Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)
|
|
- María Soledad Valverde Luna
- hace 1 años
- Vistas:
Transcripción
1 Prueba Itegral Lapso /7 Uiversidad Nacioal Abierta Matemática I (Cód ) Vicerrectorado Académico Cód Carrera: Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) OBJ 1 PTA 1 Calcule el valor de m, e el cojuto de los úmeros eteros Z, e idica las propiedades sobre dicho cojuto, que verifica la siguiete igualdad: 3m ( 4m) 5 (1 3m) Procedemos de maera similar al ejercicio propuesto 13 Nro4 de la págia 54, del texto UNA Matemática I, módulo I Para ello, aplicamos propiedades defiidas e el cojuto de los úmeros eteros Z para resolver las operacioes idicadas: OBJ PTA 3m ( 4m) 5 (1 3m) = 3m 4m 5 6m por la distributividad Aproxime, por redodeo a la milésima, el úmero SOLUCION Al efectuar los cálculos resulta:,510 3,5 10 (8) 3 ( 0,) (0,) = 7m 3 6m por agrupació de térmios semejates = 7m 6m 3 por agrupació de térmios semejates = m 1 =,510 3,5 10 (8) 3 ( 0,) (0,) , ( 596) = 0, 065 0, = 0,065+4,768 = 4,8305 Redodear u úmero decimal a la milésima, cosiste e dejar ta sólo tres cifras decimales, aproximado la diez milésimas a la milésima más cercaa Si la parte diez milésima es igual o iferior a 0,0005 se aproxima a la milésima iferior, si es superior se aproxima a la milésima superior (Ver págias del texto UNA Matemática I, módulo I) Luego, la aproximació por redodeo a la 3 3 4,510 3,5 10 (8) milésima del úmero es: 4,831 3 ( 0,) (0,)
2 Prueba Itegral Lapso /7 OBJ 3 PTA 3 Determie el cojuto solució de la iecuació (5 4 p) 3( p 5) ( p 1) Al resolver de forma semejate al ejemplo 354 dado e la págia 153 del texto UNA Matemática I, módulo I, para la resolució de iecuacioes de primer grado, se tiee que: (5 4 p) 3( p 5) ( p 1) 10 8p 3p 15 p 1 (Distributiva) 8p 3p p (Agrupació de térmios semejates) 6p 6 (Simplificació) de dode: p > 1 Es decir, el cojuto solució de la iecuació es: p R ifiito 1, : p 1, o lo que es lo mismo el itervalo OBJ 4 PTA 4 Ecuetre la ecuació de la recta que pasa por el puto P (3, 1) y es perpedicular a la recta que pasa 3 por los putos P 1 1, 5 y P, 1 3 De acuerdo a lo señalado e la págia 64 del texto UNA Matemática I, módulo II, la pediete m de la 3 recta que pasa por los putos P 1 1, 5 y P, 1 3 es: m = 5 = 5 = Además, si dos rectas so perpediculares, etoces el producto de sus pedietes es igual a 1 (ver ejercicio propuesto 45 N 13 de la págia 70 del texto UNA Matemática I, módulo II) De esta maera, teemos que la pediete de la recta que estamos buscado es: 1 5 m p = = m 4 Como la recta pasa por el puto P(3, 1), su ecuació es: y 1 = (x + 3) OBJ 5 PTA 5 Sea f, g : R R, fucioes tales que: f(x) = x 1 y (g o f) (x) = x 3x Calcule g (4) De acuerdo a la defiició 54 de composició de fucioes dada e la págia 144 del módulo II del Texto UNA, Matemática I, se tiee: (g o f) (x) = g (f (x)) Luego, g(x 1) = x 3x Por tato, g(4) = g( 51) = (5) 35 =5015=35
3 Niños vacuados Prueba Itegral Lapso /7 OBJ 6 PTA 6 E la figura adjuta se muestra el diagrama de barras obteido de los datos del úmero de iños vacuados e ua jorada de salud e ua escuela durate ua determiada semaa Lues martes miércoles jueves vieres Días de la semaa De acuerdo a la iformació sumiistrada, si se cosidera que cada clase correspode a u día de la semaa, calcule el porcetaje de la clase que tiee mayor frecuecia De acuerdo a la iformació sumiistrada, si se cosidera que cada clase correspode a u día de la semaa, los datos se dividiero e cico clases correspodietes a las 5 barras del diagrama La clase que tiee la mayor frecuecia, es la del día vieres co u total de 5 iños vacuados El porcetaje de esta clase, se calcula dividiedo el úmero de datos e la clase etre el úmero total de datos, que e uestro caso es igual a la suma de datos e cada clase: = 75 (Ver ejemplo 643 de la págia 180 del texto UNA Matemática I, módulo II) Así, el porcetaje de esta clase es: 5 x 100 0,33 x ,3 % 75 OBJ 7 PTA Calcule la suma de los seis primeros térmios de la progresió geométrica:,1,,,, 4 8 De acuerdo a las defiició dada e la págia 7 del texto Matemática I, módulo III, ua sucesió a forma ua progresió geométrica, si cada térmio a partir del primero se obtiee multiplicado al aterior por ua catidad costate llamada razó (r), cuyo térmio geeral viee dado por: a a r, 1 Si e la sucesió a, i 1 1 a es el térmio i de la sucesió co i = 1,, 3, hacemos el cociete u térmio etre el aterior y es costate, ese valor ecotrado es la razó (r) de la sucesió que forma ua progresió geométrica Para coocer la razó r, calculamos el cociete etre dos térmios cosecutivos, de dode: a5 a4 a3 a 1 a4 a3 a a1 Como el cociete etre térmios cosecutivos es costate, la sucesió es ua progresió geométrica de razó r = 1 ai 1 a i de
4 Prueba Itegral Lapso /7 De acuerdo, co el euciado teemos: a 1 = y = 6 Para calcular la suma de los seis primeros térmios de la progresió, usaremos la fórmula de la suma de los térmios de ua progresió geométrica: 6 a1(1 r ) s6 1 r Luego, s OBJ 8 PTA 8 Determie, aplicado el álgebra de límites, x x x 4x 9 lím 6 4 Ver ejercicio propuesto 863 N 3 e la págia 103, del texto UNA, Matemática I, módulo III OBJ 9 PTA 9 Sea f: R R defiida por: Estudie la cotiuidad de f(t) e R 1, t< 1 f(t) t+4, 1 t 0 t 4, t 0 Veamos que sucede, para t = 1 Como, Etoces, lím f(t) = t 1 lím 1 = 1 y t 1 lím t 1 lím f(t) = t 1 f(t) lím t 1 lím (t + 4)= = 3 t 1 f(t) Por lo que, el lím t1 f(t) o existe Fialmete y de acuerdo a la defiició 91 de cotiuidad, dada e la págia 136 del texto UNA, Matemática I, módulo III, resulta que f(t) o es cotiua e t = 1
5 Prueba Itegral Lapso /7 CARRERAS: EDUCACIÓN PREESCOLAR Y DIFICULTADES DE APRENDIZAJE (CÓD 175) OBJ 10 PTA 10 Cuáto mide la cerca de u terreo de forma circular que ocupa ua superficie de 1507,35m? Deotaremos por A el área de forma circular represetada por terreo de logitud L metros De acuerdo a la defiició de logitudes y áreas de regioes de u plao dadas e las págias 65 y 66 del texto Matemática I (Cód 175), módulo IV, se tiee que para ua circuferecia de radio R, su logitud viee dada por: L R, siedo 3, 14 Como el área de superficie del terreo es: La logitud es, OBJ 11 PTA 11 Escriba el úmero (1344) 5 e base 10 A 1507,35m A R R 1,91m 3,14 L= (3,14)(1,91m) 137,59 metros De acuerdo a lo idicado e la págia 155 del texto Matemática I (Cód 175), módulo IV, teemos que: (1344) 5 = = = 974 CARRERAS: ADMINISTRACIÓN Y CONTADURÍA (CÓD 176) OBJ 10 PTA 10 U empleado de ua empresa ahorra Bs si su reta es de Bs Además, por cada bolívar de icremeto de su reta aumeta Bs 0,65 Idica el ivel de cosumo si la reta se icremeta a Bs , sabiedo que la fució cosumo es afí Ver págias 45 y 47 del texto Matemática I (Cód 176), módulo IV Como la fució cosumo es afí y de acuerdo a los datos sumiistrados, la fució cosumo viee dada por la relació: C = a + 0,65Y Mietras que la fució ahorro es: A = Y C = Y a 0,65Y A = 0,35Y a Pero para ua reta de Bs hay u ahorro de Bs 90000, etoces: = 0,35(950000) a De dode, a = 4500 Luego, la fució cosumo está dada por la relació, C = ,65 Y Por lo tato, el cosumo para ua reta de Bs es: ,65( ) = 9535 Bolívares
6 Prueba Itegral Lapso /7 OBJ 11 PTA 11 U bie cuyo valor iicial es de Bs se deprecia e forma expoecial hasta alcazar u valor de rescate de Bs 5000 al cabo de 6 años Determie la fució V = V(t) que muestra el valor del bie al fial del año t Este problema se resuelve de forma similar a la parte a) del ejemplo 71 de la págia 98 del texto Matemática I (Cód 176), módulo IV Debido a que la depreciació es de tipo expoecial, se tiee que: V(t) = e t, > 0, > 0, t [0, 6] Segú los datos sumiistrados: = V(0) =, 5000 = V(6) = e 6 Al aplicar el logaritmo e la seguda ecuació: L 5000 = L , 6= L L 5000, 6= L , Etoces, V (t) = e 0,34 t 6= L 8, 0,34 CARRERAS: MATEMATICA, EDUCACIÓN MATEMÁTICA E INGENIERÍA (CÓD 177) OBJ 10 PTA 10 Si a y b so úmeros reales cualesquiera tales que a < b, etoces se verifica a < a+b Demuestre esta propiedad Ver ejercicio propuesto 11 N 1 e la págia 8, del texto UNA, Matemática I, módulo IV
7 Prueba Itegral Lapso /7 OBJ 11 PTA 11 Modele co u diagrama de flujo los pasos a seguir para determiar el domiio de la fució f(x) defiida por: f(x)= x 1 Para modelar la determiació del domiio de la fució f(x) mediate u diagrama de flujo, utilizamos la defiició del domiio de ua fució irracioal, e este caso, la fució raíz cuadrada de x1, para ello se busca el mayor subcojuto del cojuto de los úmeros reales para los cuales está defiida, e efecto: INICIO es u úmero real x 1 x x FIN FIN DEL MODELO
CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007
CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y
L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2
Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los
Límite y Continuidad de Funciones.
Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por
La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:
SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad
Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El
una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:
Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes
INTERÉS SIMPLE COMO FUNCIÓN LINEAL.
INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por
SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:
SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce
EJERCICIOS DE SERIES DE FUNCIONES
EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:
Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.
Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,
CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS
CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E
SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.
CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio
Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones
Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos
LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir
PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,
1. Serie de Potencias
. Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada
LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO
LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que
PyE_ EF2_TIPO1_
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN
IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre:
IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. º ESO A Nombre: Evaluació: Primera. Feca: 0 de diciembre de 00 NOTA Ejercicio º.- Aplica el orde de prioridad de las operacioes para calcular: 64 : 5
Series alternadas Introducción
Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.
IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11
IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como
INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R
P á g i a INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA GUIA Nº 3: Sucesioes, Límite de Sucesioes y Límite de Fucioes e R GRADO: º AREA: MATEMÁTICAS PROFESORA: Ebli Martíez M. ESTUDIANTE: PERIODO: III
Tema 8 Límite de Funciones. Continuidad
Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)
GUIA DE ESTUDIO Nro 1
MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro
PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14
GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.
M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para
GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o
4.- Series. Criterios de convergencia. Series de Taylor y Laurent
4.- Series. Criterios de covergecia. Series de Taylor y Lauret a) Itroducció. Series de fucioes reales. b) Covergecia de secuecias y series. c) Series de Taylor. d) Series de Lauret. e) Propiedades adicioales
Polinomio Mínimo en Campos Cuadráticos
Poliomio Míimo e Campos cuadráticos Poliomio Míimo e Campos Cuadráticos 1. Método de solució Partiedo de que u cuerpo cuadrático es K = Q ( a + b), vamos a propoer u método o estructura para ecotrar el
Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7
Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}
1. Relaciones de recurrencia homogéneas con coeficiente
1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a
Preguntas más Frecuentes: Tema 2
Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,
IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A
IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el
CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel
x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la
Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación
Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:
FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y
CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos
Series de números reales
Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió
MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero
ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los
Ejercicios Resueltos de Clasificación de Funciones
Istituto Tecológico de Ciudad Madero Uidad I. Complejidad Computacioal Capitulo. Clasificació de Algoritmos Ejercicios Resueltos de Clasificació de Fucioes.. Determie si f ( ) perteece a la clase idicada
Introducción a las medidas de dispersión.
UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.
UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5
UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...
MATEMATIKA SPANYOL NYELVEN MATEMÁTICAS
Matematika spayol yelve emelt szit 06 ÉRETTSÉGI VIZSGA 006 május 9 MATEMATIKA SPANYOL NYELVEN MATEMÁTICAS EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA EXAMEN ESCRITO DE BACHILLERATO DE NIVEL SUPERIOR JAVÍTÁSI-ÉRTÉKELÉSI
Curso: 3 E.M. ALGEBRA 8
Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,
LAS SUCESIONES Y SU TENDENCIA AL INFINITO
LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció
SUCESIONES DE NÚMEROS REALES. PROGRESIONES
www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos
MATE1214 -Calculo Integral Parcial -3
MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud
LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En
LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series
Programa de Acceso Iclusivo, Equidad y Permaecia PAIEP Uiversidad de Satiago de Chile Series Sea {a } N ua sucesió de úmeros reales, etoces a la expresió a + a 2 + a 3 + + a + se le deomia serie ifiita
Transformada Z. Ejemplos. Ejemplos de cálculo [ ] = [ ] ( ) ( ) 1. Transformada Z. α = α α α si α. α α α
Trasformada Ejemplos Ejemplos de cálculo. Trasformada... Calcular la trasformada, por defiició, idicado la regió de coergecia p u [ ] h h p u cos u Solució: Para calcular la Trasformada por defiició, resulta
Álgebra I Práctica 2 - Números naturales e inducción
FCEyN - UBA - Segudo Cuatrimestre 203 Álgebra I Práctica 2 - Números aturales e iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + 2 + 3 + 4 + + 00, (b) + 2 + 4 + 8
ORGANIZACIÓN DE LOS DATOS.
ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar
Hoja de Problemas Tema 3. (Sucesiones y series)
Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar
Coeficientes binomiales
Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si
9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.
Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como
4. Sucesiones de números reales
4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...
Raices de Polinomios. Jorge Eduardo Ortiz Triviño
Raices de Poliomios Jorge Eduardo Ortiz Triviño jeortizt@ual.edu.co http://www.docetes.ual.edu.co/jeortizt/ Defiició U poliomio de grado es ua epresió de la forma: Dode a 0 P() = a + a - - +... +a +
Números racionales. Caracterización.
Números reales Matemáticas I Aplicadas a las Ciecias Sociales 1 Números racioales. Caracterizació. ecuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma a b
Universidad Antonio Nariño Matemáticas Especiales
Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.
PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O
PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Económicas Guía de Ejercicios No. 2 DET 385, Métodos Cuantitativos III
: Derivadas de orde superior: Elaborada por: Wilfredo Saravia M Uiversidad Nacioal Autóoma de Hoduras Facultad de Ciecias Ecoómicas Guía de Ejercicios No DET 85, Métodos Cuatitativos III E los ejercicios
Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.
Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma
INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.
INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad
Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18
Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales
Tema 2. Medidas descriptivas de los datos
Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa
COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS
COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS "Toda cosa grade, majestuosa y bella e este mudo, ace y se forja e el iterior del hombre". Gibrá Jalil Gibrá. Uidad : PROCESOS INFINITOS Y LA NOCIÓN
6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES
6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:
MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan
MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes
Introducción básica a series
Itroducció básica a series Gearo Lua Carreto * 2 Noviembre de 206, 8 pm. Series: u caso particular de sucesió Supoga que tiee ua sucesió cualquiera a. Explicaremos la forma de geerar ua sucesió s, muy
OPCIÓN A EJERCICIO 1_A
IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1
EJERCICIOS RESUELTOS. t +
BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()
3. Volumen de un sólido.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos
Guía 1 Matemática: Estadística NM 4
Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:
R. Urbán Ruiz (notas de clase)
R. Urbá Ruiz (otas de clase) Fucioes E las ciecias Ecoómicas las fucioes so de mucho valor para resolver problemas dode haya que relacioar variables; como por ejemplo, la producció, la oferta, la demada,
OPCIÓN A EJERCICIO 1_A
IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede
MEDIDAS DE TENDENCIA CENTRAL. _ xi
EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee
ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A
EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació
Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.
Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,
Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas
Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales
IES Fco Ayala de Granada Modelo 5 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 5 DEL 2015 OPCIÓN A
SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 5 DEL 015 OPCIÓN A EJERCICIO 1 (A) Sea las matrices A = 1 0, B = 1 1 1 y C = 1 1 3 (1 5 putos) Resuelva la ecuació A X + B X = C. (1 5 putos) Calcule A 4
INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN
Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla
R = a) En el caso de la primera serie, 1/n sines impar a n = 0 sines par
298 Series de potecias y fucioes elemetales 8.4. Ejercicios 8.4.. Ejercicios resueltos 8.4. Calcule las sumas de las siguietes series: a) x + x3 3 x5 5 +x7 7... b) x 3 3 x5 3 5 + x7 5 7 x9 7 9... Solució:
IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A
IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule
1. Propiedades de los estimadores
. Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie
Sucesiones y series de números reales
38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,
Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!
Este documeto es de distribució gratuita y llega gracias a Ciecia Matemática www.cieciamatematica.com El mayor portal de recursos educativos a tu servicio! Cálculo: Series Fucioales. Taylor y Fourier Atoio
Análisis de Señales en Geofísica
Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:
Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:
Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si
Criterios de Convergencia
Semaa - Clase 3 0/0/0 Tema : Series Criterios de Covergecia La preguta que os plateamos es la siguite: Si hacemos que N etoces la suma N k= a k, tiee u límite? Existe alguas formas de averiguarlo, a pesar
6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES
6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,
TEMA 1 NÚMEROS REALES
. Objetivos / Criterios de evaluació TEMA 1 NÚMEROS REALES O.1.1 Coocer e idetificar los cojutos uméricos N, Z, Q, I,R, Im O.1.2 Saber covertir úmeros racioales e fraccioes. O.1.3 Redodeo y aproximació
TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.
Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA
EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...
EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:CURSO: CORRIGIÓ:REVISÓ: 4 5 NOTA Todas sus respuestas debe ser justificadas
Series infinitas de números reales. Series convergentes
Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas
INTRODUCCIÓN A LAS PROGRESIONES
Apédice A INTRODUCCIÓN A LAS PROGRESIONES A.. A..3 E el Apédice A, los alumos ivestigaro progresioes buscado patroes y reglas. E la primera parte del apédice, se cocetraro e las progresioes aritméticas
Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi
u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo
ESTADISTICA UNIDIMENSIONAL
ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 3) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Sobrates de 011 (Modelo 3) Solució Germá-Jesús Rubio Lua PRUEBA DE AESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUÍA Modelo 3 de MATEMÁTIAS APLIADAS A LAS IENIAS SOIALES II OPIÓN A
Álgebra I Práctica 3 - Números enteros (Parte 1)
FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c
Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER
F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales
SUCESIONES Y SERIES DE FUNCIONES
CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes