M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

Tamaño: px
Comenzar la demostración a partir de la página:

Download "M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para"

Transcripción

1 GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o se eche a perder y además la pueda guardar, decide costruir u carrete como el que se muestra e el dibujo. Cuál debe ser el diámetro de los cachetes del carrete si el corazó es u tubo corto de 10 cm de diámetro exterior?

2 Para resolver este problema, Marcelo recuerda que la fórmula del perímetro del círculo es pd (pi por diámetro), por lo que co cada vuelta que dé la cuerda, e el carrete erollará pd logitud, pero e cada vuelta el diámetro (D) aumetará veces el espesor (E). Observe usted: Si vuelta, o se ha eredado ada. Vuelta 1: D = d, tomado el diámetro iterior como iicio. Co dos vueltas: D = d + E.

3 Marcelo, para o cofudirse, hace ua tabla como la siguiete: No. de vuelta Diámetro Diámetro e la vuelta idicada Logitud erollada (p x D) Suma de lo erollado Observacioes 1 3 d + [0 (E)] d + [1 (E)] d + [ (E)] = = = Se toma el diámetro itero Se cueta el espesor de la cuerda e cada lado Recuerde que E =, porque es el espesor de la cuerda 4 d + [3 (E)] = d + [4 (E)] = d + [5 (E)] = d + [6 (E)] = d + [7 (E)] = d + [8 (E)] = d + [9 (E)] = d + [10 (E)] = ,036.0 E esta vuelta, ates de termiar, se erolla los 10 m. Co lo aterior, Marcelo sabe que co u poco meos de 11 vueltas logrará eredar toda su cuerda y el diámetro de los cachetes de su carrete será de 50 cm por lo meos. Como se puede observar cada vez que se da ua vuelta al carrete, su diámetro aumeta 4 cm debido a que la cuerda mide cm de grueso y así se aumeta el diámetro e: 10, 14, 18,,... 50

4 A u cojuto de úmeros o literales ordeados de tal maera que cualquiera de ellos puede ser defiido por su atecesor o por el que le sigue mediate ua regla se le llama serie. E el caso del carrete de Marcelo, la regla es muy secilla, pues al aalizar los úmeros os damos cueta que para coocer qué sigue de otro, es suficiete co sumarle 4, o que para coocer el úmero aterior se logra al restar 4. Si se observa la tabla que costruyó Marcelo, la serie que obtuvo se puede expresar de la siguiete maera: S = d, d + [1 ( E)], d + [ ( E)], d + [3 ( E)]..., d + [-1( E)] Cada uo de los elemetos de esta serie se llama térmios, y se simboliza por la literal, así se tiee que: Serie = d, d + [1 ( E)], d + [ ( E)], d + [3 ( E)]..., d + [-1( E)] Térmios Si se observa, d es el diámetro iicial, y la catidad que se aumeta queda defiida por (-1) multiplicado dos veces por el grueso de la cuerda, e este caso, es. Así, cualquier térmio de la serie estará defiido por: Ejemplo u = d + [(-1) ( E)] Co esta fórmula se puede coocer cualquier térmio si ecesidad de teer el aterior o posterior. El térmio 7 de la serie de Marcelo es: d = 10 cm = 7 E = cm sustituyedo, el térmio 7 será: fórmula de la serie = d + [(-1) ( E)] 10 + [(7-1) ( )] = 10 + [6 4] = = 34 Co esto, Marcelo ya o tuvo que coocer los primeros 6 térmios para determiar el 7. Usted puede comprobar lo aterior observado la tabla de Marcelo.

5 Así, Marcelo podría coocer el térmio de su serie de la siguiete maera: d = 10 cm = E = cm 10 + [(-1) ( )] = 10 + [1 4] = 94 Esto quiere decir que si Marcelo da vueltas a su carrete, éste tedrá u diámetro de 94 cm. Así co la fórmula que ecotró puede calcular cualquier térmio de su serie. Para coocer el diámetro de su carrete, Marcelo ecesitó sumar lo que se eredó la cuerda e cada vuelta. Si o se quiere o o se puede calcular todos los térmios para después sumarlos, se puede utilizar lo que alguos matemáticos hace siglos ecotraro para sumar los térmios de ua serie. Observe usted cómo se obtiee ua fórmula para sumar los térmios de ua serie. S = 1,, 3, 4,..., [a + (-1) d] e dode: S = suma de los térmios a = primer térmio d = catidad que se agrega = el úmero de térmio Esta serie se puede represetar de la siguiete maera: S = a + [a + d] + [a +d] + [a + 3d]... + [a + ( - 4) d] + [a + ( - 3)d] + [a + ( - )d] + [a + ( - 1)d] Si se suma dos series pero e ua de ellas se iicia por el último úmero: S = a + [a + d] + [a +d] + [a + 3d]... + [a + ( - 4)d] + [a + ( - 3)d] + [a + ( - )d] + [a + ( - 1)d] + S = [a + ( - 1)d] + [a + ( - )d] + [a + ( - 3)d] + [a + ( - 4)d]... + [a + 3d] + [a + d] + [a + d] + [a] S = [a + (- 1)d] + [a + (- 1)d] +[a + (- 1)d]... + [a + (- 1)d] + [a + (- 1)d] + [a + (- 1)d] + [a + (- 1)d]

6 Se puede ver que todos los térmios so iguales y además que éstos so e úmero igual que, por lo que se puede escribir que: Suma de dos series S = [a + (-1) d] despejado la S, se tiee: Co esta fórmula se puede obteer la suma de los térmios de ua serie. E ella, sus literales sigifica lo siguiete: Ejemplo S = [a + (-1) d] S = suma de la serie aritmética = úmero de térmios a = primer térmio d = catidad costate que se suma o se resta Si se quiere coocer la suma de los primeros 00 úmeros pares: = S Se tiee que: a =, d = y = 00 S = [a + (-1) d] 00 S = [ () + (00-1) ] S = 100 [40] = 40,00 Para saber el último térmio (u ) de esta serie se tiee: u = a + ( - 1) d u = + (00-1) = =

7 Co estas fórmulas, Marcelo podría ahorrar mucho tiempo e el cálculo de los cachetes de su carrete. Observe usted cómo haría sus cálculos. Como la logitud a eredar de la cuerda es 10 m y esto se logra al sumar el perímetro de cada vuelta, la suma de la serie será de: 10 m = 1,000 cm S = [d + (-1) ( E)] p Observe que los térmios de la serie se multiplicaro por p para obteer el perímetro de la cuerda que se ereda co cada vuelta. E la fórmula se tiee que: S = 1,000 cm suma de la serie =? úmero de vueltas (térmios) d = 10 cm catidad de iicio E = cm espesor de la cuerda Sustituyedo: 1,000 = [( (10) + (-1) () ) (3.14)] 1,000 = [(10 + (4-4)) 3.14] 1,000 = [ ] 1,000 = ² ,000 = ²

8 Esta ecuació es de segudo grado, por lo que se puede resolver aplicado la fórmula geeral: Sustituyedo: = - b ± b - 4ac a E dode b = 5.1 a = 6.8 c = - 1,000 = = = ± ( 5.1 ) - 4(6.8) (-1,000) (6.8) ± , ± Como e este problema la respuesta sólo puede ser positiva, se tiee que : = = Co lo que se obtiee que co meos de 11 vueltas se ereda los 10 metros de la cuerda de Marcelo.

9 Todo lo aterior señalado para las series es para defiir ua formula o ecuació que sirva para calcular los térmios de las series y la suma de ellas. No siempre es ecesario coocer dichas fórmulas o ecuacioes, e ocasioes, por setido comú, se calcula los térmios. E los problemas de matemáticas, las series so muy utilizadas ya sea para el plateamieto de los problemas o para el plateamieto de fórmulas que de su solució. Por lo regular, las series se preseta como u cojuto de úmeros, todos e orde, y la defiició de ua regla o fórmula para calcular los úmeros que va ates o que sigue se hace de maera secilla por medio de la reflexió. Ejemplos 95, 90, 85,, 75, 70, 65 Como se puede observar, a cada úmero se le va restado 5 para defiir el siguiete, por lo que el úmero que falta es el , 75, 8, 89, 96, 103, E esta serie, se va sumado 7 a cada úmero para coocer el úmero que sigue, por lo que el úmero que falta es el , 7, 66, 59, 53, 46, E esta serie, primero se resta 7 al úmero para obteer el siguiete y luego a ese que se obtuvo se le resta 6. Observe la solució: El úmero que falta es el = = = = = = 40

10 18, 64, 3, 16, 8, 4, Observe que e esta serie se divide al úmero etre para obteer el siguiete, por lo que el úmero que falta es: 4 = 144, 7, 4, 1, 4, E esta serie, primero se divide etre dos para obteer el siguiete úmero y ese se divide etre tres. Observe la secuecia: 144 = = 4 4 = = 4 4 = El úmero que falta se obtiee dividiedo a 4 = 7, 4, 17, 34, 7, 44, E esta serie, e cada tercer térmio se agrega 10. Observe la secuecia: = = = = = 44 (Este úmero es el que sigue)

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...

SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,... SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

/ n 0 N / D(f) = {n N / n n 0 }

/ n 0 N / D(f) = {n N / n n 0 } Liceo Nº 10 016 SUCESIONES Primera defiició Ua sucesió de úmeros reales es ua fució cuyo domiio es el cojuto de los úmeros aturales (N) y cuyo recorrido está coteido e el cojuto de los úmeros reales (R).

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

Álgebra I Práctica 2 - Números naturales e inducción

Álgebra I Práctica 2 - Números naturales e inducción FCEyN - UBA - Segudo Cuatrimestre 203 Álgebra I Práctica 2 - Números aturales e iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + 2 + 3 + 4 + + 00, (b) + 2 + 4 + 8

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

1. SUCESIONES Y SERIES

1. SUCESIONES Y SERIES 1. SUCESIONES Y SERIES Objetivo: El alumo aalizará sucesioes y las series para represetar fucioes por medio de series de potecias 1.1 Defiició se sucesió. Límite y covergecia de ua sucesió qué es ua sucesió?

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

Fracciones parciales

Fracciones parciales Fraccioes parciales Ua fució racioal puede ser llevada a otra equivalete depediedo del divisor 0de la misma, de tal modo que el divisor puede presetar térmios que permita factorizarlo atediedo a : a) Factores

Más detalles

Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

Mó duló 21: Sumatória

Mó duló 21: Sumatória INTERNADO MATEMÁTICA 16 Guía del estudiate Mó duló 1: Sumatória Objetivo: Coocer y aplicar propiedades para el cálculo de sumatorias. Para calcular alguas sumatorias es ecesario coocer sus propiedades

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Respuesta: como cociente para multiplicarlo por el primer numerador que.el mismo proceso hacemos para la segunda fracción:

Respuesta: como cociente para multiplicarlo por el primer numerador que.el mismo proceso hacemos para la segunda fracción: PRE EVALUACION: Resuelve la diferecia El m.c.m. de los deomiadores es el producto de ambos. tiees que dividir por cada deomiador y el factor que te queda como cociete, multiplicar por su umerador: E el

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

FRACCIONES PARCIALES

FRACCIONES PARCIALES Profesor: Jaime H. Ramírez Rios Págia FRIONES PRILES E ocasioes es ecesario ivertir el proceso. Para ver cómo fucioa el método de fraccioes parciales, trabajaremos sobre ua fució racioal. Q p f Dode Q

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre:

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre: IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. º ESO A Nombre: Evaluació: Primera. Feca: 0 de diciembre de 00 NOTA Ejercicio º.- Aplica el orde de prioridad de las operacioes para calcular: 64 : 5

Más detalles

14.1 Comprender los exponentes racionales y los radicales

14.1 Comprender los exponentes racionales y los radicales Nombre Clase Fecha 14.1 Compreder los expoetes racioales y los radicales Preguta esecial: Cómo se relacioa los radicales co los expoetes racioales? Resource Locker Explorar 1 Compreder los expoetes de

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

VECTORES. A partir de la representación de, como una recta numérica, los elementos

VECTORES. A partir de la representación de, como una recta numérica, los elementos VECTORES VECTORES Los ectores, que era utilizados e mecáica e la composició de fuerzas y elocidades ya desde fies del siglo XVII, o tuiero repercusió etre los matemáticos hasta el siglo XIX cuado Gauss

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I - Ferado Sáchez - - Números Cálculo I complejos 09 0 07 E el cuerpo de los úmeros reales ecuacioes como x + = 0 o tiee solució: el poliomio x + o tiee raíces reales. Hace falta exteder el cocepto de úmero

Más detalles

2.1. Concepto Monto, capital, tasa de interés y tiempo.

2.1. Concepto Monto, capital, tasa de interés y tiempo. 1 2.1. Cocepto El iterés compuesto tiee lugar cuado el deudor o paga al cocluir cada periodo que sirve como base para su determiació los itereses correspodietes. Así, provoca que los mismos itereses se

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

Para resolver una probabilidad con la distribución binomial se aplica la siguiente fórmula

Para resolver una probabilidad con la distribución binomial se aplica la siguiente fórmula CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Ejercicios de Sucesiones y Progresiones

Ejercicios de Sucesiones y Progresiones Ejercicios de Sucesioes y Progresioes 1. Escribe los siguietes térmios de estas sucesioes: a) 5,6,8,11,15, b) 0,20,10,0, c) 7,14,21,28,... d) 1,5,25,125,.. Qué criterio de formació ha seguido cada uo?

Más detalles

RELACIONES DE RECURRENCIA

RELACIONES DE RECURRENCIA Uidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo geeral Coocer e forma itroductoria los coceptos propios de la recurrecia e relació co matemática discreta. Objetivos específicos Coocer

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN FACTOR COMUN 1. FACTOR COMUN MONOMIO: Factor comú moomio: es el factor que está presete e cada térmio del poliomio: Ejemplo N 1: cuál es el factor

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales Uiversidad de Atofagasta Fac. de Ciecias Básicas Depto. de Matemáticas A. Alarcó, L. Media, E. Rivero, R. Zuñiga Segudo Semestre 204 Sistema de ecuacioes lieales El sistema de ecuacioes lieales a, + a,2

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20 Guía de estudio Fraccioes parciales Uidad A: Clase 19 y 0 Camilo Eresto Restrepo Estrada, Lia María Grajales Vaegas y Sergio Ivá Restrepo Ochoa 1. 9. Fraccioes parciales Ua fracció racioal es ua expresió

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

UNIVERSIDAD DE VALENCIA DEPARTAMENTO DE ECONOMÍA FINANCIERA Y ACTUARIAL

UNIVERSIDAD DE VALENCIA DEPARTAMENTO DE ECONOMÍA FINANCIERA Y ACTUARIAL UNIVERSIDAD DE VALENCIA DEPARTAMENTO DE ECONOMÍA FINANCIERA Y ACTUARIAL Asigatura: 1141 MATEMÁTICA FINANCIERA NOTAS DEL TEMA 1 CURSO ACADÉMICO 008-009 TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a

Más detalles

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n NÚMEROS COMBINATORIOS Def:Dado u úmero etero o egativo, se defie el factorial de (! como el producto! = ( 1...1 Def: Dados dos úmeros,k eteros o egativos tales que k, se defie el úmero combiatorio sobre

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común:

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común: PERIODO I FACTORIZACIÓN Factorizar es escribir o represetar ua expresió algebraica como producto de sus factores: Ejemplo: x 4 = (x + ) (x ) = (x + ) (x + ) (x ) Ua expresió queda completamete factorizada

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

GUINV004M2-A17V1. Guía: Operando en un nuevo conjunto numérico

GUINV004M2-A17V1. Guía: Operando en un nuevo conjunto numérico Matemática GUINV004M2-A17V1 Guía: Operado e u uevo cojuto umérico Matemática - Segudo Medio Secció 1 Me cocetro Objetivos Idetificar los úmeros irracioales como úmeros decimales que tiee desarrollo ifiito

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles