IntroducciónalaInferencia Estadística

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "IntroducciónalaInferencia Estadística"

Transcripción

1 Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla e su totalidad) a través del aálisis de ua parte de ella a la que llamamos muestra. Las razoes por las que geeralmete se trabaja co muestras so pricipalmete: - Ecoómicas. - Tiempo: si la població es muy grade llevaría tato tiempo aalizarla que icluso la característica de iterés podría variar e ese período. Por ejemplo, la tasa de paro. - Destrucció: la medició de cierta característica podría llevar a la destrucció del idividuo. Por ejemplo, al estudiar la supervivecia de ciertos aimales a u tratamieto. Lo que se hace etoces es aalizar la muestra y extrapolar coclusioes desde la muestra a la població. Ahora bie, para cosiderar válidas e la població las coclusioes obteidas e la muestra, ésta ha de represetar bie a la població (represetativa). Por lo tato, la selecció de la muestra es de suma importacia, y para ello hay diversos métodos (métodos de muestreo). Cuado se ituye que la característica e estudio puede presetar valores homogéeos 99

2 100 Capítulo 6. Itroducció a la Iferecia Estadística e la població, ua forma de obteer ua muestra represetativa es eligiédola al azar. A este método de selecció de la muestra se le llama muestreo aleatorio simple y es el más secillo. La Iferecia Estadística se puede clasificar e iferecia paramétrica e iferecia o paramétrica. La iferecia paramétrica tiee lugar cuado se cooce la distribució de la variable de estudio e la població, y el iterés recae sobre los parámetros descoocidos de la misma. La iferecia o paramétrica tiee lugar si o se cooce la distribució y sólo se supoe propiedades geerales de la misma. Nosotros os cetramos e la iferecia paramétrica, y uestro objetivo será iferir o estimar parámetros poblacioales a partir de la iformació que os proporcioa ua muestra. Supogamos que estudiamos ua variable X e ua població y sabemos que preseta ua distribució F θ, dode θ es el parámetro de la distribució y es descoocido. Los problemas de iferecia que puede darse so: de estimació, e los que se busca u valor (estimació putual) para θ o u cojuto de valores posibles para el mismo (estimació por itervalos de cofiaza), y de cotraste, cuyo objetivo es comprobar si es cierta o falsa cierta hipótesis formulada sobre el parámetro θ. E el Tema 7 se estudia la estimació putual y por itervalos de cofiaza, y e Tema 8 estudiaremos problemas de cotraste de hipótesis. Ejemplo: Supogamos que queremos estudiar el tiempo de fallo de ua població de cierto tipo de compoetes. Ituimos (por estudios ateriores por ejemplo) que el tiempo de fallo X sigue ua distribució Expoecial, X Exp(λ), co λ descoocido, ya que o observamos el tiempo de fallo de todos los compoetes de la població. Tedremos que estimar su valor e base a la iformació que proporcioa ua muestra. Dado que E(X) =1/λ, y parece lógico estimar la media poblacioal co la media muestral x, teemos que λ ˆ =1/ x Muestra aleatoria simple. Estadísticos muestrales Sea X la variable aleatoria de iterés e la població, co fució de probabilidad o desidad f(x; θ), dode θ deota el parámetro o parámetros descoocidos. Ua muestra aleatoria simple (m.a.s.) de tamaño es u cojuto de variables X 1,..., X tales que: - X 1,..., X so idepedietes - X 1,..., X so idéticamete distribuidas, co la misma distribució que la variable poblacioal X.

3 6.3. Distribucioes de muestreo 101 Nota: ua vez observada la variable sobre los idividuos de la muestra, tedremos valores u observacioes x 1,..., x. U estadístico es ua fució de las variables aleatorias de la muestra, e la cual o aparece parámetros descoocidos. U estadístico es por lo tato ua variable aleatoria, y lo deotamos por T (X 1,..., X ). El valor que toma el estadístico ua vez observada la muestra es T (x 1,..., x ). Al ser los estadísticos variable aleatorias, presetará distribucioes de probabilidad, a las que llamamos distribucioes de muestreo. Si u estadístico lo usamos para estimar u parámetro descoocido de la població (por ejemplo la media µ, variazaσ 2, etc.) lo llamaremos estimador de ese parámetro. Al valor que toma ua vez observada la muestra se le llama estimació putual del parámetro. Para cada parámetro habrá que ecotrar "el mejor estimador", para cometer e la estimació el meor error posible. El error de estimació depede fudametalmete de la variabilidad poblacioal y del tamaño de la muestra. Ejemplos de estadísticos so los siguietes: - Media muestral: - Variaza muestral: X = X X S 2 = X (X i X) 2 i= Distribucioes de muestreo Media muestral Sea X 1,..., X ua m.a.s. de ua població X co E(X) =µ y Var(X) =σ 2.Elestadístico media muestral hemosvistoquesedefie como Se puede comprobar que: X = X X E( X)=µ y Var( X)= σ2 El Teorema Cetral del Límite segú vimos establece que: µ µ, X = X X N ( ), σ Delia Motoro Cazorla. Dpto. de Estadística e I.O. Uiversidad de Jaé.

4 102 Capítulo 6. Itroducció a la Iferecia Estadística Sea X 1,..., X ua m.a.s. de ua població X co distribució N(µ, σ). Etoces, X = X µ X σ N µ,, al ser combiació lieal de variables ormales e idepedietes Variaza muestral Sea X 1,..., X ua m.a.s. de ua població X co E(X) =µ y Var(X) =σ 2.Elestadístico variaza muestral se defie como X (X i µ) 2 S 2 = i=1 1 Sea X 1,..., X ua m.a.s. de ua població X co distribució N(µ, σ). Etoces: ( 1)S 2 σ 2 χ 2 1 y X y S 2 so idepedietes Diferecia de medias muestrales Sea X 1,...,X 1 ua m.a.s de ua població X, e Y 1,..., Y 2 ua m.a.s. de ua població Y. Supoemos que las poblacioes X e Y so idepedietes y co distribucioes ormales N(µ 1,σ 2 1) y N(µ 2,σ 2 2) respectivamete. Se puede presetar los siguietes casos: (a) σ 2 1,σ 2 2 coocidas: oequivaletemete X Y N Z = µ 1 µ 2, s σ σ2 2, 1 2 X Y (µ 1 µ 2 ) q N(0, 1) σ σ2 2 2 (b) σ 2 1 = σ 2 2 = σ 2 descoocidas: T = X Y (µ 1 µ 2 ) q t 1+ 22, 1 S p

5 6.3. Distribucioes de muestreo 103 siedo S p = s ( 1 1)S 2 1 +( 2 1)S y S 2 1 y S 2 2 las variazas muestrales de X e Y respectivamete Cociete de variazas muestrales Sea X 1,...,X 1 ua m.a.s de ua població X, e Y 1,..., Y 2 ua m.a.s. de ua població Y. Supoemos que las poblacioes X e Y so idepedietes y co distribucioes ormales N(µ 1,σ 2 1) y N(µ 2,σ 2 2) respectivamete. Etoces, F = S 2 1 σ 2 1 S 2 2 σ 2 2 F 11, 21 Estudiamos además la distribució de ua proporció muestral y de la diferecia de dos proporcioes muestrales Proporció muestral Sea X 1,...,X ua m.a.s. de ua població X. Sea p la proporció de idividuos e la població que preseta ua determiada característica, y ˆp la proporció muestral. Etoces, r ˆ p(1 p) p N(p, ) Nota: El úmero de idividuos que preseta la característica e la muestra sigue ua distribució B(, p), que co suficietemete grade se puede aproximar a ua N(p, p p(1 p)). Por lo tato, la proporció muestral sigue tambié ua distribució Normal co los parámetros arriba idicados Diferecia de proporcioes muestrales Sea X 1,...,X 1 ua m.a.s de ua població X, e Y 1,..., Y 2 ua m.a.s. de ua població Y. Supoemos que las poblacioes X e Y so idepedietes. Deotamos por p 1 y p 2 las proporcioes poblacioales y por p ˆ 1 y p ˆ 2 las correspodietes proporcioes muestrales. Delia Motoro Cazorla. Dpto. de Estadística e I.O. Uiversidad de Jaé.

6 104 Capítulo 6. Itroducció a la Iferecia Estadística Etoces: Por lo tato: ˆ p 1 p ˆ 2 N Z = p 1 p 2, ˆ p 1 ˆ + p 2(1 p 2 ) 1 s p 1 (1 p 1 ) p 2 (p 1 p 2 ) r p1 (1 p 1 ) + p 2(1 p 2 ) N(0, 1) 6.4. Ejercicios 1. Ua cemetera elabora u tipo de cemeto que tiee u coteido medio de aditivo B542 de 100mg/kg co ua desviació típica de 10 mg/kg. Supoemos que la distribució es Normal. Calcula la probabilidad de que al tomar ua muestra de 20kg de la producció diaria el coteido de aditivo sea, e media, meor de 95 mg/kg. 2. E ua idustria se fabrica uos cables cuya resistecia sigue ua distribució Normal de media 200 ohmios y desviació típica de 15 ohmios. Se toma ua muestra de 15 cables. a) Qué probabilidad hay de que la media muestral sea meor que 195 ohmios?. b) Qué tamaño de la muestra se debe tomar para garatizar ua duració media de la muestra superior a 195 ohmios co ua probabilidad mayor o igual que el 95 %. 3. Se toma ua muestra de 25 observacioes de ua població Normal que tiee ua variaza σ 2 =10. Cuál es la probabilidad de que la variaza muestral sea mayor que 16?. 4. La vida eficaz de u compoete sigue ua distribució Normal de media 5000 horas y desviació típica de 40 horas. Nos propoe u uevo compoete y os garatiza ua vida media de 5050 horas y desviació típica de 30 horas. Decidimos hacer ua prueba y tomamos 25 compoetes de cada grupo. Decidimos cambiar de proveedor si la diferecia de duració es, e media, al meos de 25 horas. Si el uevo proveedor está e lo cierto, qué probabilidad tiee de que le compremos sus compoetes?. 5. Si S1 2 y S2 2 so las variazas muestrales de m.a.s. idepedietes de tamaños 1 =10y 2 =20tomadas de poblacioes ormales que tiee las mismas variazas, calcular la probabilidad de que el cociete de variazas muestrales S1 2 / S2 2 sea meor que 2.42.

7 6.4. Ejercicios El resultado de ua ecuesta de opiioes fue que el 59 % de la població española piesa que la situació ecoómica es buea o muy buea. Supogamos, extrapolado los resultados del sodeo a la població etera que la proporció de todos los españoles co esta opiió es efectivamete a) Muchos de los sodeos tiee u marge de error de orde ±3 putos. Cuál es la probabilidad de que ua muestra aleatoria de 300 españoles presete ua proporció muestral que o se aleje e más de 0.03 de la proporció autética p =0,59?. b) Cotesta a la preguta aterior para ua muestra de 600 idividuos y otra de Cuál es el efecto de aumetar el tamaño muestral?. 7. E codicioes ormales, ua máquia produce piezas co ua tasa de defectuosas del 1 %. Para comprobar que la máquia sigue bie ajustada, se escoge al azar cada día 100 piezas e la producció y se les somete a u test. Cuál es la probabilidad de que, si la máquia está bie ajustada, haya e ua de esas muestras más del 2 % de piezas defectuosas?. Delia Motoro Cazorla. Dpto. de Estadística e I.O. Uiversidad de Jaé.

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales Ídice 5 Itroducció a la Iferecia Estadística Muestreo e poblacioes ormales 51 51 Itroducció 51 52 Estadísticos y mometos muestrales 53 521 Media muestral Propiedades 54 522 Variaza muestral Propiedades

Más detalles

UNIDAD 3.- INFERENCIA ESTADÍSTICA I

UNIDAD 3.- INFERENCIA ESTADÍSTICA I UNIDAD 3.- INFERENCIA ESTADÍSTICA I 1. ESTADÍSTICA INFERENCIAL. MUESTREO La Estadística es la ciecia que se preocupa de la recogida de datos, su orgaizació y aálisis, así como de las prediccioes que, a

Más detalles

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual ETIMACIÓN TEMA 5: Estimació putual I. Propiedades de los estimadores TEMA 6: Estimació putual II. Métodos de estimació putual TEMA 7: Estimació por itervalos CONTRATE DE HIPÓTEI TEMA 8: Cotrastes paramétricos

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS UNIVERSIDAD DE LOS ANDES NUCLEO UNIVERSITARIO RAFAEL RANGEL DEPTO DE CIENCIAS ECONOMOMICAS Y ADMIMISTRATIVAS AREA DE ESTADÍSTICA ESTADÍSTICA BASICA CONTADURÍA PÚBLICA Tema 8. Sesioes 5 y 6 Guía de clase

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

En esta tema sentaremos las bases del muestreo estadístico y estudiaremos las distribuciones de algunos estadísticos a partir de una muestra.

En esta tema sentaremos las bases del muestreo estadístico y estudiaremos las distribuciones de algunos estadísticos a partir de una muestra. Capítulo 6 Muestreo Estadístico E esta tema setaremos las bases del muestreo estadístico y estudiaremos las distribucioes de alguos estadísticos a partir de ua muestra. 6.1. Coceptos básicos Auque e el

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

- estimación de parámetros, - intervalos de confianza y

- estimación de parámetros, - intervalos de confianza y Iferecia estadística: es el proceso de sacar coclusioes de la població basados e la iformació de ua muestra de esa població. Objetivos de la iferecia: - estimació de parámetros, - itervalos de cofiaza

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

UT-4: Distribuciones fundamentales de muestreo y descripción de datos

UT-4: Distribuciones fundamentales de muestreo y descripción de datos UT-4: Distribucioes fudametales de muestreo y descripció de datos Sub tema: Muestreo aleatorio. Distribucioes muestrales. Distribucioes muestrales de medias. Teorema del límite cetral. Aplicacioes. DF

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

CAPÍTULO 7 DISTRIBUCIONES EN EL MUESTREO Introducción

CAPÍTULO 7 DISTRIBUCIONES EN EL MUESTREO Introducción CAPÍTULO 7 DISTRIBUCIONES EN EL MUESTREO 7.. Itroducció Geeralmete, las poblacioes tiee tamaños que hace que estudiarla e su totalidad sea poco práctico desde diversos putos de vista; costo, tiempo, tipo

Más detalles

Introducción al Análisis de la Varianza

Introducción al Análisis de la Varianza Itroducció al Aálisis de la Variaza F. Javier Cara Uiversidad Politécica de Madrid Curso 013/14 Distribucioes import. e Aalisis de la Variaza Sea X 1, X,...,X, Y 1, Y,...,Y m, variables aleatorias idepedietes

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

Tema 9. Introducción a la Inferencia Estadística. Presentación y Objetivos. Esquema Inicial. Probabilidades y Estadística I

Tema 9. Introducción a la Inferencia Estadística. Presentación y Objetivos. Esquema Inicial. Probabilidades y Estadística I Tema 9. Itroducció a la Iferecia Estadística Presetació y Objetivos. La iferecia utiliza el leguaje de la probabilidad para sacar coclusioes de los datos y acompañar esas coclusioes por ua declaració formal

Más detalles

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Dra. Diaa M. Kelmasky 109 13. INTERVALOS DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL Supogamos que X1,...,X es ua muestra aleatoria de ua població ormal co media μ y variaza. Sabemos que la media

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

CAPÍTULO 8: INTERVALOS DE CONFIANZA PARA PROPORCIONES Y MEDIAS

CAPÍTULO 8: INTERVALOS DE CONFIANZA PARA PROPORCIONES Y MEDIAS Págia 1 de 11 CAPÍTULO 8: INTERVALOS DE CONFIANZA PARA PROPORCIONES Y MEDIAS Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

Estimación de Parámetros. Estimación de Parámetros

Estimación de Parámetros. Estimación de Parámetros Uiversidad Técica Federico Sata María Capítulo 7 Estimació de Parámetros Estadística Computacioal II Semestre 007 Prof. Carlos Valle Págia : www.if.utfsm.cl/~cvalle e-mail : cvalle@if.utfsm.cl C.Valle

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

Formulas. Población infinita. Población finita

Formulas. Población infinita. Población finita Formulas X~N(μ, σ 2 ) x = x i x ~N si X~N o si > 30 Població ifiita Població fiita x ~N(μ, σ2 ) N x ~N(μ, N 1 σ2 ) Ejercicio Se sabe que la media poblacioal e u exame de Estadística es de 70 y que la variaza

Más detalles

Inferencia estadística: estimación de parámetros.

Inferencia estadística: estimación de parámetros. Capítulo 7 Iferecia estadística: estimació de parámetros. 7.1. Itroducció E este tema estudiaremos como aproximar distitos parámetros poblacioales a partir de ua m.a.s. formada por observacioes idepedietes

Más detalles

TEMA 6 MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO

TEMA 6 MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO .- Itroducció: TEMA MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO Los aálisis estadísticos que se realiza e el mudo real tiee como objetivo estudiar las propiedades características de las poblacioes

Más detalles

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 008 (Modelo 6) Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 008 (MODELO 6) OPIÓN A EJERIIO 1_A (3 putos) Ua empresa produce botellas de leche etera

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA . Metodología e Salud Pública INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA Autor: Clara Lagua 5.1 INTRODUCCIÓN La estadística iferecial aporta las técicas ecesarias para extraer

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS Estadística: Cotraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Cotraste de hipótesis sobre la media poblacioal Se parte de ua població supuestamete ormal de media y desviació típica N(, ); se tipifica

Más detalles

PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE

PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE Objetivos Comprobar que la suma de variables aleatorias idepedietes y co la misma distribució es aproximadamete ormal. Estudiar la robustez de la aproximació frete

Más detalles

Intervalos de Confianza

Intervalos de Confianza Itervalos de Cofiaza 1.- Se quiere estudiar la vida útil de uas uevas pilas que se va a lazar al mercado. Para ello se examia la duració de 40 de ellas, resultado ua media de 63 horas. Supoiedo que el

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

Estimación de parámetros. Biometría

Estimación de parámetros. Biometría Estimació de parámetros Biometría Estimació Las poblacioes so descriptas mediate sus parámetros Para variables cuatitativas, las poblacioes so descriptas mediate y Para variables cualitativas, las poblacioes

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA º BACHILLERATO. CIENCIAS SOCIALES 1. Ua variable aleatoria tiee ua distribució ormal de media m y desviació típica s. Si se extrae muestras aleatorias de tamaño : a) Qué distribució tiee la variable aleatoria

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA RECUPERATIVA N 2 Profesor: Hugo S. Salias. Segudo Semestre 2009 DESARROLLO

Más detalles

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco Capítulo 4 (Cotiuació MÉTODOS ESTADÍSTICOS Autor: José María García Palaco Técicas Eperimetales Medida de magitudes 4.8 Métodos Estadísticos Ya hemos visto e los apartados ateriores, que u procedimieto

Más detalles

Inferencia Estadística

Inferencia Estadística Iferecia Etadítica 1 I Delia Motoro Cazorla. Dpto. de Etadítica e I.O. Uiveridad de Jaé. Capítulo 6. Itroducció a la Iferecia Etadítica 6.1 Itroducció El pricipal objetivo de la Etadítica e iferir o etimar

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

Objetivo. 1. Intervalos y test (una sola muestra) Práctica 7: Intervalos de conanza y contrastes de hipótesis I. M. Iniesta Universidad de Murcia

Objetivo. 1. Intervalos y test (una sola muestra) Práctica 7: Intervalos de conanza y contrastes de hipótesis I. M. Iniesta Universidad de Murcia Práctica 7: Itervalos de coaza y cotrastes de hipótesis I Objetivo E esta práctica y e la siguiete apredemos a aplicar e iterpretar las técicas de itervalos de coaza y test de hipótesis, seleccioado la

Más detalles

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA Métodos estadísticos y uméricos Estimació por Itervalos de cofiaa PROBLEMA REUELTO DE ETIMACIÓN POR INTERVALO DE CONFIANZA U adador obtiee los siguietes tiempos, e miutos, e 0 pruebas croometradas por

Más detalles

MODELOS DE PROBABILIDAD Y MUESTREO ALEATORIO Julián de la Horra Departamento de Matemáticas U.A.M.

MODELOS DE PROBABILIDAD Y MUESTREO ALEATORIO Julián de la Horra Departamento de Matemáticas U.A.M. MODELOS DE PROBABILIDAD Y MUESTREO ALEATORIO Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció La Estadística Descriptiva os ofrece ua serie de herramietas muy útiles para resumir gráfica

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

Pasos básicos para docimar una hipótesis:

Pasos básicos para docimar una hipótesis: Pasos básicos para docimar ua hipótesis:. Defiir cual es la població y el o los parámetro de iterés.. Establecer la hipótesis (ula y alterativa). 3. Establecer el ivel de sigificació α. 4. Recoger los

Más detalles

Población Joven Adulta Total A favor En contra Total

Población Joven Adulta Total A favor En contra Total Nombre: Libre Reglametado C.I.: EXAMEN El exame costa de dos partes. La Primera Parte debe ser realizada por todos los alumos y el tiempo previsto es de 2 horas. La Seguda Parte debe ser realizada sólo

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció

Más detalles

Práctica 2 VARIABLES ALEATORIAS CONTINUAS

Práctica 2 VARIABLES ALEATORIAS CONTINUAS Práctica. Objetivos: a) Apreder a calcular probabilidades de las distribucioes Normal y Chi-cuadrado. b) Estudio de la fució de desidad de la distribució Normal ~ N(µ;σ) c) Cálculo de la fució de distribució

Más detalles

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE)

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE) TUTORÍA DE ETADÍTICA EMPREARIAL (º A.D.E.) e-mail: imozas@elx.ued.es https://www.iova.ued.es/webpages/ilde/web/idex.htm PROBLEMA DE LO TEMA 5, 6 Y 7 PROPUETO EN EXÁMENE DE ETADÍTICA EMPREARIAL (ANTIGUA

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado e Geomática y Topografía Escuela Técica Superior de Igeieros e Topografía, Geodesia y Cartografía. Uiversidad Politécica de Madrid

Más detalles

Luis González Abril y Luis M. Sánchez-Reyes {luisgon, - Dpto. Economía Aplicada I Universidad de Sevilla

Luis González Abril y Luis M. Sánchez-Reyes {luisgon, - Dpto. Economía Aplicada I Universidad de Sevilla ETUDIO OBRE EL EXCEO DE AMPLITUD EN LA CONTRUCCIÓN DE INTERVALO DE CONFIANZA PARA LA MEDIA POBLACIONAL CON VARIANZA DECONOCIDA EN UNA POBLACIÓN NORMAL Luis Gozález Abril y Luis M. áchez-reyes {luisgo,

Más detalles

TEMA 2: INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.

TEMA 2: INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. TEMA : INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA...- CONCEPTOS FUNDAMENTALES. Iferecia estadística. Ua iferecia es ua extesió de lo particular a lo geeral. La iferecia iductiva es u proceso co riesgo ya

Más detalles

ESTADÍSTICA INFERENCIAL. MUESTREO

ESTADÍSTICA INFERENCIAL. MUESTREO Tema 6: ESTADÍSTICA INFERENCIAL. MUESTREO Profesor: Fracisco J. Agudo García Curso 009-010 Ídice 1. Itroducció. Muestreo 3 3. Distribució Normal 5 3.1. Tipificació de la variable...........................

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

Inferencia estadística

Inferencia estadística UNIDAD 0 Iferecia estadística Objetivos Al fializar la uidad, el alumo: determiará si u estimador es sesgado o isesgado resolverá problemas de itervalos de cofiaza para la media, diferecia de medias, variaza

Más detalles

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Bilbao Asigatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Bilbao Asigatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA PARTE : ESTADÍSTICA INFERENCIAL 0. RECORDATORIO Estadística iferecial.

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció ( p ). Para

Más detalles

6. DISTRIBUCIONES MUESTRALES CONTENIDO 6 DISTRIBUCIONES MUESTRALES INTRODUCCION PARÁMETROS Y ESTADÍSTICOS...

6. DISTRIBUCIONES MUESTRALES CONTENIDO 6 DISTRIBUCIONES MUESTRALES INTRODUCCION PARÁMETROS Y ESTADÍSTICOS... 6. DISTRIBUCIONES MUESTRALES CONTENIDO 6 DISTRIBUCIONES MUESTRALES... 7 6. INTRODUCCION...7 6. PARÁMETROS Y ESTADÍSTICOS...8 6.3 DISTRIBUCIÓN DEL PROMEDIO MUESTRAL...9 6.4 DISTRIBUCIÓN DE LA FRECUENCIA

Más detalles

MATEMÁTICAS 2º BACH. CC. SS. 4 de abril de 2006 Probabilidades

MATEMÁTICAS 2º BACH. CC. SS. 4 de abril de 2006 Probabilidades MATEMÁTIAS º BAH.. SS. 4 de abril de 006 Probabilidades 1) Sea A y B dos sucesos idepedietes tales que B) = 0.05 y A/ B) = 0.35. a) uál es la probabilidad de que suceda al meos uo de ellos? ( putos) b)

Más detalles

Intervalos de Confianza para la diferencia de medias

Intervalos de Confianza para la diferencia de medias Itervalo de Cofiaza para la diferecia de media INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis.

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis. TEMA 8. Cotrastes de hipótesis. E este capítulo se epodrá el cotraste o test de hipótesis estadísticas, que está muy relacioado co la «estimació por itervalos» del capítulo aterior. Va a defiirse importates

Más detalles