ESTADÍSTICA DESCRIPTIVA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTADÍSTICA DESCRIPTIVA"

Transcripción

1 ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales de u curso de estadística descriptiva se registra e la tabla siguiete Co relació a esta tabla, ecotrar: a. La putuació más alta b. La putuació más baja c. El rago d. Las putuacioes de los cico estudiates de mayor calificació. e. Las putuacioes de los cico estudiates de meor calificació. f. La putuació del décimo estudiate de mayor calificació. g. Cuátos estudiates obtuviero putuació de 75 o mayor? h. Cuátos estudiates obtuviero putuació meor que 85? i. Qué porcetaje de estudiates obtuvo ua putuació mayor o igual a 65 pero meor que 85. j. Qué putuacioes o tiee igú estudiate? II. Co los datos costruya ua distribució de frecuecia de amplitud o tamaño 5 y que la primera clase sea III. Costruya el histograma y polígoo de frecuecia. IV. Calcular la media aritmética, mediaa y moda de la distribució. V. Calcular el coeficiete de variació, variaza y desviació estádar. VI. Calcular el valor de asimetría y el curtosis. PROF: MSC. JULIO R. VARGAS 1

2 Solució: Los datos de la tabla los ordearemos e forma ascedete: Puede ser útil a través del gráfico llamado tallo y hoja. Como los úmeros so de dos dígitos, el tallo será las decea y las hojas las uidades: las decea so; 5,6,7,8,9. 5 5, 9, 3 6 8, 1, 6, 5, 5, 2, 7, 7, 1, 8, 0, 2, 3, 2,9, 0, 2, 5, 3, 8, 0 7 3, 9, 9, 8, 8, 5, 5, 3, 3, 3, 5, 4, 5, 8, 2, 7, 8, 1, 6, 6, 8, 4, 9, 6, 5, 6, 1, 5, 2, 1, 5, 4, 7 8 6, 4, 0, 8, 2, 9, 2, 7, 1, 8, 5, 8, 5, 3, 5 9 6, 7, 4, 0, 3, 5, 5, 3 Para costruir el gráfico recorrimos el gráfico por columa de izquierda a derecha, au se puede hacer por fila. Ahora ubicamos los datos ordeados e la tabla siguiete Co los datos ordeados podemos respoder las pregutas del epígrafe (I). a. La putuació más alta: 97 b. La putuació más baja: 53 c. El rago: 97-53=44 d. Las putuacioes de los cico estudiates de mayor calificació: 97,96,95,95,94 e. Las putuacioes de los cico estudiates de meor calificació: 60, 60, 59, 57, 53 f. La putuació del décimo estudiate de mayor calificació: 88 g. Cuátos estudiates obtuviero putuació de 75 o mayor? 44 h. Cuátos estudiates obtuviero putuació meor que 85? 63 i. Qué porcetaje de estudiates obtuvo ua putuació mayor o igual a 65 pero meor que 85? 49/80 = 61.25% j. Qué putuacioes o tiee igú estudiate? De 0 a 52, 54, 55, 56, 58, 64, 70, 91, 92, 98, 99. PROF: MSC. JULIO R. VARGAS 2

3 II. Co los datos costruya ua distribució de frecuecia de amplitud o tamaño 5 y que la primera clase sea Tabla 1: Distribució de Frecuecias Itervalos X Frecuecia Frecuecia abs. %frecuecia % frecuecia Absoluta (f) acumulada acumulado Total X: es la marca de clase o puto medio de cada itervalo, se obtiee dividiedo la suma de los límites iferior y superior de cada itervalo por 2. Frecuecia absoluta: se obtiee cotado la catidad de datos que se ecuetra e cada itervalo, recuerde que u dato solo puede perteecer a u solo itervalo. La suma de todas las frecuecias absolutas debe ser (e uestro caso 80) Frecuecia acumulada: Se obtiee sumado las frecuecias absolutas de los itervalos hasta la frecuecia del itervalo actual. El último itervalo debe teer como frecuecia absoluta el total de datos que se está estudiado. %frecuecia: Es la frecuecia relativa a cada itervalo y se obtiee dividiedo la frecuecia absoluta de cada itervalo por el úmero total de datos (=80) multiplicado por 100. La suma de todas las frecuecias relativas debe es 100% %frecuecia acumulada: Es la frecuecia relativa acumulada. Se obtiee sumado las frecuecias relativas de los itervalos hasta la frecuecia del itervalo actual. El último itervalo debe teer como frecuecia relativa acumulada del total de datos que se está estudiado. PROF: MSC. JULIO R. VARGAS 3

4 III. Costruya el histograma y polígoo de frecuecia IV. Calcular la media aritmética, mediaa y moda de la distribució. X Frecuecia Abs. (f) Xf PROF: MSC. JULIO R. VARGAS 4

5 Tabla 2 Media aritmética: Mediaa: X = Xf = = M e = L i + [ 2 ( f) 1 ]*C f mediaa L i: límite iferior de la clase dode está la mediaa. ( f) 1 : Sumatoria de las frecuecias absolutas ateriores a la clase mediaa. f mediaa: frecuecia absoluta de la clase dode se ecuetra la mediaa : úmero total de datos. C: amplitud de la clase o itervalo. La mediaa divide la distribució exactamete a la mitad, por lo que dividimos el total de datos =80 por 2. /2 = 80/2= 40. Buscamos e frecuecia absoluta acumulada (tabla 1) quie cotiee a 40 y vemos que es 57, es decir que la media está e la clase Por lo que los valores de la ecuació será: L i=75 /2= 40 C=5 f mediaa=21 ( f) 1= 36 M e = L i + [ 2 ( f) 1 Moda: f mediaa ] C = 75 + [ ] 5 = = M o = L i + [ ] C L i: límite iferior de la clase dode está la mayor frecuecia absoluta. Δ 1: diferecia etre la frecuecia absoluta modal y la frecuecia absoluta de la clase aterior. Δ 2: diferecia etre la frecuecia absoluta modal y la frecuecia absoluta de la clase superior C: amplitud de la clase o itervalo. Si observamos la tabla 1, e la columa de frecuecia absoluta ecotramos que 21 es el valor más alto, por tato la clase modal será Ahora calcularemos Δ 1 y Δ 2 Δ 1= = 9 Δ 2=21 6= 19 C=5 1 9 M o = L i + [ ] C = 75 + [ ] 5 = = Coclusió e relació a los valores de las medidas de tedecia cetral: Las diferecia etre cada uo de ellos es míima, el orde es: X < M e < M o. E este caso cualquiera de esas medias es válido para represetar el dato cetral de la distribució. V. Calcular el coeficiete de variació, variaza y desviació estádar. Variaza de la distribució: Es la media de los cuadrados de las desviacioes o separacioes de cada ua de las observacioes, respecto a la media aritmética.. Se preseta por s 2. s 2 = fx2 x 2 PROF: MSC. JULIO R. VARGAS 5

6 Desviació Estádar: Es la raíz cuadrada de la variaza. Co ello corregimos el haber tomado cuadrados de separacioes e el cálculo de la variaza. s = fx2 x 2 Coeficiete de Variació: Si la media es represetativa de las observacioes (o existe valores extremos exageradamete distaciados de la mayoría), el coeficiete de variació permite comparar la dispersió de dos series estadísticas: mayor coeficiete idica meor homogeeidad, o lo que es lo mismo, mayor dispersió o variabilidad. CV = s X 100 Tabla 3 X Frecuecia Abs. (f) fx 2 f(x x ) 3 f(x x ) s 2 = fx2 x 2 = (75.375) 2 = = s = fx2 x 2 = = (La desviació estádar os idica que e hay ua distacia promedio de aproximada 10 putos etre la media y las demás putuacioes. PROF: MSC. JULIO R. VARGAS 6

7 CV = s = 100 = 13.7% ( Es pequeña, por lo que los datos está X aproximadamete ormalmete distribuidos) VI. Calcular el valor de asimetría y el curtosis. Coeficiete de Asimetría de FISHER: Permite iterpretar la forma de la distribució, respecto a ser o o simétrica. As = f(x x ) 3 s 3 = = = Es ligeramete asimétrica por la derecha. Cálculos de f(x -x ) 3 e la tabla 3. Coeficiete de Curtosis: Recibe tambié el ombre de coeficiete de cocetració cetral, midiedo el grado de aplastamieto o aputamieto de la gráfica de la distribució de la variable estadística. Ua mayor cocetració de datos e toro al promedio hará que la forma sea alargada, siedo tato más plaa (o aplastada) cuato mayor sea la dispersió de los mismos. f(x x ) 4 K = 3 = = = = s 4 (10.33) Es Platicúrtica, u poco aplaada. PROF: MSC. JULIO R. VARGAS 7

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente.

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente. º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA.- ESTADÍSTICA DESCRIPTIVA.- TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística : Es la ciecia que estudia cojutos de datos obteidos de la realidad. Estos datos

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

ESTADÍSTICA. estadística. Recogida de datos. Las muestras de una población. Las variables estadísticas 03/06/2012

ESTADÍSTICA. estadística. Recogida de datos. Las muestras de una población. Las variables estadísticas 03/06/2012 ESTADÍSTICA estadística Grupo 4 Opció A La estadística estudia u cojuto de datos para obteer iformació y poder tomar decisioes. Por tato,las FASES de utrabajoestadístico será: Recogida de datos. Orgaizació

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UIDIMESIOAL..- ITRODUCCIÓ A LA ESTADÍSTICA.- Objeto de la estadística La Estadística es el cojuto de métodos ecesarios para recoger, clasificar, represetar y resumir datos así como para iferir

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Resumen de fórmulas estadísticas y funciones en Excel

Resumen de fórmulas estadísticas y funciones en Excel Resume de fórmulas estadísticas y fucioes e Excel 1. Medidas de posició o tedecia cetral Estadístico Fórmula Fució e Excel Media aritmética =A VERAGE(rago de datos) muestral para datos Xi o X = =AVERAGE(A

Más detalles

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos Aputes de Métodos Estadísticos I Prof. Gudberto J. Leó R. I- 46 Medidas Descriptivas Numéricas Frecuetemete ua colecció de datos se puede reducir a ua o uas cuatas medidas uméricas secillas que resume

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

BIOESTADÍSTICA I 1. DEFINICIONES

BIOESTADÍSTICA I 1. DEFINICIONES BIOESTADÍSTICA I 1. DEFINICIONES 1.1 ESTADÍSTICA. Es ua disciplia, que hace parte de la matemática aplicada, que provee métodos y procedimietos para colectar, clasificar, resumir y aalizar iformació (datos)

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean ESTADÍSTICA Estadística: Es ua rama de la matemática que comprede Métodos y Técicas que se emplea e la recolecció, ordeamieto, resume, aálisis, iterpretació y comuicació de cojutos de datos. Població:

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

SOLUCIÓN EXAMEN I PARTE II

SOLUCIÓN EXAMEN I PARTE II Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

2.- Estudio Poblacional y Muestral Univariante

2.- Estudio Poblacional y Muestral Univariante .- Estudio Poblacioal y Muestral Uivariate Població: Colectivo de persoas o elemetos co ua característica comú, objeto de estudio. Imposibilidad de estudio de esta característica e toda la població - Coste

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA POBLACIÓN, INDIVIDUO Y MUESTRA ESTADÍSTICA DESCRIPTIVA 1. El director del istituto se ha llevado ua sorpresa cuado el represetate de ua coocida marca de artículos deportivos etra e su despacho y le dice

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill. GLOSARIO ESTADÍSTICO Fuete: Murray R. Spiegel, Estadística,, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio cietífico de los La estadística posee tres campos métodos para recoger, orgaizar,

Más detalles

TEMA 3: DESCRIPCIÓN NUMÉRICA DE UNA VARIABLE ESTADÍSTICA: MEDIDAS DE LOCALIZACIÓN, DISPERSIÓN Y FORMA. MEDIDAS DE CONCENTRACIÓN.

TEMA 3: DESCRIPCIÓN NUMÉRICA DE UNA VARIABLE ESTADÍSTICA: MEDIDAS DE LOCALIZACIÓN, DISPERSIÓN Y FORMA. MEDIDAS DE CONCENTRACIÓN. TEMA 3: DESCRIPCIÓN NUMÉRICA DE UNA VARIABLE ESTADÍSTICA: MEDIDAS DE LOCALIZACIÓN, DISPERSIÓN Y FORMA. MEDIDAS DE CONCENTRACIÓN. Medidas de localizació. Medidas de dispersió. Coeficiete de variació. Mometos

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

Tema 1. Estadística Descriptiva

Tema 1. Estadística Descriptiva Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 1 Estadística Descriptiva 1 Itroducció 1 2 Coceptos geerales 2 3 Distribucioes de frecuecias 3 4 Represetacioes

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z < Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Estadística descriptiva

Estadística descriptiva UNIDAD Estadística descriptiva Objetivos Al fializar la uidad, el alumo: eplicará el cocepto de estadística y otros relacioados (muestra, població, estadístico, parámetro, etcétera) describirá las diferetes

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es MATEMÁTICAS I 1º Bachillerato Capítulo 9: 393 Ídice 1. ESTADÍSTICA DESCRIPTIVA UNIDIMENSIONAL 1.1. INTRODUCCIÓN 1.. MÉTODO ESTADÍSTICO 1.3. CONCEPTOS BÁSICOS 1.4. TIPOS DE VARIABLES 1.5. DISTRIBUCIONES

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 8-9 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre:

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre: IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. º ESO A Nombre: Evaluació: Primera. Feca: 0 de diciembre de 00 NOTA Ejercicio º.- Aplica el orde de prioridad de las operacioes para calcular: 64 : 5

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

Fórmulas Estadísticas. Recuerde: Hay k Categorías; n Datos en una muestra, N datos en una población.

Fórmulas Estadísticas. Recuerde: Hay k Categorías; n Datos en una muestra, N datos en una población. Uiversidad Diego Portales Facultad de Ecoomía y Negocios Fórmulas Estadísticas Capítulo 2 Recuerde: Hay k Categorías; Datos e ua muestra, N datos e ua població. Frecuecia Relativa de Clase (f) Cuátas Clases

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

PROFESOR: FRANCISCO HERNANDEZ LUGO PRIMERA PARTE ESTADISTICA

PROFESOR: FRANCISCO HERNANDEZ LUGO PRIMERA PARTE ESTADISTICA GUIA DEL TALLER DE PREPARACION DE PROBABILIDAD Y ESTADISTICA I (2015A) PROFESOR: FRANCISCO HERNANDEZ LUGO PRIMERA PARTE ESTADISTICA RECOPILACION DE LA INFORMACION Para el aálisis de u feómeo cualquiera

Más detalles

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo.

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. Admítelo ua salchicha o es ua zaahoria. Así decía la revista El Cosumidor e u cometario sobre la baja calidad utricioal de las salchichas. Hay tres tipos

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

TEOREMA DE PITAGORAS

TEOREMA DE PITAGORAS TEOREMA DE PITAGORAS INTRODUCCION El Teorema de Pitágoras lleva este ombre porque su descubrimieto recae sobre la escuela pitagórica. Ateriormete, e Mesopotamia y el Atiguo Egipto se coocía teras de valores

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5 Aexo Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices.

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices. Edgar Acuña/ ESMA 6665 Lecc 8 75 6.3. Uso de la SVD para determiar la estructura de ua matriz Primero defiiremos alguas características de matrices. Rago de ua matriz: Sea A ua matriz m x se etoces su

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL.

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. E estadística, la distribució biomial es ua distribució de probabilidad discreta que mide el úmero de éxitos e ua secuecia de esayos

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse.

ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse. ANEXO 1. MUESTREO Y TOLERANCIAS DE PRODUCTOS PREMEDIDOS 2. APLICACIÓN El presete reglameto se aplicará para la verificació de los coteidos etos de los productos promedios, etiquetados, co coteido omial

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

PROBABILIDAD Y ESTADÍSTICA BÁSICA

PROBABILIDAD Y ESTADÍSTICA BÁSICA PROBABILIDAD Y ESTADÍSTICA BÁSICA PARA INGENIEROS Co el soporte de MATLAB para cálculos y gráficos estadísticos Luis Rodríguez Ojeda lrodrig@espol.edu.ec Istituto de Ciecias Matemáticas Escuela Superior

Más detalles

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A IES Fco Ayala de Graada Modelo del 015 (Solucioes) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO DEL 015 OPCIÓN A EJERCICIO 1 (A) 1-1 Sea las matrices A = 0 1-1, B = 1 1, C = ( 1),

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de:

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de: ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si u suceso puede teer lugar de m maeras distitas y cuado ocurre ua de ellas se puede realizar otro suceso imediatamete de formas diferetes, ambos sucesos, sucesivamete,

Más detalles

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas:

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas: ESTADÍSTICA Ejercicio º.- Al pregutar a 0 idividuos por el úmero de persoas que vive e su casa, hemos obteido las siguietes respuestas: Elabora ua tabla de frecuecias. Ejercicio º.- E ua empresa de telefoía

Más detalles