TABULACIÓN DE DATOS Frecuecia (f): Número de veces que se repite u dato (tambié se le deomia frecuecia absoluta) Frecuecia relativa (fr): Es el cuociete etre la frecuecia absoluta de uo de los valores de la variable y el total de datos Frecuecia acumulada (fac): Es la que se obtiee sumado ordeadamete las frecuecias absolutas hasta la que ocupa la última posició Frecuecia relativa acumulada (frac): Es la que se obtiee sumado ordeadamete la frecuecia relativa hasta la que ocupa la última posició Amplitud del itervalo: Es la diferecia etre los límites superior e iferior Marca de Clase: Es el valor cetral (promedio aritmético) etre los límites superior e iferior de cada itervalo. MEDIDAS DE TENDENCIA CENTRAL Media aritmética ( x) : Es el cuociete etre la suma de todos los datos y el úmero de datos: x = x1 + x2 + x x Media aritmética para datos orgaizados e ua tabla de frecuecias: Si los datos so: x 1, x 2, x 3,..,x y las frecuecias respectivas so f 1, f 2, f 3,..,f etoces la media aritmética es: x x = x f f x + f x f

2 Moda (Mo): Es el dato que aparece co mayor frecuecia, es decir, el que más se repite. Si o hay u dato que tega mayor frecuecia que otro se dice que la distribució de frecuecia es amodal Mediaa (Me): Es el dato que ocupa la posició cetral de la muestra cuado estos se ecuetra ordeados e forma creciete o decreciete. Si la muestra tiee u úmero par de datos, la mediaa es la media aritmética de los dos térmios cetrales REPRESENTACIÓN GRÁFICA DE DATOS PICTOGRAMAS: Se aplica a las variables de tipo cualitativo y aquellas de tipo cuatitativo que platea comparacioes. Utiliza para su grafismo represetacioes de las variables, de tamaño proporcioal a la frecuecia co que aparece cada uo GRÁFICO DE SECTORES: La represetació se hace por medio de u círculo, dividido e sectores de áreas proporcioales a las frecuecias de la variable Asigatura Estudiates que la prefiere Matemática 4 Leguaje 3 Arte 2 Historia 1 Total 10 gráfica DIAGRAMAS DE BARRAS: Se utiliza para variables discretas. Los valores de la variable aparece, juto co su frecuecia, represetados e forma de barras o segmetos, de logitud proporcioal a la dicha frecuecia:

3 POLÍGONOS DE FRECUENCIAS: Cada par; Variable/Frecuecia (x i,f i ) da orige a u puto del diagrama cartesiao. Al uir dichos putos por medio de ua líea poligoal, se obtiee u polígoo de frecuecias: HISTOGRAMAS: mediate u histograma se represeta gráficamete las distribucioes de frecuecias de variables estadísticas cotiuas. Se costruye rectágulos que tiee como bases cada itervalo de la variable y como alturas las respectivas frecuecias de dichos itervalos EJERCICIOS PROPUESTOS 1) Si se suma las edades de 8 persoas y ese resultado se divide por 8, qué se obtiee? A) Mediaa B) Media Aritmética C) Moda D) Media geométrica E) Desviació estádar 2) El promedio del peso de 5 hombres es de 76 kg. Cuáto pesa el quito si la suma de los 4 primeros es 302? A) 78 B) 68 C) 62 D) 58 E) 72

4 3) La tabla adjuta muestra las edades de 220 alumos de u colegio. Cuál(es) de las siguietes afirmacioes es(so) verdadera(s)? I) La moda es 17 años. II) La mediaa es mayor que la media (promedio). III) La mitad de los alumos del colegio tiee 17 o 18 años. Edad (e años) Alumos ) Las fichas del peso de 10 iños, marca e promedio 20 kg. E la oficia de cotrol se pierde ua ficha y se sabe que el promedio del resto es 19 kg, cuál es el peso del iño al que le perdiero la ficha? A) 39 kg B) 29 kg C) 21 kg D) 20 kg E) 19 kg 5) El gráfico circular de la figura muestra las preferecias de 30 alumos e actividades deportivas. Cuál(es) de las siguietes afirmacioes es(so) correcta(s)? I) La frecuecia relativa del grupo de fútbol es de 40%. II) La frecuecia relativa del grupo de básquetbol es de 30%. III) La mitad del grupo o prefirió fútbol i teis. 6) El gráfico de la figura apareció e u periódico de ua ciudad. E él se idica la preferecia por el oticiero cetral de cico caales de televisió, segú ua muestra aleatoria, e u año determiado. Cuál(es) de las siguietes afirmacioes es (so) verdadera(s)?: I) De acuerdo a la muestra el oticiero cetral co meor probabilidad de ser visto es TV 5. II) El gráfico muestra exactamete la realidad de las preferecias de los oticieros cetrales de esta ciudad. III) Aproximadamete, u cuarto de la muestra o ve los oticieros cetrales de estos cico caales. 7) Si se tabulara las frecuecias de las estaturas y color de ojos de los alumos de u curso, cuál de las opcioes siguietes es siempre verdadera? A) Co la moda de las estaturas se determia la estatura promedio del curso. B) Co la mediaa del color de ojos se determia el color de ojos que predomia. C) Co el promedio de las estaturas se determia la estatura más frecuete. D) Co la mediaa de las estaturas se determia la estatura más frecuete. E) Co la moda del color de ojos se determia el color de ojos que predomia.

5 8) Ua misma prueba se aplica a dos cursos paralelos. E uo de ellos, co 20 estudiates, la ota promedio fue 6 y, e el otro, co 30 estudiates, la ota promedio fue 5. Etoces, la ota promedio correspodiete al total de alumos de ambos cursos es: A) 5,7 B) 5,6 C) 5,5 D) 5,4 E) 5,3 9) Se preguta a los alumos de 4º Medio acerca de lo que más les gusta hacer e vacacioes y sus respuestas está e el gráfico de la figura. Cuál(es) de las siguietes afirmacioes es (so) verdadera(s)? I) Al 30% de los alumos lo que más les gusta es chatear. II) A la mitad de los alumos lo que más les gusta es ver TV o jugar. III) Al 30% de los alumos lo que más les gusta es leer o jugar. I I 10) La tabla adjuta muestra la distribució de los putajes obteidos por los alumos de u curso e ua prueba de matemática. Cuál(es) de las siguietes afirmacioes es (so) verdadera(s)? I) El total de alumos que ridió la prueba es 40. II) La mediaa se ecuetra e el itervalo III) El itervalo modal (o clase modal) es el itervalo C) Sólo III Itervalos Frecuecia de putaje ) El gráfico de la figura muestra la distribució de las otas de matemática de u grupo de 46 estudiates. Cuál de las siguietes opcioes correspode a los valores de la mediaa y la moda, respectivamete? A) 4 y 5 B) 5 y 5 C) 4,1 y 4 D) 4,1 y 5 E) 4 y 4,5

6 12) Tres cursos ridiero ua misma prueba obteiédose los resultados que se idica e la tabla adjuta. Cuál es el promedio total de la prueba? A) 4,25 B) 5,00 C) 5,16 D) 5,25 E) 5,50 13) Los resultados obteidos por u curso e ua prueba de Física fuero: 4; 5; 6; 6; 5; 3; 4; 7; 6; 5; 4; 5; 5; 6 y 4. Cuál(es) de las siguietes afirmacioes es(so) verdadera(s)? I) La mediaa es 7 II) La moda es 5 III) La media aritmética (o promedio) es 5 I I 14) La tabla adjuta muestra las frecuecias (f) de las otas e la prueba de matemática, obteidas por los alumos de 4º Medio de u liceo, Cuáles de las siguietes afirmacioes so verdaderas? I) El 75% del curso obtuvo ua ota igual o iferior a 5,5 II) La moda correspode a la ota 5,0 III) El 15% del curso obtuvo la ota 4,5 IV) El 50% del curso obtuvo ota superior a 5.0 I y III I y IV C) Sólo I, II y III D) Sólo I, II y IV E) Sólo II, III y IV Nota f 3,0 3 3,5 5 4,0 4 4,5 6 5,0 7 5,5 5 6,0 4 6,5 4 7,0 2 Total 40 alumos 15) El cuadro siguiete muestra el úmero de artículos vedidos e distitos días de la semaa y uo de sus valores acumulados Cuátos artículos se ha vedido e total hasta el térmio del día miércoles? A) 24 B) 20 C) 30 D) 8 E) Nigua de las ateriores Días Nº de artículos Total acumulado Lues Martes Miércoles 8 Jueves 0 16) El gráfico de la figura represeta la distribució de las otas obteidas por 15 iños e ua prueba. Cuál(es) de las siguietes aseveracioes es(so) verdadera(s)? I) 9 iños obtuviero otas mayores o iguales a 5. II) La moda es la ota 5. III) La quita parte del curso obtuvo ota iferior a 4. C) Sólo III

7 17) Se compra 5 pataloes a $5.000, $8.000, $10.000, $ y $ Cuál(es) de las siguietes afirmacioes es(so) verdadera(s)? I. La moda es $ II. La mediaa es $ III. El promedio es $ I 18) E ua muestra de alumos de u colegio se tiee la siguiete distribució de edades La moda y la mediaa de las edades de ese grupo so: moda mediaa Edad Frecuecia A) B) C) D) E) ) El promedio (media aritmética) de los úmeros 3; 2; 5; 5 y 6 es A) 4 B) 4,2 C) 5 D) 5,25 E) iguo de los ateriores. 20) La tabla adjuta muestra la distribució de sueldos de 45 persoas de ua empresa. Cuál(es) de las siguietes afirmacioes es(so) verdadera(s)? I) Hay exactamete 20 persoas que gaa a lo meos $ de sueldo. II) La mediaa de la distribució se ecuetra e el tramo D. III) El total que se paga a las persoas del tramo A es, a lo más, $ E) Sólo II y III TRAMO N PERSONAS SUELDO EN PESOS DESDE HASTA A B C D E F ) U estudiate obtiee las siguietes calificacioes: 4,8; 4,2; 4,3; 4,7; 5,0 y 4,0. Cuál(es) de las siguietes afirmacioes es (so) verdadera(s)? I) Su media aritmética (o promedio) es 4,5. II) Si elimia el 4,8 y el 4,2 su promedio o cambia. III) Si elimia dos otas cualesquiera, su promedio o cambia.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

SOLUCIÓN EXAMEN I PARTE II

SOLUCIÓN EXAMEN I PARTE II Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas:

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas: ESTADÍSTICA Ejercicio º.- Al pregutar a 0 idividuos por el úmero de persoas que vive e su casa, hemos obteido las siguietes respuestas: Elabora ua tabla de frecuecias. Ejercicio º.- E ua empresa de telefoía

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 3, Parte II, Opció A Juio, Ejercicio 3, Parte II, Opció B Reserva

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

14. Técnicas de simulación mediante el método de Montecarlo

14. Técnicas de simulación mediante el método de Montecarlo 4. Técicas de simulació mediate el método de Motecarlo 4. Técicas de simulació mediate el método de Motecarlo Qué es la simulació? Proceso de simulació Simulació de evetos discretos Números aleatorios

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007)

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007) IS Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua INTRVALOS D CONFIANZA PARA PROPORCIONS (007) jercicio 1- Tomada, al azar, ua muestra de 10 estudiates de ua Uiversidad, se ecotró que 54 de ellos

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = -

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = - IES Fco Ayala de Graada Sobrates de 004 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A - 0 0 - - - Sea las matrices A=, B= y C= - 0 0 - ( puto) Calcule (A I ) B, siedo I la matriz idetidad

Más detalles

Señales en Tiempo Discreto

Señales en Tiempo Discreto Señales e Tiempo Discreto Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció.. Señales e tiempo discreto.3. Clasificació de las señales

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006 Estalmat. Real Academia de Ciecias. Curso 5/6 Diámica compleja Cojutos de Julia y Madelbrot. Método de Newto. Miguel Reyes Mayo 6 Los úmeros complejos Los úmeros complejos so los úmeros de la forma dode

Más detalles

Matemáticas 2º de Bachillerato Ciencias Sociales

Matemáticas 2º de Bachillerato Ciencias Sociales ESTADÍSTICA DESCRIPTIVA VARIABLES ALEATORIAS TEORÍA DE MUESTRAS INTERVALOS DE CONFIANZA TEST DE HIPÓTESIS Matemáticas º de Bachillerato Ciecias Sociales Profesor: Jorge Escribao Colegio Imaculada Niña

Más detalles

MATE1214 -Calculo Integral Parcial -3

MATE1214 -Calculo Integral Parcial -3 MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud

Más detalles

MATEMÁTICA. Unidad 3 Utilicemos funciones Reales de variable Real. Utilicemos medidas de tendencia central. Trabajemos con medidas de posición

MATEMÁTICA. Unidad 3 Utilicemos funciones Reales de variable Real. Utilicemos medidas de tendencia central. Trabajemos con medidas de posición MATEMÁTICA Uidad Utilicemos fucioes Reales de variable Real. Utilicemos medidas de tedecia cetral. Trabajemos co medidas de posició Objetivos de la Uidad: Resolverás situacioes que implique la utilizació

Más detalles

TEMA 5 ESTADÍSTICA. 3. Cómo debe de ser una muestra para ser correcta?

TEMA 5 ESTADÍSTICA. 3. Cómo debe de ser una muestra para ser correcta? TEMA 5 ESTADÍSTICA Estadística obteció, estudio e iterpretació de grades masas de datos Població es el cojuto de todos los elemetos que cumple ua determiada característica. Muestra es cualquier parte de

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es MATEMÁTICAS I 1º Bachillerato Capítulo 9: 393 Ídice 1. ESTADÍSTICA DESCRIPTIVA UNIDIMENSIONAL 1.1. INTRODUCCIÓN 1.. MÉTODO ESTADÍSTICO 1.3. CONCEPTOS BÁSICOS 1.4. TIPOS DE VARIABLES 1.5. DISTRIBUCIONES

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia)

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia) Distribucioes de frecuecia: PRESENTACIONES ESTADISTICAS So tablas e las que se agrupa lo valores posibles de ua variable y se registra el úmero de valores observados que correspode a cada clase. Como ejemplo

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 1 INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL La mayoría de estos problemas ha sido propuestos e exámees de selectividad de los distitos distritos uiversitarios españoles. 1. Ua muestra aleatoria de 9 tarrias

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

ESTADÍSTICA NO PARAMÉTRICA: PRUEBA CHI-CUADRADO χ 2

ESTADÍSTICA NO PARAMÉTRICA: PRUEBA CHI-CUADRADO χ 2 Estadística o Paramétrica ESTADÍSTICA NO PARAMÉTRICA: PRUEBA CHI-CUADRADO χ Autores: Jua Fracisco Moge Ivars (jmoje@uoc.edu), Ágel A. Jua Pérez (ajuap@uoc.edu) ESQUEMA DE CONTENIDOS Estadística o Paramétrica

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-2. - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

Variables aleatorias. Distribución binomial y normal

Variables aleatorias. Distribución binomial y normal Variables aleatorias. Distribució biomial y ormal Variable aleatoria Def.- Al realizar u experimeto aleatorio teemos u espacio muestral E. A cualquier ley o aplicació que a cualquier suceso de E le asocie

Más detalles

Tema 1. Análisis Estadístico de Datos.

Tema 1. Análisis Estadístico de Datos. Tema. Aálisis Estadístico de Datos. Presetació y Obetivos. La Estadística Descriptiva egloba ua serie de técicas de estructuració y de represetació gráica que permite ordear y presetar adecuadamete la

Más detalles

MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA 5. ESTADÍSTICA Y PROBABILIDAD CON LA FX 9860G SLIM

MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA 5. ESTADÍSTICA Y PROBABILIDAD CON LA FX 9860G SLIM MATEMÁTICAS Y TECNOLOGÍA CON CALCULADORA GRÁFICA 5. ESTADÍSTICA Y PROBABILIDAD CON LA FX 9860G SLIM DIVISIÓN DIDÁCTICA MAURICIO CONTRERAS ESTADÍSTICA DESCRIPTIVA Y REGRESIÓN CON LA FX 9860G SLIM Itroducció

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL ) MEDIA ARITMÉTICA MEDIDAS DE TENDENCIA CENTRAL CON EXCEL Las medidas de tedecia cetral so medidas represetativas que como su ombre lo idica, tiede a ubicarse hacia el cetro del cojuto de datos, es decir,

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 2012 (COMÚN MODELO 3) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 2012 (COMÚN MODELO 3) OPCIÓN A IES Fco Ayala de Graada Sobrates de 01 (Septiembre Modelo ) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 01 (COMÚN MODELO 3) OPCIÓN A EJERCICIO 1_A ( 5 putos) U empresario

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

Notas Docentes. Estadística para Economistas. Carlos Casacuberta. Nota Docente No. 08

Notas Docentes. Estadística para Economistas. Carlos Casacuberta. Nota Docente No. 08 Notas Docetes Estadística para Ecoomistas Carlos Casacuberta Nota Docete No. 08 Diploma e Ecoomía 004 Departameto de Ecoomía Facultad de Ciecias Sociales Estadística Notas de clase. Itroducció La estadística

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

Ejercicios Tema 4. Estructuras de Repetición

Ejercicios Tema 4. Estructuras de Repetición Ejercicios Tema 4. Estructuras de Repetició 1. Calcular el factorial de u úmero etero itroducido por teclado. 2. Calcular de la suma y la media aritmética de N úmeros reales. Solicitar el valor de N al

Más detalles

UNIDAD 7: ESTADÍSTICA INFERENCIAL

UNIDAD 7: ESTADÍSTICA INFERENCIAL UNIDAD 7: ESTADÍSTICA INFERENCIAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1.- VARIABLES ESTADÍSTICAS. PARÁMETROS... 3.- DISTRIBUCIONES DE PROBABILIDAD... 3 3.1.- Distribució Biomial... 4 3..- Distribució

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Probabilidad con técnicas de conteo

Probabilidad con técnicas de conteo UNIA 3 Probabilidad co técicas de coteo Objetivos Al fializar la uidad, el alumo: distiguirá y utilizará las reglas de multiplicació y de suma para el cálculo de la catidad de arreglos co y si orde explicará

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva Itroducció Se defie alguos coceptos básicos para ua compresió ituitiva de la Estadística. Se itroduce los primeros coceptos sobre el uso y maejo de datos uméricos, que permite distiguir

Más detalles

Estadística para Química - 1er. cuat. 2007 - Marta García Ben

Estadística para Química - 1er. cuat. 2007 - Marta García Ben Ej. 1 Podriamos cosiderar S={0,1,} (los resultados o sería igualmete probables). Pero tambie podemos defiir S={CC,CS,SC,SS} describiedo todos los resultados de tirar dos moedas y luego asociar CC, CS 1,

Más detalles

Parámetros de tiempo para

Parámetros de tiempo para Parámetros de tiempo para cotrol y diagóstico INTRODUCCIÓN. Ua de las actividades importates a ivel de sistemas que se debe desarrollar e toda etidad que cuete co u recurso computacioal de soporte para

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y,

Más detalles

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A =

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A = IES Fco Ayala de Graada Sobrates de 007 (Juio Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1-1 x -x Sea las matrices A, X y e Y -1 3 0 - z (1 puto) Determie la matriz iversa de A. ( putos)

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

SUCESIONES TI 83. T 3 España T 3 EUROPE

SUCESIONES TI 83. T 3 España T 3 EUROPE SUCESIONES TI 83 T 3 España T 3 EUROPE Ferado Jua Alfred Mollá Oofre Mozó José Atoio Mora Pascual Pérez Tomás Queralt Julio Rodrigo Salvador Caballero Floreal Gracia Sucesioes TI83 ÍNDICE. Itroducció...

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 98 Cuátas caras cabe esperar? El itervalo característico correspodiete a ua probabilidad del 95% (cosideramos casas raros al 5% de los casos extremos)

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

Inferencia estadística. Distribuciones muestrales. 3. Establecer relaciones entre los parámetros de la población y los obtenidos de la muestra.

Inferencia estadística. Distribuciones muestrales. 3. Establecer relaciones entre los parámetros de la población y los obtenidos de la muestra. UNIDAD 9 Iferecia estadística. Distribucioes muestrales la Estadística se distigue dos partes perfectamete difereciadas. Ua de ellas se cooce co el ombre de Estadística Descriptiva y tiee como objetivo

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos.

Teoría Combinatoria. Capítulo 2. 2.1. Dos Principios Básicos. Capítulo 2 Teoría Combiatoria La Teoría Combiatoria es la rama de las matemáticas que se ocupa del estudio de las formas de cotar Aparte del iterés que tiee e sí misma, la combiatoria tiee aplicacioes

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 00 (Modelo 5 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A (3 putos) Para fabricar tipos de cable, A y B, que se vederá a 50 y 00 pts el metro, respectivamete,

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad Tema 4.4: Teorema de Riema de sigularidades evitables. Ceros de ua fució holomorfa. Pricipio de idetidad Facultad de Ciecias Experimetales, Curso 2008-09 E. de Amo Comeamos e este tema extrayedo las primeras

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014.

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014. EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. -Septiembre-04. APELLIDOS: DNI: NOMBRE:. Se quiere hacer u estudio sobre las persoas que usa iteret e ua regió dode el 40% de los habitates so mujeres.

Más detalles

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 2015 MODELO 3 OPCIÓN A EJERCICIO 1 (A) 8-4 1 2 Sea las matrices A = -1 2, B = 1 2 2-1 -1 2, C = 12 8. -8 4 (0 5 putos) Calcule A 2. (1 7 putos) Resuelva

Más detalles

ESTADISTICA Y PROBABILIDAD. (Notas del curso) RAÚL RAFAEL URBAN RUIZ UNAM DIVISION DE ESTUDIOS DE POSGRADO FACULTAD DE ECONOMIA

ESTADISTICA Y PROBABILIDAD. (Notas del curso) RAÚL RAFAEL URBAN RUIZ UNAM DIVISION DE ESTUDIOS DE POSGRADO FACULTAD DE ECONOMIA ESTADISTICA Y PROBABILIDAD (Notas del curso) RAÚL RAFAEL URBAN RUIZ UNAM DIVISION DE ESTUDIOS DE POSGRADO FACULTAD DE ECONOMIA Eero 2015 0 INTRODUCCION Los juegos de azar o quizá la ecesidad de medir la

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 3 Progresioes Recuerda lo fudametal Curso:... Fecha:... PROGRESIONES SUCESIONES Ua sucesió es u cojuto de...... Se llama térmio geeral de ua sucesió a... Por ejemplo, e la sucesió 1, 4, 9, 16, 5, el térmio

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

14 Intervalos de confianza

14 Intervalos de confianza Solucioario 14 Itervalos de cofiaza ACTIVIDADES INICIALES 14.I. Calcula tal que P z < Z z α α = 0,87. P zα < Z zα = P Z zα P Z < zα = P Z zα 1= 0,87 P Z P Z P Z = 1,87 = 0,935. Buscado e el iterior de

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4) IES Fco Ayala de Graada Sobrates de 8 (Modelo 4) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 8 (MODELO 4) OPCIÓN A EJERCICIO 1_A (3 putos) U joyero fabrica dos modelos

Más detalles

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales Asigatura: Geometría I Grado e Matemáticas. Uiversidad de Graada Tema 2. Espacios vectoriales Prof. Rafael López Camio Uiversidad de Graada 14 de diciembre de 2012 Ídice 1. Espacio vectorial 2 2. Subespacio

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 5) SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 01 (MODELO 5) OPIÓN A EJERIIO 1_A ( 5 putos) U comerciate dispoe de 100 euros para comprar dos tipos de mazaas A y B. Las del tipo A las compra a 0 60 euros/kg

Más detalles

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida CADENAS DE MARKOV Itroducció U proceso o sucesió de evetos que se desarrolla e el tiempo e el cual el resultado e cualquier etapa cotiee algú elemeto que depede del azar se deomia proceso aleatorio o proceso

Más detalles