Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS"

Transcripción

1 Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que teemos de la muestra. A la hora de tomar ua decisió, teemos que euciar ua hipótesis, es decir, teemos que hacer uas suposicioes y ver si éstas se cumple o se rechaza. Para realizar este proceso ecesitamos el empleo de uas pruebas estadísticas ó test, para cotrastar la veracidad o falsedad de las hipótesis euciadas desde el puto de vista estadístico. Los test o pruebas estadísticas se clasifica e dos grades grupos: paramétricas muy estudiadas y de uso frecuete. La variable que estamos tratado tiee ua fució de distribució determiada, coociédose todos los parámetros ó bie alguos de ellos. o paramétricas de uso más reciete y aú o muy desarrolladas. E estas pruebas suele descoocerse la fució de distribució de la variable. HIPÓTESIS ESTADÍSTICA Es ua proposició sobre la distribució de ua o más variables aleatorias, e referecia a la forma que adopta dicha distribució ó los parámetros que defie a la població. La formulació de ua hipótesis estadística se puede realizar mediate ua hipótesis simple ( = 5), o bie mediate ua hipótesis compuesta, formadas co varias simples ( 5; > 5; < 5) Hipótesis ula (Ho) Es la formulació teórica que trata de proteger a priori la distribució que se pretede cotrastar, teiedo dos plateamietos: el estadístico tiee u valor dado Ho: = 100 o hay diferecias sigificativas etre dos estadísticos Ho: μ 1 μ = 0 Hipótesis alterativa (H1) Las cotrarias a las ateriores. Tambié dos plateamietos: ate u valor dado H1o bie H1: =104; o bie H1: < 100; o bie H1: > 100 si hay diferecias sigificativas etre dos estadísticos H1: μ 1 μ 0; o bie H1: μ 1 μ < 0; o bie H1: μ 1 μ > 0 E realidad, la H1 es la que queremos probar y su formulació es imprescidible aú cuado Ho o se rechace. FORMULACIÓN DE HIPÓTESIS Sea ua variable aleatoria X que tiee ua distribució de probabilidad F(X) que depede de u parámetro descoocido, que puede tomar los valores o y 1. El cotraste cosiste e elegir etre dos hipótesis simples: hipótesis ula Ho: o hipótesis alterativa H1: = 1. El cotraste de hipótesis es ua regla que permite decidir cuál de las dos hipótesis es acertada, partiedo de ua muestra aleatoria Xi = (X1,----,X) de X Regioes críticas y de aceptació Difereciamos etre regió crítica o de rechazo de la Ho, y o crítica o de aceptació de Ho. Se llama regió crítica o de ivel de sigificació, a u subcojuto del espacio muestral, tal que la probabilidad de que la muestra perteezca a este espacio, cuado es cierto Ho, es igual a. Lógicamete, la probabilidad de que la muestra o perteezca a este espacio, cuado Ho es cierta, es igual a 1-. El ivel de sigificació es ua probabilidad pequeña (oscila etre 0,1 0,05 0,01) que ormalmete elige el ivestigador. La regla de decisió para optar etre Ho y H1 es la siguiete: la muestra perteece a la regió crítica se rechazo Ho y se acepta H1 la muestra o perteece a la regió crítica, por tato perteece a la regió de aceptació se acepta Ho y se rechaza H1

2 Hipótesis verdadera Error tipo I, error tipo II y potecia de ua prueba Rechazar la Ho siedo cierta, se llama error de tipo I. La probabilidad de cometer este error es el ivel de sigificació. Aceptar la Ho siedo falsa, se llama error de tipo II. La probabilidad de cometerlo recibe la deomiació de. Defiimos la potecia del test como la decisió de aceptar H1 siedo ésta verdadera. Ua prueba es más potete que otra, cuado co u dado, el valor de (1-) es mayor e ua prueba que e otra. Detro de ua misma prueba, es más potete la decisió uilateral que la bilateral. Ver ejemplo 1.1 e pág. 47. Decisió Hipótesis simple frete a alterativa compuesta E muchos cotrastes ormalmete existe más de ua H1 frete a ua sola Ho. El cotraste de hipótesis se formula etoces: Ho: = o (valor coocido) H1: o y se dice que H1 es ua alterativa bilateral (o de dos colas). Los test de hipótesis simple frete a alterativa simple geera regioes críticas de ua sola cola y se llama uilaterales (dcha. o izda.). Ver fig. 1. pág. 48 Los test de hipótesis simple frete a alterativa compuesta tiee regioes críticas e ambos extremos de la curva de la distribució, y se llama de dos colas o bilaterales. Ver fig. 1.3 pág. 48 E todas las pruebas fijaremos u ivel de sigificació y hay que teer presete que si el estadístico calculado cae e la regió de rechazo, etoces se rechazará la Ho. Potecia de ua prueba de hipótesis Ya hemos visto que represeta la probabilidad de aceptar Ho cuado es falsa, mietras que 1- es la probabilidad de rechazar dicha hipótesis cuado es falsa. A esta probabilidad se la cooce como potecia de ua prueba. El objetivo es coseguir pruebas potetes co valores bajos del error tipo I() y del error tipo II (); si embargo, éstos y la potecia tiee uos codicioates: 1.- el valor de se fija al escoger la regió de rechazo.- el valor de depederá de la H1 que se escoja. 3.- para u tamaño muestral fijo, al aumetar la regió de rechazo (y por tato ), dismiuye. Si decrece, aumetará. 4.- al aumetar el tamaño muestral (), y decrecerá a la vez. Como vemos, para coseguir el objetivo de máxima potecia y meor error, la solució está e aumetar el tamaño de la muestra. Así mismo, detro de la misma prueba, la decisió uilateral es más potete que la bilateral. Ver ejemplo e pág. 49. Cálculo de para u y dados Existe relació etre los valores de y y el tamaño de la muestra (). Auque los valores de y so iversos etre sí, lo que idudablemete se busca es que ambos tega los valores más bajos posible. Ver ejemplo e pág. 54 PRINCIPALES PRUEBAS PARAMÉTRICAS Codicioes que exige las pruebas paramétricas: Idepedecia de los datos o cualquier sujetos tiee las mismas posibilidades de ser elegido e la muestra (aleatoriedad). o la putuació de u sujeto o ifluye e la obteida por otro. Normalidad o las poblacioes de las que se extrae los sujetos de las muestras debe estar distribuidas ormalmete para el parámetro a estimar. Ho H1 Ho Si error (error tipo I) H1 (error tipo II) Si error Potecia (1-)

3 o esta codició se asume cuado la muestra es grade. Homocedasticidad o cuado hay varios grupos se supoe que procede de la misma població o de poblacioes co igual variaza. o si esta codició se icumple, afecta a los cotrastes de varios grupos. Medida de itervalo o las variables debe medirse e ua escala de itervalo ó e ua escala ordial multicategórica. Liealidad (solo e la prueba F) o la relació atribuida a los efectos de las iteraccioes etre fila y columa, o ambos, debe ser aditiva y o multiplicativa, para evitar su ifluecia sobre las variazas. Para cotrastar ua hipótesis estadística hay que: 1.- FORMULAR la Ho y la H1.- FIJAR el ivel de sigificació 3.- COMPROBAR las características de las variables y platear las suposicioes ecesarias(cumplimieto o o de las codicioes paramétricas) 4.- ELEGIR u estadístico para cotrastar las hipótesis 5.- ESTUDIAR las características de la distribució muestral del estadístico 6.- DETERMINAR la regió crítica o de rechazo de Ho y la de aceptació. Viee determiada por el ivel de sigificació y por la direcció de H1 7.- DECIDIR sobre la aceptació o rechazo de Ho. Si el valor calculado e la muestra se sitúa detro de la zoa de aceptació, se acepta la Ho; e caso cotrario, se rechaza. Pruebas paramétricas para muestras grades (N> 30) MEDIA Ua muestra aleatoria, co > 30. Coocida la variaza de la població σ. Si se descooce σ, se sustituye por la variaza de la muestra S x. Ver fig pág. 57 Ho: = 0 H1: > 0 (uilateral dcho.) < 0 (uilateral izdo.) 0 0 = 0 σ σ Estadístico de cotraste uilateral z ob > z (dcho.) ; o bie z ob < - z (izdo.) bilateral z ob > z ; o bie z ob < - z Itervalo de cofiaza ± z. σ PROPORCIÓN Ho: p = p 0 H1: p > p 0 (uilateral dcho.) p < p 0 (uilateral izdo.) p p 0 Població dicotómica y muestreo aleatorio, co suficietemete grade para que la distribució muestral de Xi ( y de p ), tega u distribució aproximadamete ormal. Coocida σ. Ver fig. 1.1 pág. 58 Estadístico de cotraste p p 0 σ p = p p 0 p 0 q 0 P = aciertos

4 Si se descooce σ p, se sustituye por su estimador S p : uilateral z ob > z (dcho.) ; o bie z ob < - z (izdo.) bilateral z ob > z ; o bie z ob < - z Itervalo de cofiaza X = S x p ± z. σ p X p pq DIFERENCIA DE MEDIAS Dos muestras aleatorias e idepedietes, de dos poblacioes distitas, co > 30 y > 30. Coocidas σ 1 y σ. Ver fig pág. 59 Ho: μ 1 μ = D 0, siedo Do ua diferecia especificada que se quiere probar. E la mayoría de los casos, se opta por probar que o hay diferecias sigificativas, e cuyo caso Do = 0 H1: μ 1 μ > D 0 ; o bie μ 1 > μ (uilateral dcho.) μ 1 μ < D 0 ; o bie μ 1 < μ (uilateral izdo.) μ 1 μ D 0 Estadístico de cotraste D 0 σ 1 Si se descooce σ 1 y σ, se sustituye por las cuasivariazas muestrales S 1 y S,siedo: = 1 D 0 σ 1 + σ 1 S 1 = X S = X 1 uilateral z ob > z (dcho.) ; o bie z ob < - z (izdo.) bilateral z ob > z ; o bie z ob < - z Itervalo de cofiaza DIFERENCIA DE PROPORCIONES Dos muestras aleatorias e idepedietes, de dos poblacioes distitas, y co y suficietemete grades para que las distribucioes muestrales de p 1 y p (y por tato de p ) sea aproximadamete ormales. Ver fig pág. 60 Ho: p 1 p = D 0, siedo Do ua diferecia especificada que se quiere probar. E la mayoría de los casos, se opta por probar que o hay diferecias sigificativas, e cuyo caso Do = 0 H1: p 1 p > D 0 ; o bie p 1 > p (uilateral dcho.) p 1 p < D 0 ; o bie p 1 < p (uilateral izdo.) p 1 p D 0 Estadístico de cotraste ± z. σ 1 p 1 p D 0 p 1 q 1 + p q Como ormalmete se descooce p 1 y p, tedremos que estimar sus valores para poder calcularla desviació típica σ p 1 p. Se os preseta dos casos: CASO I: supoemos que p 1 = p. Etoces D 0 = 0 y el mejor estimador de p es la acumulació poderada de ambas muestras, es decir: p = X i1+x i + = p 1 + p +

5 y el estadístico de cotraste es: p 1 p D 0 p q p q + 1 Caso II: supoemos que D 0 0 y etoces los mejores estimadores de respectivamete p 1 y p. El estadístico de cotraste será: p 1 y p so p 1 p D 0 p 1 q 1 + p q uilateral z ob > z (dcho.) ; o bie z ob < - z (izdo.) bilateral z ob > z ; o bie z ob < - z Itervalo de cofiaza Pruebas paramétricas para muestras pequeñas (N 30) p 1 p ± z. σ p 1 p MEDIA Ua muestra aleatoria, de ua població distribuida ormalmete. Descoocida la variaza de la població σ. Ver fig pág. 61 Ho: = 0 H1: > 0 (uilateral dcho.) < 0 (uilateral izdo.) 0 t ob = 0 σ t = 0 S x Estadístico de cotraste uilateral t ob > t (dcho.) ; o bie t ob < - t (izdo.) bilateral t ob > t ; o bie t ob < - t Itervalo de cofiaza co (-1) gl. ± t ( 1). σ t DIFERENCIA DE MEDIAS NUESTRAS INDEPENDIENTES Dos muestras aleatorias e idepedietes, de dos poblacioes distitas, que se distribuye ormalmete. Descoocidas σ 1 y σ, pero supuestamete iguales. Ver fig pág. 6 A Ho: μ 1 μ = D 0, siedo Do ua diferecia especificada que se quiere probar. E la mayoría de los casos, se opta por probar que o hay diferecias sigificativas, e cuyo caso Do = 0 H1: μ 1 μ > D 0 ; o bie μ 1 > μ (uilateral dcho.) μ 1 μ < D 0 ; o bie μ 1 < μ (uilateral izdo.) μ 1 μ D 0 Estadístico de cotraste t ob = 1 D 0 1 s s co ( + ) gl.

6 uilateral t ob > t (dcho.) ; o bie t ob < - t (izdo.) bilateral t ob > t ; o bie t ob < - t Itervalo de cofiaza ± t (1 + ). σ 1 B E el caso de que σ 1 σ, tedríamos: que se distribuye segú t de Studet co m grados de libertad, segú la fórmula: 1 D 0 S 1 + S t ob = S 1 + S 1 m = S S + 1 (cuado el resultado es decimal, se redodea al etero más próximo). DIFERENCIA DE MEDIAS NUESTRAS CORRELACIONADAS Dos muestras aleatorias de la misma població, formada por parejas de diferecias. Los sujetos de y ( = = ) so los mismos pero sometidos a diferetes pruebas. Se descooce la variaza de las diferecias. Ver fig pág. 64 Ho: μ 1 μ = 0 H1: μ 1 μ > 0 ; o bie μ 1 > μ (uilateral dcho.) μ 1 μ < 0 ; o bie μ 1 < μ (uilateral izdo.) μ 1 μ 0 Estadístico de cotraste siedo: º diferecias por parejas co ( 1) gl. S d = t d 0 ob = d 1 d 1 uilateral t ob > t (dcho.) ; o bie t ob < - t (izdo.) bilateral t ob > t ; o bie t ob < - t Itervalo de cofiaza d ± t ( 1). S d S d = X 1 X d d 1 d d 1 d VARIANZA POBLACIONAL La muestra se seleccioa aleatoriamete de ua població ormalmete distribuida. Ver fig pág. 65 Ho: σ = σ 0 H1: σ > σ 0 (uilateral dcho.) σ < σ 0 (uilateral izdo.) σ σ 0 χ 1 S x se distribuye segú χ 0 = co σ Estadístico de cotraste (-1) gl. uilateral χ 0 > χ α (dcho.) ; o bie χ 0 < χ 1 α (izdo.) bilateral χ 0 > χ α ; o bie χ 0 < χ 1 α

7 Itervalo de cofiaza S x < σ < χ 0(1 α ) 1 S x χ 0( α ) IGUALDAD DE DOS VARIANZAS POBLACIONALES Las muestras se seleccioaro aleatoriamete e idepedietemete de poblacioes co distribucioes ormales, Se trata pues de dos variazas co observacioes idepedietes. Ver fig pág. 66 Ho: σ 1 = σ H1: σ 1 > σ (uilateral dcho.) σ 1 < σ (uilateral izdo.) σ 1 σ F 0 = S 1 S (dcho.) Estadístico de cotraste : prueba uilateral F 0 = S S 1 (izdo.) Prueba bilateral uilateral F 0 > F α bilateral F 0 > F α F 0 = S 1 S siedo S 1 la mayor variaza muestral y co ( 1) y 1 gl. e el umerador y deomiador, respectivamete. COEFICIENTE DE CORRELACIÓN POBLACIONAL Coeficiete de correlació de Pearso. Ho: ρ = 0 H1: ρ > 0 (uilateral dcho.) ρ < 0 (uilateral izdo.) ρ 0 t ob = r xy Estadístico de cotraste r xy uilateral t ob > t (dcho.) ; o bie t ob < - t (izdo.) bilateral t ob > t ; o bie t ob < - t Itervalo de cofiaza co (-) gl. r xy ± t ( ). 1 r xy

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS UNIVERSIDAD DE LOS ANDES NUCLEO UNIVERSITARIO RAFAEL RANGEL DEPTO DE CIENCIAS ECONOMOMICAS Y ADMIMISTRATIVAS AREA DE ESTADÍSTICA ESTADÍSTICA BASICA CONTADURÍA PÚBLICA Tema 8. Sesioes 5 y 6 Guía de clase

Más detalles

TEMA 4: CONTRASTE DE HIPOTESIS

TEMA 4: CONTRASTE DE HIPOTESIS ESTADÍSTICA, CURSO 2008 2009 TEMA 4: CONTRASTE DE HIPOTESIS HIPOTESIS ESTADISTICAS ENSAYOS DE HIPOTESIS Cocepto de hipótesis estadística Esayos de hipótesis Hipótesis ula (H 0 ) y alterativa (H ) Diferecias

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS Estadística: Cotraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Cotraste de hipótesis sobre la media poblacioal Se parte de ua població supuestamete ormal de media y desviació típica N(, ); se tipifica

Más detalles

Test de Hipótesis. Material Preparado por Hugo Delfino

Test de Hipótesis. Material Preparado por Hugo Delfino Test de Hipótesis Material Preparado por Hugo Delfio 8-3 Qué es ua Hipótesis? Hipótesis: Es u suposició acerca del valor de u parámetro de ua població co el propósito de discutir su validez. Ejemplo de

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS El cotraste de hipótesis es el procedimieto mediate el cual tratamos de cuatificar las diferecias o discrepacias etre ua hipótesis estadística y ua realidad de la que poseemos ua

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

UNIDAD 4.- INFERENCIA ESTADÍSTICA II

UNIDAD 4.- INFERENCIA ESTADÍSTICA II UNIDAD 4.- INFERENCIA ESTADÍSTICA II. ESTIMACIÓN POR INTERVALOS DE CONFIANZA Cosideraremos ua variable aleatoria X co ua media µ descoocida y ua desviació típica coocida (parámetros poblacioales). Lo que

Más detalles

Paso 2: Elegir un estadístico de contraste. Como queremos hacer un contraste de hipótesis para la media, el estadístico de contraste adecuado es:

Paso 2: Elegir un estadístico de contraste. Como queremos hacer un contraste de hipótesis para la media, el estadístico de contraste adecuado es: Hoja 6: Cotraste de hipótesis 1. U laboratorio farmacéutico ha elaborado u fármaco e forma de comprimidos cuyo peso sigue ua distribució Normal co ua desviació típica de 0.12 mg. Se sabe que ua dosis de

Más detalles

TEST DE HIPÓTESIS. a la hipótesis que se formula y que se quiere contrastar o rechazar. Llamamos hipótesis alternativa, H

TEST DE HIPÓTESIS. a la hipótesis que se formula y que se quiere contrastar o rechazar. Llamamos hipótesis alternativa, H TEST DE IPÓTESIS INTRODUCCIÓN E el tema aterior vimos cómo, a partir de los datos de ua muestra, podíamos estimar u parámetro de la població (media o proporció) mediate u itervalo E este tema platearemos

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

INFERENCIA ESTADÍSTICA. TEST DE HIPÓTESIS. TIPOS DE ERRORES

INFERENCIA ESTADÍSTICA. TEST DE HIPÓTESIS. TIPOS DE ERRORES 1 INFERENCIA ESTADÍSTICA. TEST DE HIPÓTESIS. TIPOS DE ERRORES 001. PAU SELECTIVIDAD Uiversidad de Oviedo Juio 1996 La empresa de trasportes urgetes El Rápido asegura que etrega el 80% de sus evíos ates

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

Objetivo. 1. Intervalos y test (una sola muestra) Práctica 7: Intervalos de conanza y contrastes de hipótesis I. M. Iniesta Universidad de Murcia

Objetivo. 1. Intervalos y test (una sola muestra) Práctica 7: Intervalos de conanza y contrastes de hipótesis I. M. Iniesta Universidad de Murcia Práctica 7: Itervalos de coaza y cotrastes de hipótesis I Objetivo E esta práctica y e la siguiete apredemos a aplicar e iterpretar las técicas de itervalos de coaza y test de hipótesis, seleccioado la

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

Contrastes de hipótesis

Contrastes de hipótesis Cotrastes de hipótesis Ejercicio º 1.- E u determiado istituto asegura que las otas obteidas por sus alumos e las pruebas de acceso a la Uiversidad tiee ua media igual o superior a 7 putos. Pero la media

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis

PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA. Esquema del procedimiento de Prueba de Hipótesis PRUEBA DE HIPOTESIS BASADA EN UNA SOLA MUESTRA Pruebas de hipótesis es ua parte de la ESTADISTICA INFERENCIAL y tiee su aalogía co los pasos que se realiza e u JUICIO. Objetivo: Aquí o se busca Estimar

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

3. Igualdad de proporciones

3. Igualdad de proporciones 1 La prueba de Pearso Tema 10 1. Bodad de ajuste. Idepedecia 3. Igualdad de proporcioes 4. Medidas de asociació 5. Errores tipificados 1. Bodad de ajuste Objetivo: Comprobar si ua distribució teórica de

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

Análisis de resultados. Independencia de las muestras

Análisis de resultados. Independencia de las muestras Aálisis de resultados Clase ro. 8 Curso 00 Idepedecia de las muestras Los resultados de ua corrida de simulació, so muestras de algua distribució. Esos resultados los llamamos "respuestas". Las respuestas

Más detalles

PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE

PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE Objetivos Comprobar que la suma de variables aleatorias idepedietes y co la misma distribució es aproximadamete ormal. Estudiar la robustez de la aproximació frete

Más detalles

Pasos básicos para docimar una hipótesis:

Pasos básicos para docimar una hipótesis: Pasos básicos para docimar ua hipótesis:. Defiir cual es la població y el o los parámetro de iterés.. Establecer la hipótesis (ula y alterativa). 3. Establecer el ivel de sigificació α. 4. Recoger los

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis.

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis. TEMA 8. Cotrastes de hipótesis. E este capítulo se epodrá el cotraste o test de hipótesis estadísticas, que está muy relacioado co la «estimació por itervalos» del capítulo aterior. Va a defiirse importates

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 2.001-2.002 - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

SOLUCIONES DE LA SEGUNDA PRUEBA DE EVALUACION CONTINUA (PEC 2)

SOLUCIONES DE LA SEGUNDA PRUEBA DE EVALUACION CONTINUA (PEC 2) Curso 2012-13 PEC2 Pág. 1 SOLUCIONES DE LA SEGUNDA PRUEBA DE EVALUACION CONTINUA (PEC 2) Gráfico 1: E ua ivestigació se compara la eficacia de tres tipos de tratamieto de las fobias, atediedo a si ha habido

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

En esta tema sentaremos las bases del muestreo estadístico y estudiaremos las distribuciones de algunos estadísticos a partir de una muestra.

En esta tema sentaremos las bases del muestreo estadístico y estudiaremos las distribuciones de algunos estadísticos a partir de una muestra. Capítulo 6 Muestreo Estadístico E esta tema setaremos las bases del muestreo estadístico y estudiaremos las distribucioes de alguos estadísticos a partir de ua muestra. 6.1. Coceptos básicos Auque e el

Más detalles

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos Ua vez expuesta la lógica de u Cotraste de Hipótesis y tras haber defiido los térmios y coceptos ivolucrados, hay que decir que esa lógica geeral se cocreta

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

PRUEBAS DE HIPOTESIS

PRUEBAS DE HIPOTESIS PRUEBAS DE HIPOTESIS Es posible estimar u parámetro a partir de datos muestrales, bie sea ua estimació putual o u itervalo de cofiaza. Pero: Si mi objetivo o es estimar u parámetro, sio determiar el cumplimieto

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Estimación de parámetros. Biometría

Estimación de parámetros. Biometría Estimació de parámetros Biometría Estimació Las poblacioes so descriptas mediate sus parámetros Para variables cuatitativas, las poblacioes so descriptas mediate y Para variables cualitativas, las poblacioes

Más detalles

4 Contrastes del Chi 2 de bondad del ajuste

4 Contrastes del Chi 2 de bondad del ajuste 4 Cotrastes del Chi de bodad del ajuste U cotraste de bodad del ajuste es de la forma o H 0 : P = P 0 frete a H 1 : P P 0 H 0 : P {P θ } θ Θ frete a H 1 : P / {P θ } θ Θ 4.1 Cotraste del χ para modelos

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

IES Fco Ayala de Granada Modelo 5 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 5 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 5 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 5 DEL 2015 OPCIÓN A SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 5 DEL 015 OPCIÓN A EJERCICIO 1 (A) Sea las matrices A = 1 0, B = 1 1 1 y C = 1 1 3 (1 5 putos) Resuelva la ecuació A X + B X = C. (1 5 putos) Calcule A 4

Más detalles

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco Capítulo 4 (Cotiuació MÉTODOS ESTADÍSTICOS Autor: José María García Palaco Técicas Eperimetales Medida de magitudes 4.8 Métodos Estadísticos Ya hemos visto e los apartados ateriores, que u procedimieto

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

UNIDAD 3.- INFERENCIA ESTADÍSTICA I

UNIDAD 3.- INFERENCIA ESTADÍSTICA I UNIDAD 3.- INFERENCIA ESTADÍSTICA I 1. ESTADÍSTICA INFERENCIAL. MUESTREO La Estadística es la ciecia que se preocupa de la recogida de datos, su orgaizació y aálisis, así como de las prediccioes que, a

Más detalles

Formulas. Población infinita. Población finita

Formulas. Población infinita. Población finita Formulas X~N(μ, σ 2 ) x = x i x ~N si X~N o si > 30 Població ifiita Població fiita x ~N(μ, σ2 ) N x ~N(μ, N 1 σ2 ) Ejercicio Se sabe que la media poblacioal e u exame de Estadística es de 70 y que la variaza

Más detalles

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales Ídice 5 Itroducció a la Iferecia Estadística Muestreo e poblacioes ormales 51 51 Itroducció 51 52 Estadísticos y mometos muestrales 53 521 Media muestral Propiedades 54 522 Variaza muestral Propiedades

Más detalles

EJERCICIO 1 EJERCICIO 2

EJERCICIO 1 EJERCICIO 2 EJERCICIO 1 U sociólogo ha proosticado, que e ua determiada ciudad, el ivel de absteció e las próximas eleccioes será del 40% como míimo. Se elige al aar ua muestra aleatoria de 00 idividuos, co derecho

Más detalles

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA º BACHILLERATO. CIENCIAS SOCIALES 1. Ua variable aleatoria tiee ua distribució ormal de media m y desviació típica s. Si se extrae muestras aleatorias de tamaño : a) Qué distribució tiee la variable aleatoria

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribucioes de probabilidad 1. Variable aleatoria real: Ejemplo: Ua variable aleatoria X es ua fució que asocia a cada elemeto del espacio muestral E u úmero X: E ú Cosideremos el experimeto aleatorio

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

Estimación de Parámetros. Estimación de Parámetros

Estimación de Parámetros. Estimación de Parámetros Uiversidad Técica Federico Sata María Capítulo 7 Estimació de Parámetros Estadística Computacioal II Semestre 007 Prof. Carlos Valle Págia : www.if.utfsm.cl/~cvalle e-mail : cvalle@if.utfsm.cl C.Valle

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva 1, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

ESTIMACIONES DE MEDIAS

ESTIMACIONES DE MEDIAS COLEGIO SAN BARTOLOMÉ LA MERCED ESTADÍSTICA GRADO ESTIMACIÓN 0-0 Símbolos que se debe teer e cueta: POBLACIÓN MUESTRA MEDIA VARIANZA DESVIACIÓN ESTÁNDAR TAMAÑO N La estimació cosiste e determiar el valor

Más detalles

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferecia proporcioes E alguos diseños ivestigació, el pla muestral requiere seleccioar dos muestras ipedietes, calcular las proporcioes muestrales y usar

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 5 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 5 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo 5 ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 014 MODELO 5 OPCIÓN A EJERCICIO 1 (A) 1 3 - Se cosidera las matrices A

Más detalles

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20

Para estimar su media poblacional (µ) se toma una muestra de 20 cigarrillos, las medias de la. σ 20 Modelo 04. Problema 5A.- (Calificació máxima: putos) El coteido e alquitrá de ua determiada marca de cigarrillos se puede aproximar por ua variable aleatoria co distribució ormal de media µ descoocida

Más detalles

Prueba A. b) Obtener un intervalo de confianza de la proporción de partos de madres de más de 30 años al 90% de confianza

Prueba A. b) Obtener un intervalo de confianza de la proporción de partos de madres de más de 30 años al 90% de confianza PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO.6-.7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

Intervalos de Confianza

Intervalos de Confianza Itervalos de Cofiaza 1.- Se quiere estudiar la vida útil de uas uevas pilas que se va a lazar al mercado. Para ello se examia la duració de 40 de ellas, resultado ua media de 63 horas. Supoiedo que el

Más detalles

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Dra. Diaa M. Kelmasky 109 13. INTERVALOS DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL Supogamos que X1,...,X es ua muestra aleatoria de ua població ormal co media μ y variaza. Sabemos que la media

Más detalles

Inferencia estadística: estimación de parámetros.

Inferencia estadística: estimación de parámetros. Capítulo 7 Iferecia estadística: estimació de parámetros. 7.1. Itroducció E este tema estudiaremos como aproximar distitos parámetros poblacioales a partir de ua m.a.s. formada por observacioes idepedietes

Más detalles

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Bilbao Asigatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Bilbao Asigatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA PARTE : ESTADÍSTICA INFERENCIAL 0. RECORDATORIO Estadística iferecial.

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Contraste de Hipótesis

Contraste de Hipótesis CONTRASTE DE HIPÓTESIS. Itroducció. Cotraste de ua hipótesis estadística 3. Test uilateral y bilateral 4. Test relacioados co ua sola media (variaza coocida) 5. Relació co la estimació del itervalo de

Más detalles

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual ETIMACIÓN TEMA 5: Estimació putual I. Propiedades de los estimadores TEMA 6: Estimació putual II. Métodos de estimació putual TEMA 7: Estimació por itervalos CONTRATE DE HIPÓTEI TEMA 8: Cotrastes paramétricos

Más detalles

Análisis de varianza de un factor Tema Introducción al análisis de varianza. 2. ANOVA de efectos fijos, completamente aleatorizado (A-EF-CA)

Análisis de varianza de un factor Tema Introducción al análisis de varianza. 2. ANOVA de efectos fijos, completamente aleatorizado (A-EF-CA) Aálisis de variaza de u factor ema 5. Itroducció al aálisis de variaza. AOVA de efectos fios, completamete aleatorizado (A-EF-CA) 3. AOVA de efectos fios, co medidas repetidas (A-EF-MR) 4. Medidas de tamaño

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado e Geomática y Topografía Escuela Técica Superior de Igeieros e Topografía, Geodesia y Cartografía. Uiversidad Politécica de Madrid

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles