Población Joven Adulta Total A favor En contra Total

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Población Joven Adulta Total A favor En contra Total"

Transcripción

1 Nombre: Libre Reglametado C.I.: EXAMEN El exame costa de dos partes. La Primera Parte debe ser realizada por todos los alumos y el tiempo previsto es de 2 horas. La Seguda Parte debe ser realizada sólo por los alumos libres. El tiempo adicioal para esta Seguda Parte es de 1 hora. PRIMERA PARTE Ejercicio 1 (25 putos) Recietemete, el gobiero maifestó su iteció de liberalizar la veta y producció de marihuaa. Posteriormete maifestó que debía estudiar el tema e profudidad y que o iba a seguir co el proyecto de liberalizació si más del 60% de la població se opoe a la misma. A tales efectos cotrata ua Cosultora que realiza ua ecuesta (mediate MAS co reposició) e todo el país a u total de 1000 persoas (mayores de 14 años de edad), ecotrado que 590 se opoía a la liberalizació. 1. Defia que etiede por estimador y por estimació. 2. Costruya u itervalo de cofiaza al 99% para la proporció poblacioal de persoas e cotra de la liberalizació. Puede el gobiero cocluir que más del 60% de la població se opoe? 3. Debido a que se sospecha que las opiioes so distitas e fució de otras características de los idividuos, como por ejemplo la edad, se decide cosiderar de forma separada a la població: jóvees (etre 14 y 30 años) y adultos (mayores de 30 años). La iformació sobre la muestra obteida e fució de esta característica se preseta e la siguiete tabla: Població Jove Adulta Total A favor E cotra Total Obtega ua estimació putual para la proporció de la població jove y para la proporció de la població adulta que se maifiesta e cotra de la liberalizació U profesioal de la cosultora afirma que si la estimació putual de la proporció e ambas poblacioes coicide, etoces el itervalo de cofiaza al 99% tambié siempre deberá coicidir. Comete la afirmació realizada, expresado claramete si está de acuerdo o o, fudametado su posició (o es ecesario realizar cálculos).

2 Ejercicio 2 (20 putos) Se ha realizado ua ecuesta a 300 persoas sobre sus preferecias políticas, represetadas por úmeros eteros e el itervalo [0-10], -dode 0 correspode a la extrema izquierda y 10 a la extrema derecha. Los resultados obteidos so los siguietes: Valor No. respuestas a) Calcule la media, la mediaa y la desviació estádar e la muestra b) Justifique y presete la distribució aproximada de la media muestral. c) Someta a prueba la hipótesis ula de que la media poblacioal es igual a 5 cotra la alterativa bilateral al 95% de sigificació. Ejercicio 3 (15 putos) U estudiate ha estudiado solamete 15 de los 25 temas dados e el curso e ua materia. Para el exame se extrae al azar de u bolillero dos temas si repoer, y se le permite al estudiate elegir etre esos dos el tema sobre el que respoder. a) Ecuetre la probabilidad de que el estudiate pueda respoder sobre u tema que ha estudiado. b) Ecuetre la probabilidad de que el estudiate haya estudiado ambos temas extraídos.

3 SEGUNDA PARTE Ejercicio 4 (20 putos) U estudio sobre crimialidad tiee como objetivo aalizar si el úmero de arrestos durate 1986 de u grupo de hombres acidos e Califoria (Estados Uidos) e los años 1960 y 1961 se relacioa co el desempleo previo de estos idividuos. La variable arrestos idica el úmero de arrestos de cada idividuo e el año La variable des_previo es la duració del desempleo de cada idividuo (e meses). El modelo estimado para aalizar esta relació es el siguiete: Source SS df MS Number of obs = F( 1, 2723) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = arrestos Coef. Std. Err. t P> t [95% Cof. Iterval] des_previo _cos a) Aalice la sigificació de los coeficietes de esta regresió al 95%. Cómo se iterpreta el coeficiete de la variable des_previo? b) Explica el modelo adecuadamete la variació e el úmero de arrestos e el año 1986? Calcule R 2 y comete el resultado obteido. c) Señale las limitacioes del modelo propuesto y de qué forma podría modificarse el modelo para superarlas. Ejercicio 5 (20 putos) U idividuo se ecuetra buscado trabajo, y realiza solicitudes de empleo a distitas empresas, de las cuales recibe ofertas de empleo. La llegada de ofertas e u mes determiado sigue u proceso de Poisso co media 1,5. a. Calcule la probabilidad de recibir tres ofertas e este mes. b. Supoga que los salarios sigue ua distribució ormal co media 5000 y desviació estádar de El trabajador ha decidido aceptar las ofertas de trabajo que ofrezca salarios superiores a 9000 pesos. Calcule la probabilidad de que, dado que recibe ua oferta, la acepte.

4 ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES EXAMEN 10/08/12 SOLUCIÓN PRIMERA PARTE Ejercicio 1 (25 putos) 1. U estimador es ua fució de los elemetos de la muestra que se utiliza para estimar u parámetro poblacioal. La estimació, es la realizació umérica del estimador obteida para ua muestra e particular. 2. El itervalo vedrá dado por: = ,59 0,41 0, El itervalo es:,, 0,99. 0,59 2,575 0,0156 ; 0,59 2,575 0,0156 0,5498 ; 0,6302 El gobiero o puede cocluir co el 99% de cofiaza que más del 60% de la població está e cotra de la liberalizació Para la població jove teemos: Para la població adulta teemos: 0.59

5 0.59 La estimació putual de la proporció coicide e ambos casos (jove y adulta) La afirmació es icorrecta. Auque la proporció muestral coicida e ambos casos, y se exija el mismo ivel de sigificació, igual los itervalos puede ser diferetes si el tamaño de la muestra es diferete (como sucede e este caso), dado que cambiara el desvío estádar muestral (mayor muestra, meor desvío y meor amplitud del itervalo). Sólo coicidirá si el tamaño de muestra tambié es igual. Ejercicio 2 (20 putos) a) x i f i x i *f i (x i ) 2 *f i = xi*fi/n = 5.25 S 2 = (xi ) 2 *fi /N = S = Mediaa = 5 b) El teorema cetral del límite establece que la media muestral estadarizada (X E X Var(X ) ( ) (X μx ) = = (X μ )/σ sigue aproximadamete ua distribució Normal(0,1). σ 2 c) E uestro caso o coocemos σ 2, usaremos la estimació muestral s 2. La distribució aproximada del estadístico tambié es N(0,1). X

6 Ho) μ X =5 H 1 ) μ X 5 Regla de decisió: Rech Ho si ( X 5) 3.389/300 > z 0,975 E uestro caso (5.25-5)/ = 2.35 > 1.96 se rechaza Ho. Ejercicio 3 (15 putos) Se extrae si reposició de u cojuto de 25 elemetos de los cuales 15 so éxitos. Variable que mide el úmero de éxitos e 2 pruebas se distribuye Hipergeométrica. a) Que el estudiate pueda respoder sobre u tema que ha estudiado correspode al eveto {X = 2 o X = 1}. P(X=2 U X=1) (uió de evetos disjutos) = P(X=2) + P(X=1) = C 15 2 C 10 0/ C C 15 1 C 10 1/ C 25 2 = 15!/13!*2! 1 / (25!/23!2!) / (25!/23!2!) = = 0.85 b) Que el estudiate haya estudiado ambos temas extraídos correspode al eveto X=2. P (X=2) = C 15 2 C 10 0/ C = 0.35 Otra maera de resolverlo: tomar el espacio muestral {(E1,E2), (E1,F2), (F1,E2), (F1,F2)} formado por los pares de los posibles éxitos y fracasos e la primera y seguda extracció. Dos éxitos correspode a la itersecció de los evetos éxito e la primera (E1) y éxito e la seguda (E2). P(E1)= 15/25. P(E2 E1) = P(E2/E1) P(E1) =14/24 15/25 = U solo éxito correspode al eveto { éxito e la primera (E1) y o e la seguda (F2) o éxito e la seguda (E2) y o e la primera (F1) }, que es ua uió de evetos disjutos. P (U sólo éxito) = P(E1 F2) + P(E2 F1) = P(F2/E1) P(E1) + P(E2/F1) P(F1) = 10/24 15/ /24 10/25 = 0.5

7 SEGUNDA PARTE Ejercicio 4 (20 putos) a) La sigificació estadística se defie e relació a la prueba de hipótesis Ho): β 0 =0 y Ho): β 1 =0 para la costate y el coeficiete de la variable des_previo. E este caso el estadístico de la prueba se distribuye t co ifiitos grados de libertad. El valor que defie la regió crítica es t 0,975 que es igual a 1,96. E ambos casos se obtiee valores mayores y se rechaza por tato Ho. Tambié puede observarse que el p-valor es e ambos casos. E ambos casos el itervalo de cofiaza al 95% o cotiee el cero. El coeficiete de la variable des_previo se iterpreta como el impacto del icremeto e ua uidad de la duració del desempleo (u mes) e el valor esperado del úmero de arrestos. Puede observarse que u año etero de desempleo (12 meses) impactará e *12=0.18 arrestos adicioales, por lo que si bie la variable es sigificativa desde u puto de vista estadístico su efecto es pequeño desde el puto de vista de la explicació de la variable depediete. El úmero de arrestos e u año o puede ser más que u úmero pequeño, por tato es posible pesar que el impacto es sigificativo. b) R 2 = VE/ VT = 1 VR/VT= / = El modelo explica meos del 1% de la variació e los datos. c) El modelo cosidera que la úica variable que afecta el úmero de arrestos es el desempleo previo. Existe u cojuto de otros factores o características idividuales y del etoro que afecta la probabilidad de ser arrestado y el úmero de arrestos, así como probablemete tambié el desempleo. Icluir otras variables explicativas permitirá ua mejor explicació del feómeo de los arrestos y ua más precisa medició del propio impacto del desempleo. Ejercicio 5 (20 putos) a. P X (x) = e -λ λ x /x!, λ = 1,5 P X (3) = e ,5 3 /3! = 0,125 b. W N(5000, ) Z = ([W 5000]/1500) N(0, 1) P(W > 9000) = P (Z > [ ]/1500) = P (Z > 2,67) = 0,004

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

Test de Hipótesis. Material Preparado por Hugo Delfino

Test de Hipótesis. Material Preparado por Hugo Delfino Test de Hipótesis Material Preparado por Hugo Delfio 8-3 Qué es ua Hipótesis? Hipótesis: Es u suposició acerca del valor de u parámetro de ua població co el propósito de discutir su validez. Ejemplo de

Más detalles

Formulas. Población infinita. Población finita

Formulas. Población infinita. Población finita Formulas X~N(μ, σ 2 ) x = x i x ~N si X~N o si > 30 Població ifiita Població fiita x ~N(μ, σ2 ) N x ~N(μ, N 1 σ2 ) Ejercicio Se sabe que la media poblacioal e u exame de Estadística es de 70 y que la variaza

Más detalles

CAPÍTULO 8: INTERVALOS DE CONFIANZA PARA PROPORCIONES Y MEDIAS

CAPÍTULO 8: INTERVALOS DE CONFIANZA PARA PROPORCIONES Y MEDIAS Págia 1 de 11 CAPÍTULO 8: INTERVALOS DE CONFIANZA PARA PROPORCIONES Y MEDIAS Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

UNIDAD 4.- INFERENCIA ESTADÍSTICA II

UNIDAD 4.- INFERENCIA ESTADÍSTICA II UNIDAD 4.- INFERENCIA ESTADÍSTICA II. ESTIMACIÓN POR INTERVALOS DE CONFIANZA Cosideraremos ua variable aleatoria X co ua media µ descoocida y ua desviació típica coocida (parámetros poblacioales). Lo que

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

Paso 2: Elegir un estadístico de contraste. Como queremos hacer un contraste de hipótesis para la media, el estadístico de contraste adecuado es:

Paso 2: Elegir un estadístico de contraste. Como queremos hacer un contraste de hipótesis para la media, el estadístico de contraste adecuado es: Hoja 6: Cotraste de hipótesis 1. U laboratorio farmacéutico ha elaborado u fármaco e forma de comprimidos cuyo peso sigue ua distribució Normal co ua desviació típica de 0.12 mg. Se sabe que ua dosis de

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

UNIDAD 3.- INFERENCIA ESTADÍSTICA I

UNIDAD 3.- INFERENCIA ESTADÍSTICA I UNIDAD 3.- INFERENCIA ESTADÍSTICA I 1. ESTADÍSTICA INFERENCIAL. MUESTREO La Estadística es la ciecia que se preocupa de la recogida de datos, su orgaizació y aálisis, así como de las prediccioes que, a

Más detalles

TEST DE HIPÓTESIS. a la hipótesis que se formula y que se quiere contrastar o rechazar. Llamamos hipótesis alternativa, H

TEST DE HIPÓTESIS. a la hipótesis que se formula y que se quiere contrastar o rechazar. Llamamos hipótesis alternativa, H TEST DE IPÓTESIS INTRODUCCIÓN E el tema aterior vimos cómo, a partir de los datos de ua muestra, podíamos estimar u parámetro de la població (media o proporció) mediate u itervalo E este tema platearemos

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS Estadística: Cotraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Cotraste de hipótesis sobre la media poblacioal Se parte de ua població supuestamete ormal de media y desviació típica N(, ); se tipifica

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

Ejercicio 1: Un embalaje contiene 9 cajas de CDs. Las 9 cajas tienen la siguiente composición:

Ejercicio 1: Un embalaje contiene 9 cajas de CDs. Las 9 cajas tienen la siguiente composición: Parcial de Probabilidad y Estadística : parte A Ejercicio 1: U embalaje cotiee 9 cajas de CDs. Las 9 cajas tiee la siguiete composició: 6 cajas cotiee 5 discos de música rock y 15 discos de música clásica

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA RECUPERATIVA N 2 Profesor: Hugo S. Salias. Segudo Semestre 2009 DESARROLLO

Más detalles

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE)

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE) TUTORÍA DE ETADÍTICA EMPREARIAL (º A.D.E.) e-mail: imozas@elx.ued.es https://www.iova.ued.es/webpages/ilde/web/idex.htm PROBLEMA DE LO TEMA 5, 6 Y 7 PROPUETO EN EXÁMENE DE ETADÍTICA EMPREARIAL (ANTIGUA

Más detalles

Objetivo. 1. Intervalos y test (una sola muestra) Práctica 7: Intervalos de conanza y contrastes de hipótesis I. M. Iniesta Universidad de Murcia

Objetivo. 1. Intervalos y test (una sola muestra) Práctica 7: Intervalos de conanza y contrastes de hipótesis I. M. Iniesta Universidad de Murcia Práctica 7: Itervalos de coaza y cotrastes de hipótesis I Objetivo E esta práctica y e la siguiete apredemos a aplicar e iterpretar las técicas de itervalos de coaza y test de hipótesis, seleccioado la

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA º BACHILLERATO. CIENCIAS SOCIALES 1. Ua variable aleatoria tiee ua distribució ormal de media m y desviació típica s. Si se extrae muestras aleatorias de tamaño : a) Qué distribució tiee la variable aleatoria

Más detalles

Intervalos de confianza Muestras grandes

Intervalos de confianza Muestras grandes Itervalos de cofiaza Muestras grades Por qué u itervalo de cofiaza? E la Uidad 3 revisamos los coceptos de població y muestra. Los parámetros poblacioales so la media μ y la variaza σ. So costates y geeralmete

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 2.001-2.002 - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica?

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica? COMPORTAMIENTO DE LAS DISTRIBUCIONES DE FRECUENCIA: Preparadas las TABLAS DE FRECUENCIA de los valores de ua variable resulta iteresate describir su comportamieto. Hacia dóde tiede los datos? Se agrupa

Más detalles

Análisis de resultados. Independencia de las muestras

Análisis de resultados. Independencia de las muestras Aálisis de resultados Clase ro. 8 Curso 00 Idepedecia de las muestras Los resultados de ua corrida de simulació, so muestras de algua distribució. Esos resultados los llamamos "respuestas". Las respuestas

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 8-9 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco Capítulo 4 (Cotiuació MÉTODOS ESTADÍSTICOS Autor: José María García Palaco Técicas Eperimetales Medida de magitudes 4.8 Métodos Estadísticos Ya hemos visto e los apartados ateriores, que u procedimieto

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

LECTURA 07: PRUEBA DE HIPOTESIS PARA LA PROPORCIÓN POBLACIONAL. PRUEBA DE HIPOTÉSIS PARA LA DIFERENCIA ENTRE DOS PROPORCIONES POBLACIONALES.

LECTURA 07: PRUEBA DE HIPOTESIS PARA LA PROPORCIÓN POBLACIONAL. PRUEBA DE HIPOTÉSIS PARA LA DIFERENCIA ENTRE DOS PROPORCIONES POBLACIONALES. Uiversidad Los Ágeles de Chimbote LECTURA 7: PRUEBA DE HIPOTESIS PARA LA PROPORCIÓN POBLACIONAL PRUEBA DE HIPOTÉSIS PARA LA DIFERENCIA ENTRE DOS PROPORCIONES POBLACIONALES TEMA 16: PRUEBA DE HIPOTESIS

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferecia proporcioes E alguos diseños ivestigació, el pla muestral requiere seleccioar dos muestras ipedietes, calcular las proporcioes muestrales y usar

Más detalles

MATEMÁTICAS 2º BACH. CC. SS. 4 de abril de 2006 Probabilidades

MATEMÁTICAS 2º BACH. CC. SS. 4 de abril de 2006 Probabilidades MATEMÁTIAS º BAH.. SS. 4 de abril de 006 Probabilidades 1) Sea A y B dos sucesos idepedietes tales que B) = 0.05 y A/ B) = 0.35. a) uál es la probabilidad de que suceda al meos uo de ellos? ( putos) b)

Más detalles

Estimación de parámetros. Biometría

Estimación de parámetros. Biometría Estimació de parámetros Biometría Estimació Las poblacioes so descriptas mediate sus parámetros Para variables cuatitativas, las poblacioes so descriptas mediate y Para variables cualitativas, las poblacioes

Más detalles

SEMANA 01. CLASE 01. MARTES 04/10/16

SEMANA 01. CLASE 01. MARTES 04/10/16 EMANA 0. CLAE 0. MARTE 04/0/6. Experimeto aleatorio.. Defiició. Experimeto e el cual o se puede predecir el resultado ates de realizarlo. Para que u experimeto sea aleatorio debe teer al meos dos resultados

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

Métodos de Análisis Cuantitativo

Métodos de Análisis Cuantitativo Métodos de Aálisis Cuatitativo Fórmulas E este documeto se lista las fórmulas trabajadas e las clases del curso de Métodos de Ivestigació Cuatitativa (GES204) de la Facultad de Gestió y Alta Direcció de

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

Solución: de una distribución con media µ y varianza conocida. = X. Aquí 100. Así σ = a) Se pide determinar "n", de modo que:

Solución: de una distribución con media µ y varianza conocida. = X. Aquí 100. Así σ = a) Se pide determinar n, de modo que: Ejercicios Itervalos de Cofiaza. Se toma ua muestra aleatoria de observacioes y se costruye u itervalo de cofiaza del 95% para la media poblacioal, co variaza coocida. El itervalo de cofiaza resultó co

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 José Fracisco Valverde Calderó Email: geo2fra@gmail.com Sitio web: www.jfvc.wordpress.com José Fracisco Valverde C Cualquier actividad técica dode se requiera recopilar iformació espacial,

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

MATERIAL DE LA 3era VISITA

MATERIAL DE LA 3era VISITA Material de clase 2 Domigo 27 Juio TEMAS: MATERIAL DE LA 3era VISITA 1. DISTRIBUCION DE LAS PROPORCIONES MUESTRALES 2. INTERVALOS DE CONFIANZA Desarrollo Tema 1: La Distribució de las Proporcioes Muéstrales

Más detalles

Mirando las gráficas, justifica estas afirmaciones: Cuantos más dados intervienen, más se parece la distribución de sus promedios a la curva normal.

Mirando las gráficas, justifica estas afirmaciones: Cuantos más dados intervienen, más se parece la distribución de sus promedios a la curva normal. Uidad 1. Iferecia estadística. Estimació de la media Matemáticas aplicadas a las Ciecias Sociales II Resuelve Págia 85 Lazamieto de varios dados Comprueba e la tabla aterior ue: DESV. TÍPICA DESV. TÍPICA

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

Prueba A. b) Obtener un intervalo de confianza de la proporción de partos de madres de más de 30 años al 90% de confianza

Prueba A. b) Obtener un intervalo de confianza de la proporción de partos de madres de más de 30 años al 90% de confianza PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO.6-.7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció ( p ). Para

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

TRABAJO PRACTICO Nº 1

TRABAJO PRACTICO Nº 1 TRABAJO PRACTICO Nº 1 DEMANDA DE TRANSPORTE: ELASTICIDAD OFERTA DE TRANSPORTE: COSTOS AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Objetivo: Aplicar a u caso práctico utilizado las herramietas básicas de

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

- estimación de parámetros, - intervalos de confianza y

- estimación de parámetros, - intervalos de confianza y Iferecia estadística: es el proceso de sacar coclusioes de la població basados e la iformació de ua muestra de esa població. Objetivos de la iferecia: - estimació de parámetros, - itervalos de cofiaza

Más detalles

Pasos básicos para docimar una hipótesis:

Pasos básicos para docimar una hipótesis: Pasos básicos para docimar ua hipótesis:. Defiir cual es la població y el o los parámetro de iterés.. Establecer la hipótesis (ula y alterativa). 3. Establecer el ivel de sigificació α. 4. Recoger los

Más detalles

ESTIMACIONES DE MEDIAS

ESTIMACIONES DE MEDIAS COLEGIO SAN BARTOLOMÉ LA MERCED ESTADÍSTICA GRADO ESTIMACIÓN 0-0 Símbolos que se debe teer e cueta: POBLACIÓN MUESTRA MEDIA VARIANZA DESVIACIÓN ESTÁNDAR TAMAÑO N La estimació cosiste e determiar el valor

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN. Ejercicio 1. (Puntuación máxima: 3 puntos) Calcular los valores de a para los cuales la inversa de la matriz

INSTRUCCIONES GENERALES Y VALORACIÓN. Ejercicio 1. (Puntuación máxima: 3 puntos) Calcular los valores de a para los cuales la inversa de la matriz INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El eame preseta dos opcioes: A y B. El alumo deberá elegir ua de ellas y cotestar razoadamete a los cuatro ejercicios de que costa dicha opció. Para

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Septiembre de 013 (Modelo Reserva ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SEPTIEMBRE 013 MODELO RESERVA OPIÓN A EJERIIO 1 (A) 8 3 3-5 3 5 Sea las matrices

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

MATEMÁTICAS. TEMA Inferencia Estadística.

MATEMÁTICAS. TEMA Inferencia Estadística. MATEMÁTICAS TEMA 11-12 Iferecia Estadística. . ÍNDICE 1. Itroducció. 2. Tabla Normal (0,1). 3. Itervalos de cofiaza. 3.1. Itervalo de cofiaza para la media 3.2. Itervalo de cofiaza para la proporció 4.

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles