ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse."

Transcripción

1 ANEXO 1. MUESTREO Y TOLERANCIAS DE PRODUCTOS PREMEDIDOS 2. APLICACIÓN El presete reglameto se aplicará para la verificació de los coteidos etos de los productos promedios, etiquetados, co coteido omial igual, expresado e masa o volume e uidades del SISTEMA INTERNACIONAL DE UNIDADES. Para aquellos caos particulares de aplicació se armoizará criterios específicos basados e legislació Iteracioal. 3. DEFINICIONES 3.1. PRODUCTOS PREMEDIOS Es todo producto evasado y medido si la presecia del cosumidor y e codicioes de comercializarse PRODUCTO PREMEDIDO DE CONTENIDO NOMINAL IGUAL Es todo producto evasado y medido si la presecia del cosumidor, co igual coteido omial y predetermiado e el evase durate el proceso de fabricació CONTENIDO EFECTIVO cotiee. El coteido efectivo de u evase es la catidad de producto que realmete 3.4. CONTENIDO EFECTIVO ESCURRIDO Es la catidad de producto que efectivamete cotiee el evase, descotado cualquier líquido, solució, caldo, etc. Segú la metodología a fijarse CONTENIDO NOMINAL (Q) Es el coteido eto de producto declarado e el evase ERROR EN MENOS, CON RELACIÓN AL CONTENIDO NORMAL El error e meos del coteido de u evase es la diferecia e meos etre el coteido efectivo y el omial del mismo INCERTIDUMBRE DE MEDICION DEL CONTENIDO NETO O EFECTIVO La icertidumbre e la medició debe estar compredido e el itervalo de icertidumbre T (T se halla e la tabla I) LOTE EN FABRICA

2 Es el cojuto de artículos de u mismo tipo, procesados por u mismo fabricate o fraccioados e u espacio de tiempo determiado, e codicioes esecialmete iguales. Se cosidera espacio de tiempo determiado, la producció de ua hora, siempre que las catidades de productos sea igual o superior a 150 uidades. E el caso que la catidad supere las uidades el excedete podrá formar uevo(s) lote(s) EN DEPOSITO E el depósito el lote está referido a todas las uidades de u mismo tipo de producto, siempre que el úmero de las mismas sea superior a 150. E el caso de que supere las uidades el excedete podrá formar uevo)s) lote(s) PUNTO DE VENTA E depósito o puto de veta el lote está referido a todas las uidades de u mismo tipo de producto. E caso de que supere las uidades el excedete podrá formar uevo(s) lote(s). El establecimieto de lotes meores a 150 (50-149) uidades queda restrigido a aquello casos e los que resulte imposible reuir dicha catidad CONTROL DESTRUCTIVO esayar. Es el cotrol que requiere la apertura o destrucció de evases a CONTROL NO DESTRUCTIVO esayar. Es el cotrol que o requiere la apertura o destrucció de evases a TOLERANCIA INDIVIDUAL (T) efectivo. Es la diferecia permitida e meos etre el coteido declarado y el MUESTRA DEL LOTE - TOMA DE MUESTRA Es la catidad de productos pre-medidos retirados aleatoriamete del lote y que será efectivamete cotrolada MUESTRA PARA LA TARA EN CONTROL NO DESTRUCTIVO Es la muestra retirada para estimar la masa del evase de los productos preevasados. Propuesta Argetia Si el peso de la tara es iferior al 5 % del coteido omial se tomará el valor promedio de ua muestra de 25 evases si es e líea de producció y 6 si es puto de importació, despreciádose la desviació stadard resultate.

3 Si la desviació de ua muestra de tara de características similares a resulta meor a 0,25 T tambié podrá tomarse el promedio despreciádose la desviació stadard auque el valor relativo tara-versus-q, sea superior al 5 % Si la desviació stadard de la tara es superior a 0,25, deberá realizarse esayo destructivo idividualizado los evases MEDIA ARITMÉTICA DE LA MUESTRA ( X ) Está represetada por la siguiete ecuació X i = = 1 X i x i : coteido eto de cada producto : úmero de productos DEFINICIÓN: Es igual a la suma de los coteidos idividuales dividida por el úmero de productos de la muestra DESVIACIÓN TÍPICA (S) Es igual a la raíz cuadrada de la suma de los cuadrados de las diferecias etre los coteidos idividuales y el valor medio de los coteidos, dividido por el úmero de productos de la muestra, meos uo. S = ( Xi X ) x i : coteido eto de cada producto : úmero de productos 4 CRITERIOS DE APROBACIÓN DE LOTE DE PRODUCTOS PREMEDIDOS 4.1. PRODUCTOS DE CONTENIDO NOMINAL IGUAL COMERCIALIZADOS EN MAS A O VOLUMEN El lote es sometido a verificació y aprobado cuado las codicioes y so simultáeamete atedidas.

4 CRITERIO PARA LA MEDIA X Q - K.S dode Q es el coteido omial del producto K es el factor que depede del tamaño de la muestra obteido de la tabla II; S desviació típica CRITERIO INDIVIDUAL Es admitido u máximo de c uidades de la muestra abajo de: Q - T T es obteido de la tabla I y c es obteido de la tabla II Para los productos que por su falta de homogeeidad, discotiuidad, o estabilidad de peso e el tiempo u otro facto que aumete de maera cosiderable la dispersió e su catidad efectiva de lleado, se establece ua excepció al Iciso comprede: Se icluye u listado, suceptible de ser ampliado por los Estados Parte, que - Productos co idicació de peso escurrido - Productos discretos cuya meor uidad de peso supera 1,5 veces la toleracia t (tabla I) - Productos co perdida sigificativa de peso por secado u otros efectos de almaceamieto. - Productos e estado de cogelamieto. Para los productos icluidos e los grupos mecioados, así como para aquellos que e el futuro pudiera icorporar los Estados Partes al listado, se admitirá u máximo de c uidades de la muestra abajo de T es obteido de la Tabla I y c es obteido de la Tabla II Permaece ialterado el puto Q -2xT TABLA I Deficiecias idividuales aceptadas Coteido eto idividual Q g. o ml. o cm. 3 Deficiecia tolerable T Por cieto de Q g. o ml. o cm 3

5 5 a a 100-4,5 100 a 200 4,5-200 a a a a , a a ,0 - Estos valores T será redodeados hasta la siguiete décima de g o ml para Q meor que o igual a g o ml o cm 3 y al siguiete etero para Q mayor de g o ml o cm 3. TABLA II Muestreo para Cotrol Tamaño de Lote Tamaño de la muestra Criterio para Aceptació de la Media x Q - 0,60 x s 1 Criterio para Aceptació idividual (máximo de defectuosos debajo Q - T) x Q - 0,485 x s x Q - 0, x es media de la muestra Q coteido omial s desvío stadard T toleracia s/tabla I

EL GRUPO MERCADO COMÚN RESUELVE:

EL GRUPO MERCADO COMÚN RESUELVE: MERCOSUR/GMC/RES. N 07/08 REGLAMENTO TÉCNICO MERCOSUR SOBRE CONTROL METROLÓGICO DE PRODUCTOS PREMEDIDOS COMERCIALIZADOS EN UNIDADES DE MASA Y VOLUMEN DE CONTENIDO NOMINAL IGUAL (DEROGACIÓN DE LAS RES.

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco Capítulo 4 (Cotiuació MÉTODOS ESTADÍSTICOS Autor: José María García Palaco Técicas Eperimetales Medida de magitudes 4.8 Métodos Estadísticos Ya hemos visto e los apartados ateriores, que u procedimieto

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

Secretaría de Extensión Universitaria. Trabajo Practico N 3

Secretaría de Extensión Universitaria. Trabajo Practico N 3 Trabajo Practico N 3 Medidas de Tedecia Cetral La Media (promedio), se deota como x, de ua muestra es el promedio aritmético de sus valores. Y se calcula mediate al formula: Si aparece los datos agrupados

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

Laboratorio de Física PRÁCTICA 1

Laboratorio de Física PRÁCTICA 1 Ig. Agis Zambrao, MSc PRELABORATORIO: MEDICIÓN - Medir. - Apreciació. - Medidas directas. - Medidas idirectas. MEDIDAS DE LONGITUD - Cita métrica. - Verier. - Torillo micrométrico. MEDIDAS DE TIEMPO -

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K.

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K. SEMANA 1 RAZONES Y PROPORCIONES 1. Si: a b c d y 7 4 1 6 ab + cd = 500, halle el valor de (a + c) A) 75 B) 80 C) 90 D) 95 E) 100 a b ab K K 7 4 8 d e de K K 1 6 7 Luego: 500 100K K = 5 Luego: a = 5, d

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

3. Las medidas de centralización

3. Las medidas de centralización FUOC XP00/71004/00017 21 Las medidas de cetralizació 3. Las medidas de cetralizació La mediaa y la media aritmética Los diagramas de tallos y hojas y los histogramas proporcioa ua descripció geeral de

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 José Fracisco Valverde Calderó Email: geo2fra@gmail.com Sitio web: www.jfvc.wordpress.com José Fracisco Valverde C Cualquier actividad técica dode se requiera recopilar iformació espacial,

Más detalles

Análisis de resultados. Independencia de las muestras

Análisis de resultados. Independencia de las muestras Aálisis de resultados Clase ro. 8 Curso 00 Idepedecia de las muestras Los resultados de ua corrida de simulació, so muestras de algua distribució. Esos resultados los llamamos "respuestas". Las respuestas

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Estado Gaseoso. Prf. María Peiró

Estado Gaseoso. Prf. María Peiró Estado Gaseoso rf. María eiró Gas, es u estado de la materia formado por éculas que tiede a expadirse porque se mueve a a velocidad debido a su altísima eergía ciética, mateiedo a espacio etre ellas. ropiedades

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Fracciones. Prof. Maria Peiró

Fracciones. Prof. Maria Peiró Fraccioes Prof. Maria Peiró Recordemos Las partes de ua divisió so Dividedo Residuo divisor Cociete Defiició Ua fracció o querado, es ua divisió de la uidad e u determiado úmero de partes, de las cuales

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

Población Joven Adulta Total A favor En contra Total

Población Joven Adulta Total A favor En contra Total Nombre: Libre Reglametado C.I.: EXAMEN El exame costa de dos partes. La Primera Parte debe ser realizada por todos los alumos y el tiempo previsto es de 2 horas. La Seguda Parte debe ser realizada sólo

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

Para resolver una probabilidad con la distribución binomial se aplica la siguiente fórmula

Para resolver una probabilidad con la distribución binomial se aplica la siguiente fórmula CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal

DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal DISOLUCIONES CONTENIDOS 1.- Sistemas materiales. 2.- Disolucioes. Compoetes. Clasificacioes. 3.- Cocetració de ua disolució 3.1. E g/l (repaso). 3.2. % e masa (repaso). 3.3. % e masa/volume. 3.4. Molaridad.

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte I CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte I CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA - Parte I CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 INVERSIÓN La iversió es u acto mediate el cual se produce el cambio de ua satisfacció imediata

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

C. INDICADORES DE EVALUACION DE PROYECTOS

C. INDICADORES DE EVALUACION DE PROYECTOS C. INDICADORES DE EVALUACION DE PROYECTOS 1. Matemáticas Fiacieras 1.1 Iterés simple e iterés compuesto Iterés simple es aquel que se calcula siempre sobre el capital origial, y por tato excluye itereses

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

02) Mediciones. 0202) Mediciones

02) Mediciones. 0202) Mediciones Págia 02) Medicioes 0202) Medicioes Desarrollado por el Profesor Rodrigo Vergara Rojas Págia 2 A) Teoría de Errores e Icertezas Si usted puede medir lo que está cosiderado y expresarlo e úmeros, usted

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

Gesdocal Pies de rey (1 de 9)

Gesdocal Pies de rey (1 de 9) Gesdocal Pies de rey ( de 9) OBJTO l objeto del presete PROCO D CALBRACÓN es defiir la pauta utilizada e el software CALBRO para la calibració de pies de rey, que les permita obteer resultados trazables

Más detalles

Generalidades. Esta publicación presenta información de 98 estaciones meteorológicas activas en el 2013, manejadas por las siguientes entidades:

Generalidades. Esta publicación presenta información de 98 estaciones meteorológicas activas en el 2013, manejadas por las siguientes entidades: Geeralidades I. Defiició de meteorología Es la ciecia iterdiscipliaria que estudia el estado del tiempo, el medio atmosférico, los feómeos allí producidos y las leyes que lo rige. Es el estudio de los

Más detalles

UNIDAD 3.- INFERENCIA ESTADÍSTICA I

UNIDAD 3.- INFERENCIA ESTADÍSTICA I UNIDAD 3.- INFERENCIA ESTADÍSTICA I 1. ESTADÍSTICA INFERENCIAL. MUESTREO La Estadística es la ciecia que se preocupa de la recogida de datos, su orgaizació y aálisis, así como de las prediccioes que, a

Más detalles

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica?

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica? COMPORTAMIENTO DE LAS DISTRIBUCIONES DE FRECUENCIA: Preparadas las TABLAS DE FRECUENCIA de los valores de ua variable resulta iteresate describir su comportamieto. Hacia dóde tiede los datos? Se agrupa

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL.

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. E estadística, la distribució biomial es ua distribució de probabilidad discreta que mide el úmero de éxitos e ua secuecia de esayos

Más detalles

CAPÍTULO 10. EJEMPLOS DE DISEÑO PARA FUNDACIONES PROFUNDAS. agrupar datos de ensayos disponibles por capa de suelo

CAPÍTULO 10. EJEMPLOS DE DISEÑO PARA FUNDACIONES PROFUNDAS. agrupar datos de ensayos disponibles por capa de suelo 171 CAPÍTULO 10. EJEMPLOS DE DISEÑO PARA FUNDACIONES PROFUNDAS Diseño usado LRFD Al igual que el Capítulo 6 para fudacioes superficiales, el presete capítulo explica cómo utilizar los factores de resistecia

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica

Más detalles

Destilación. Columna de destilación

Destilación. Columna de destilación estilació Columa de destilació Plato Reboiler estilació mezclas biarias a separació requiere Ua seguda fase debe ser formada tal que las fases de liquido vapor está presetes pueda estar e cotacto e cada

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN. Ejercicio 1. (Puntuación máxima: 3 puntos) Calcular los valores de a para los cuales la inversa de la matriz

INSTRUCCIONES GENERALES Y VALORACIÓN. Ejercicio 1. (Puntuación máxima: 3 puntos) Calcular los valores de a para los cuales la inversa de la matriz INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El eame preseta dos opcioes: A y B. El alumo deberá elegir ua de ellas y cotestar razoadamete a los cuatro ejercicios de que costa dicha opció. Para

Más detalles

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA º BACHILLERATO. CIENCIAS SOCIALES 1. Ua variable aleatoria tiee ua distribució ormal de media m y desviació típica s. Si se extrae muestras aleatorias de tamaño : a) Qué distribució tiee la variable aleatoria

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

Monto de una anualidad anticipada a interés simple

Monto de una anualidad anticipada a interés simple 1 13. ANUALIDADES ANTICIPADAS Los compromisos de pagos o solamete se efectúa al fial de los periodos, sio tambié a iicio de cada periodo, tal es el caso de los alquileres de terreos, edificios, oficias,

Más detalles

TEMA 6: DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal

TEMA 6: DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal TEMA : DISOLUCIONES Sistema material Sustacias puras Elemeto Compuesto Homogéea Heterogéea coloidal Suspesió 1.- DISOLUCIÓN (CONCEPTO) Es ua mezcla homogéea de dos o mas sustacias químicas tal que el tamaño

Más detalles

Juan Carlos Colonia INTERVALOS DE CONFIANZA

Juan Carlos Colonia INTERVALOS DE CONFIANZA Jua Carlos Coloia INTERVALOS DE CONFIANZA INTERVALOS DE CONFIANZA PARA LOS PARÁMETROS DE UNA POBLACIÓN POBLACIONAL ES CONOCIDA Sea X ua muestra aleatoria de tamaño 1, X,..., X extraída de ua població N,

Más detalles

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN FACTOR COMUN 1. FACTOR COMUN MONOMIO: Factor comú moomio: es el factor que está presete e cada térmio del poliomio: Ejemplo N 1: cuál es el factor

Más detalles

17.3 Intervalos de predicción para el promedio de m observaciones futuras

17.3 Intervalos de predicción para el promedio de m observaciones futuras 4 7.3 Itervalos de predicció para el promedio de m oservacioes futuras Para reducir la icerteza de las prediccioes o alcaza co aumetar idefiidamete el tamaño de la muestra e la que se asa el ajuste. Si

Más detalles

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD MCAL103/03 LIBRO: PARTE: TÍTULO: CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD 1. CONTROL DE CALIDAD 03. Aálisis Estadísticos de Cotrol de Calidad A. CONTENIDO Este Maual cotiee los procedimietos para aalizar,

Más detalles

[e j N 2 e j N 2 ]...} (22)

[e j N 2 e j N 2 ]...} (22) Trasformadores multiseccioales de cuarto de oda. La teoría de reflexioes pequeñas descrita e la secció aterior se puede usar para aalizar trasformadores multiseccioales de u cuarto de oda. Cosidere la

Más detalles

Paso 2: Elegir un estadístico de contraste. Como queremos hacer un contraste de hipótesis para la media, el estadístico de contraste adecuado es:

Paso 2: Elegir un estadístico de contraste. Como queremos hacer un contraste de hipótesis para la media, el estadístico de contraste adecuado es: Hoja 6: Cotraste de hipótesis 1. U laboratorio farmacéutico ha elaborado u fármaco e forma de comprimidos cuyo peso sigue ua distribució Normal co ua desviació típica de 0.12 mg. Se sabe que ua dosis de

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

LABORATORIO BIO 9000 PROCEDIMIENTO PE-I-03 PARA EL CÁLCULO DE LA INCERTIDUMBRE EN MICROBIOLOGÍA

LABORATORIO BIO 9000 PROCEDIMIENTO PE-I-03 PARA EL CÁLCULO DE LA INCERTIDUMBRE EN MICROBIOLOGÍA LABORATORIO BIO 9000 PROCEDIMIENTO PARA EL CÁLCLO DE LA INCERTIDMBRE EN MICROBIOLOGÍA Rev. º: 00 Fecha de aprobació: 19/05/11 REV. FECHA HOJA/S CASA DEL CAMBIO Realizado Revisado Aprobado Fdo.: Daiel Aguilar-Galido

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5 Ezimología Efecto cooperatio 1 EFECTO COOPERATIVO El efecto cooperatio ocurre e ezimas oligoméricas que posee arios sitios para la uió de sustrato y es el feómeo por el cual la uió de u ligado a ua ezima

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

14.1 Comprender los exponentes racionales y los radicales

14.1 Comprender los exponentes racionales y los radicales Nombre Clase Fecha 14.1 Compreder los expoetes racioales y los radicales Preguta esecial: Cómo se relacioa los radicales co los expoetes racioales? Resource Locker Explorar 1 Compreder los expoetes de

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL I.E.S. Virge de la Paz. Alcobedas DEPARTAMETO DE MATEMÁTICAS Itroducció ESTADÍSTICA UIDIMESIOAL El ombre de Estadística alude al eorme iterés de esta rama matemática para los asutos del Estado y su itroducció

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva 1, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

Estudios de disolución. Dra. Inés Fuentes Noriega Facultad de Química, UNAM

Estudios de disolución. Dra. Inés Fuentes Noriega Facultad de Química, UNAM Estudios de disolució Dra. Iés Fuetes Noriega Facultad de Química, UNAM Coteido Iterpretació de los datos e los estudios de disolució Perfil de disolució Disolució itríseca Disolució aparete Protocolo

Más detalles

PROCEDIMIENTO DE CALIBRACIÓN M-002 BALANZA MONOPLATO INDICE 1. OBJETO 2. ALCANCE

PROCEDIMIENTO DE CALIBRACIÓN M-002 BALANZA MONOPLATO INDICE 1. OBJETO 2. ALCANCE INDICE BALANZA MONOPLATO EDICIÓN 0 1. OBJETO 2. ALCANCE 3. GENERAL 4. EQUIPO A UAR EN LA CALIBRACION 5. OPERACIONE PREVIA 6. REALIZACION 7. TOMA DE DATO 8. REULTADO DE LA CALIBRACIÓN 9. CRITERIO DE ACEPTACION

Más detalles

Figura 10. No se satisface el supuesto de linealidad.

Figura 10. No se satisface el supuesto de linealidad. Regresió Lieal Simple Dra. Diaa Kelmasky 04 Figura 8 Figura 9. No se satisface el supuesto de homoscedasticidad Si graficáramos los residuos cotra los valores de X los putos debería estar distribuidos

Más detalles