INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO"

Transcripción

1 INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de probabilidad del feómeo e estudio. Se verá que, al ser fució de v.a. tambié es ua v.a. y se verá cómo obteer su distribució. Por último, se estudiará alguos casos cocretos de estadístico. Pricipales coteidos Itroducció Estimació de la media de ua població Estimació de la variaza de ua població Estimació de ua proporció Estadísticos ordeados 1

2 1 Itroducció El muestreo estadístico es la herramieta que la Matemática utiliza para el estudio de las características de ua població a través de ua determiada partedelamisma. La muestra de estudio debe ser lo más pequeña posible ya que del hecho de que ua muestra sea más grade, o se desprede ecesariamete que la iformació sea más fiable. Además, la muestra elegida debe serlo por u proceso aleatorio para que sea lo más represetativa posible. Térmios usuales e u estudio estadístico Població: cojuto de todos los idividuos que so objeto del estudio. Muestra: parte de la població e la que mide las características estudiadas. Muestreo: proceso seguido para la extracció de ua muestra. Ecuesta: proceso de obteer iformació de la muestra. Los resultados obteidos del estudio de ua muestra o so del todo fiables, pero sí e buea medida. Los parámetros que obtiee de ua muestra (estimadores estadísticos) os permitirá arriesgaros a predecir ua serie de resultados para toda la població. De estas prediccioes y del riesgo que colleva se ocupa la Iferecia Estadística. Las observacioes de ua muestra se deota por x 1,...,x. 2

3 Si embargo, ates de hacer u muestreo o de experimetar, cualquier observació e particular estará sujeta a icertidumbre (por ejemplo, ates de saber cuál es el gasto medio de ua familia de la muestra e alimetació, ésta podría ser x ó x ó muchos otros valores posibles). Debido a esta icertidumbre, ates de que se dispoga de datos uméricos cocretos, cosideramos las observacioes como variables aleatorias y las deotamos por letras mayúsculas X 1,...,X. Esto a su vez implica que hasta que se haya obteido los datos, cualquier fució de las observacioes (media muestral, variaza de la muestra, etc.) so fucioes de variables aleatorias, y por tato variables aleatorias co distribució de probabilidad propia, llamada distribució e el muestreo. Defiitio 1 Se llama espacio muestral al cojuto de muestras posibles que puede obteerse al seleccioar ua muestra aleatoria, de u determiado tamaño, de ua cierta població. Defiitio 2 Se llama estadístico a cualquier fució T (X 1,...,X ) de la muestra (X 1,...,X ). El estadístico T (X 1,...,X ), como fució de variables aleatorias (X 1,...,X ), es tambié ua variable aleatoria, y tedrá por tato ua distribució de probabilidad, llamada distribució e el muestreo. Alguos estadísticos importates: T (X 1,...,X )X X X Media Muestral T (X 1,...,X )Mi(X 1,...,X ) T (X 1,...,X )Max(X 1,...,X ) P T (X 1,...,X )SX 2 Xi X 2 Variaza Muestral P T (X 1,...,X )bs X 2 Xi X 2 Cuasivariaza Muestral 1 3

4 Example 3 Se está iteresado e coocer la probabilidad θ de obteer cara co ua moeda, es decir, se trata de estudiar la variable aleatoria ( 1 si se obtiee cara X 0 si se obtiee cruz cuya distribució está caracterizada por X i Probabilidad 1 θ 0 1 θ que depede del parámetro θ que varía e el espacio paramétrico Θ [0, 1]. Se realiza tres lazamietos, co lo que se dispoe de ua m.a.s X 1,X 2,X 3. Puesto que la muestra es aleatoria simple, se verifica que P (X 1 x 1,X 2 x 2,X 3 x 3 )P (X 1 x 1 ) P(X 2 x 2 ) P(X 3 x 3 ) La probabilidad de todas las muestras posibles es, por tato, la siguiete: X 1 X 2 X 3 Probabilidad θ θ 2 (1 θ) θ 2 (1 θ) θ 2 (1 θ) θ (1 θ) θ (1 θ) θ (1 θ) (1 θ) 3 Es decir, teemos la distribució de la muestra a través de su fució de 4

5 probabilidad. Si os iteresa el estadístico media muestral X X 1 + X 2 + X 3 3 a partir de la distribució e el muestreo de la muestra, se tiee la siguiete distribució e el muestreo para el estadístico: X Probabilidad 1 θ 3 2/3 3θ 2 (1 θ) 1/3 3θ (1 θ) 2 0 (1 θ) 3 Example 4 De ua població X co distribució de Poisso de parámetro λ, P oisso (λ), se obtiee ua m.a.s. de tamaño. Determiar la distribució e el muestreo de la media muestral X. λ λk Si X Poisso(λ), etoces P (X k) e, k 0, 1, 2,... k! Dada ua m.a.s. (X 1,...X ), T (X 1,...X ) 1 P X i X. Su distribució es: P X k µ 1 P P X i k P ( P X λ (λ)k i k) e (k)! X i P oisso(λ) Defiitio 5 Estimador Dada ua muestra (X 1,...X ), u estimador del parámetro θ es ua fució de la muestra T (X 1,...X ) que aproxima el valor de θ. Se suele deotar por T (X 1,...X ) b θ Defiitio 6 Estimador Isesgado: SeaT (X 1,...X ) u estadístico que estima u parámetro θ, deotémoslo por T (X 1,...X ) b θ. El sesgo del estimador de θ es h i h i Sesgo bθ E bθ θ E [T (X 1,...X )] θ 5

6 h i h i El estimador es isesgado si Sesgo bθ 0, es decir E bθ θ. Defiitio 7 Es u estimador asitóticamete isesgado si h i Sesgo bθ 0 cuado Defiitio 8 Estimador Cosistete: Sea T (X 1,...X ) u estadístico que estima u parámetro θ, deotémoslo por T (X 1,...X ) b θ. El estimador es cosistete si h i Var bθ VAr[T (X 1,...X )] 0 cuado 2 Estimació de la media de ua població Sea X 1,...,X ua m.a.s. de ua variable aleatoria X co media E (X) µ y variaza Var(X) σ 2. El estimador más razoable de la media poblacioal µ es la media muestral X 1 P X i que verifica las siguietes propiedades: 1. Es u estimador isesgado de µ. E X Ã! 1 X E X i 1 X E (X i ) 1 X µ µ 2. Es u estimador cosistete e media cuadrática de µ, puesto que es isesgado y su variaza tiede a 0 cuado. Var X Ã! 1 X Var X i 1 X Var(X 2 i ) 1 X σ σ2 σ2 6

7 3. La distribució de exacta de X depede de la distribució de la població X. Por ejemplo, si X es ormal la distribució de X tambié lo será. Para muestras grades, por el Teorema Cetral del Límite, la distribució de X puede aproximarse por ua ormal ( 30). Theorem 9 Sea X 1,...,X ua m.a.s. de ua variable aleatoria X N (µ, σ), etoces µ σ X N µ, Example 10 Sea X ua població co distribució N (90,σ 20). a) Si se obtiee ua m.a.s. de tamaño 16, cuál es la probabilidad de que la media muestral X sea mayor o igual que 92? b) Determiar el tamaño muestral para que la probabilidad de que la media muestral sea meor o igual que 98 sea P X 98 0, 99. X N (µ 90,σ 20) E X µ 90 Var X r σ σ X X N (90, 5) a) P X 92 µ P (N (90, 5) 92) P N (0, 1) P Z 2 5 P (Z 0.4) 0, b) 0.99 P X 98 µ µ P N 90, 20 Ã 98 P N (0, 1) P Z , ! µ 2 2, ,

8 3 Estimació de la variaza de ua població Sea X 1,...,X ua m.a.s. de ua variable aleatoria X co media E (X) µ yvariazavar(x) σ 2. El estimador más razoable de la variaza poblacioal σ 2 es la variaza muestral S 2 X 1 P Xi X 2 1 P Xi 2 X 2 que verifica las siguietes propiedades: 1. Es u estimador cosistete de σ Es u estimador asitóticamete isesgado de σ 2 puesto que E (S 2 X) σ2 + σ2 Puesto que la variaza muestral S 2 es u estimador sesgado (auque asitóticamete isesgado), para estimar la variaza σ 2 se usa la cuasivariaza muestral: cs x X Xi X 2 1 S2 que es u estimador isesgado y cosistete de σ 2. ³ µ E bs 2 E 1 S2 1 E S 2 1 µσ 2 σ2 σ 2 3. (Teorema de Fisher) Bajohipótesisdeormalidad(X N (µ, σ)) se 8

9 verifica que S 2 σ 2 ( 1) bs 2 σ 2 P Xi X 2 σ 2 χ Si coocemos la variaza poblacioal µ, se verifica P (X i µ) 2 σ 2 χ 5. Bajo hipótesis de ormalidad (X N (µ, σ)), las variables aleatorias X y b S 2 so idepedietes. Example 11 Dada ua població X N (6,σ 2.5), y tomado ua muestra aleatoria simple X 1,...,X de tamaño 12,calcularla probabilidad de que la variaza muestral sea mayor que 4.9. µ S 2 P (S 2 > 4.9) 1 P (S 2 4.9) 1 P 4.9 σ 2 σ 2 µ 1 P χ P (χ ) E la tabla de la distribució de la χ 2 aparece los siguietes resultados P (χ ) 0.25 P (χ ) 0.5 Mediate ua iterpolació umérica se calcula la probabilidad que i- 9

10 teresa x y p y y 1 + y 2 y (x x 1 ) (x 7.58) x 2 x y 0.102x p P (S 2 > 4.9) 1 P (χ ) Estadístico t de Studet. Estimació de la media poblacioal cuado σ 2 es descoocida. Bajo hipótesis de ormalidad (X N (µ, σ)) se verifica que X N o equi-valetemete X µ σ N (0, 1) µ µ, σ, Este resultado puede ser de poca utilidad si la variaza poblacioal σ 2 es descoocida, ya que etoces o se podrá usar esta coclusió para hacer previsioes acerca de X. Cabe pesar que el resultado o será muy distito si se sustituye σ por la cuasidesviació típica muestral S, b puesto que, al meos para muestras grades, σ 2 y bs 2 tedrá valores semejates. Tal idea llevó a Studet (pseudóimo de W. Gosset) a cosiderar el estadístico X µ bs X µ S 1 t 1 10

11 Example 12 Dada ua població X N ( 1,σ), seextraeuam.a.s. de tamaño 10co los siguietes resultados: 1.08, 1.79, 2.54, 0.37, 0.6, 0.53, 0.28, 2.21, 2.66, 1.45 Calcular la probabilidad de que la media muestral X sea mayor que 1.2. P X> P X 1.2 X µ 1 P bs S µ bs P Xi 2 X ( ) [ 1 ( )] S r S b 1 S2 P X> 1.2 X µ 1 P bs 1 P t ( 1) µ bs r P t ( 1) P (t ) P (t ) 11

12 Se calcula la probabilidad aterior por iterpolació umérica x y p y y 1 + y 2 y (x x 1 )0.6+ (x ) x 2 x y x p P X> Estimació de ua proporció Se desea estimar la proporció p de idividuos de ua població que tiee ua determiada característica. Para ello se toma ua m.a.s. de elemetos de la població, aotado u 1 si dicho elemeto tiee la característica, y 0 e otro caso, es decir, se tiee ua m.a.s. X 1,...,X de ua B (1,p) ( 1 (tiee la caract.) co probab. p X, E (X) p, V ar (X) p (1 p) 0 (o la tiee) co probab. 1 p U estimador razoable de p es la proporció de elemetos de la muestra que tiee dicha característica, es decir bp X X 12

13 Propiedades µ 1 P 1. E (bp) E X i 1 µ 1 2. Var(bp) Var P E (X i ) 1 p p P X i 1 P p (1 p) 2 p (1 p) 3. La distribució de bp depede de la distribució de la població X, pero cuado es grade à r! p (1 p) bp N p, Example 13 E el proceso de producció de ua empresa, el 1% de los productos sale defectuoso. Para corroborarlo se obtiee ua m.a.s.de tamaño 25y se estima la proporció de productos defectuosos. Estimar la probabilidad de que la proporció estimada sea mayor que el 2%. P (bp >0.02) P bp p r > 0.02 p r p (1 p) p (1 p) ' P Z> 0.02 bp r bp (1 bp) P Z> r 0.01 (1 0.01) P (Z >0.50) P (bp >0.02)

14 5 Estadísticos ordeados Sea X 1,...,X ua m.a.s de ua població X co fució de distribució F (x) ydesidadf (x). Es importate estudiar etre qué valores podría estar los valores muestrales; se cosidera etoces X (1),...,X () los estadísticos de orde (los valores muestrales ordeados de meor a mayor X(1)... X (). Auque X1,...,X so idepedietes idéticamete distribuidos (i.i.d.) por tratarse de ua m.a.s., X (1),...,X () o lo so. Ejemplos X (1) mi(x 1,...,X ) X () max(x 1,...,X ) 14

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

TEMA 3: INFERENCIA ESTADISTICA

TEMA 3: INFERENCIA ESTADISTICA ESTADÍSTICA, CURSO 008 009 TEMA 3: INFERENCIA ESTADISTICA INTRODUCCION oblació. Muestra, muestreo. Objetivos de la iferecia estadística. Métodos paramétricos y o paramétricos. TEORIA ELEMENTAL DEL MUESTREO.

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales

Introducción a la Inferencia Estadística. Muestreo en poblaciones normales Ídice 5 Itroducció a la Iferecia Estadística Muestreo e poblacioes ormales 51 51 Itroducció 51 52 Estadísticos y mometos muestrales 53 521 Media muestral Propiedades 54 522 Variaza muestral Propiedades

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

Estimación de Parámetros. Estimación de Parámetros

Estimación de Parámetros. Estimación de Parámetros Uiversidad Técica Federico Sata María Capítulo 7 Estimació de Parámetros Estadística Computacioal II Semestre 007 Prof. Carlos Valle Págia : www.if.utfsm.cl/~cvalle e-mail : cvalle@if.utfsm.cl C.Valle

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

UNIDAD 3.- INFERENCIA ESTADÍSTICA I

UNIDAD 3.- INFERENCIA ESTADÍSTICA I UNIDAD 3.- INFERENCIA ESTADÍSTICA I 1. ESTADÍSTICA INFERENCIAL. MUESTREO La Estadística es la ciecia que se preocupa de la recogida de datos, su orgaizació y aálisis, así como de las prediccioes que, a

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

Análisis de resultados. Independencia de las muestras

Análisis de resultados. Independencia de las muestras Aálisis de resultados Clase ro. 8 Curso 00 Idepedecia de las muestras Los resultados de ua corrida de simulació, so muestras de algua distribució. Esos resultados los llamamos "respuestas". Las respuestas

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual

ESTIMACIÓN. TEMA 5: Estimación puntual I. Propiedades de los estimadores. TEMA 6: Estimación puntual II. Métodos de estimación puntual ETIMACIÓN TEMA 5: Estimació putual I. Propiedades de los estimadores TEMA 6: Estimació putual II. Métodos de estimació putual TEMA 7: Estimació por itervalos CONTRATE DE HIPÓTEI TEMA 8: Cotrastes paramétricos

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

Ejercicios resueltos de Muestreo

Ejercicios resueltos de Muestreo Tema Ejercicios resueltos de Muestreo Ejercicio Sea ua població ita de 4 elemetos: P = f; 4; ; g : Se cosidera muestras de elemetos que se supoe extraidos y o devueltos a la població y que el muestreo

Más detalles

Tema 7: Estimación puntual.

Tema 7: Estimación puntual. Estadística 68 Tema 7: Estimació putual. 7.1 Itroducció a la Iferecia Estadística. E los temas ateriores se ha hecho éfasis e la teoría de la probabilidad y e determiados modelos probabilísticos. E este

Más detalles

En esta tema sentaremos las bases del muestreo estadístico y estudiaremos las distribuciones de algunos estadísticos a partir de una muestra.

En esta tema sentaremos las bases del muestreo estadístico y estudiaremos las distribuciones de algunos estadísticos a partir de una muestra. Capítulo 6 Muestreo Estadístico E esta tema setaremos las bases del muestreo estadístico y estudiaremos las distribucioes de alguos estadísticos a partir de ua muestra. 6.1. Coceptos básicos Auque e el

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

UT-4: Distribuciones fundamentales de muestreo y descripción de datos

UT-4: Distribuciones fundamentales de muestreo y descripción de datos UT-4: Distribucioes fudametales de muestreo y descripció de datos Sub tema: Muestreo aleatorio. Distribucioes muestrales. Distribucioes muestrales de medias. Teorema del límite cetral. Aplicacioes. DF

Más detalles

El método de Monte Carlo

El método de Monte Carlo El método de Mote Carlo El método de Mote Carlo es u procedimieto geeral para seleccioar muestras aleatorias de ua població utilizado úmeros aleatorios. La deomiació Mote Carlo fue popularizado por los

Más detalles

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE)

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE) TUTORÍA DE ETADÍTICA EMPREARIAL (º A.D.E.) e-mail: imozas@elx.ued.es https://www.iova.ued.es/webpages/ilde/web/idex.htm PROBLEMA DE LO TEMA 5, 6 Y 7 PROPUETO EN EXÁMENE DE ETADÍTICA EMPREARIAL (ANTIGUA

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Dra. Diaa M. Kelmasky 109 13. INTERVALOS DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL Supogamos que X1,...,X es ua muestra aleatoria de ua població ormal co media μ y variaza. Sabemos que la media

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

TEMA 6 MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO

TEMA 6 MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO .- Itroducció: TEMA MUESTRAS ALEATORIAS Y DISTRIBUCIONES EN EL MUESTREO Los aálisis estadísticos que se realiza e el mudo real tiee como objetivo estudiar las propiedades características de las poblacioes

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Tema 9. Introducción a la Inferencia Estadística. Presentación y Objetivos. Esquema Inicial. Probabilidades y Estadística I

Tema 9. Introducción a la Inferencia Estadística. Presentación y Objetivos. Esquema Inicial. Probabilidades y Estadística I Tema 9. Itroducció a la Iferecia Estadística Presetació y Objetivos. La iferecia utiliza el leguaje de la probabilidad para sacar coclusioes de los datos y acompañar esas coclusioes por ua declaració formal

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza.

Conceptos generales de inferencia estadística. Estimación de parámetros. Intervalos de confianza. FCEyN - Estadística para Química do. cuat. 006 - Marta García Be Coceptos geerales de iferecia estadística. Estimació de parámetros. Itervalos de cofiaza. Iferecia estadística: Dijimos e la primera clase

Más detalles

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Bilbao Asigatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Bilbao Asigatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA PARTE : ESTADÍSTICA INFERENCIAL 0. RECORDATORIO Estadística iferecial.

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

Estimación de parámetros. Biometría

Estimación de parámetros. Biometría Estimació de parámetros Biometría Estimació Las poblacioes so descriptas mediate sus parámetros Para variables cuatitativas, las poblacioes so descriptas mediate y Para variables cualitativas, las poblacioes

Más detalles

Población Joven Adulta Total A favor En contra Total

Población Joven Adulta Total A favor En contra Total Nombre: Libre Reglametado C.I.: EXAMEN El exame costa de dos partes. La Primera Parte debe ser realizada por todos los alumos y el tiempo previsto es de 2 horas. La Seguda Parte debe ser realizada sólo

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

Paso 2: Elegir un estadístico de contraste. Como queremos hacer un contraste de hipótesis para la media, el estadístico de contraste adecuado es:

Paso 2: Elegir un estadístico de contraste. Como queremos hacer un contraste de hipótesis para la media, el estadístico de contraste adecuado es: Hoja 6: Cotraste de hipótesis 1. U laboratorio farmacéutico ha elaborado u fármaco e forma de comprimidos cuyo peso sigue ua distribució Normal co ua desviació típica de 0.12 mg. Se sabe que ua dosis de

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

Formulas. Población infinita. Población finita

Formulas. Población infinita. Población finita Formulas X~N(μ, σ 2 ) x = x i x ~N si X~N o si > 30 Població ifiita Població fiita x ~N(μ, σ2 ) N x ~N(μ, N 1 σ2 ) Ejercicio Se sabe que la media poblacioal e u exame de Estadística es de 70 y que la variaza

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra:

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra: T ema 8 ESTIMACIÓN Coceptos previos Població y muestra: Població se refiere al cojuto total de elemetos que se quiere estudiar ua o más características. Debe estar bie defiida. Llamaremos N al úmero total

Más detalles

Objetivo. 1. Intervalos y test (una sola muestra) Práctica 7: Intervalos de conanza y contrastes de hipótesis I. M. Iniesta Universidad de Murcia

Objetivo. 1. Intervalos y test (una sola muestra) Práctica 7: Intervalos de conanza y contrastes de hipótesis I. M. Iniesta Universidad de Murcia Práctica 7: Itervalos de coaza y cotrastes de hipótesis I Objetivo E esta práctica y e la siguiete apredemos a aplicar e iterpretar las técicas de itervalos de coaza y test de hipótesis, seleccioado la

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

ESTADÍSTICA II TEMA IV: ESTIMACION

ESTADÍSTICA II TEMA IV: ESTIMACION ESTADÍSTICA II TEMA IV: ESTIMACION IV.. Itroducció. IV.. Estimació putual. Métodos y propiedades. IV... Cocepto y defiició. IV... Propiedades de los estimadores putuales. IV..3. Métodos de estimació putual.

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado e Geomática y Topografía Escuela Técica Superior de Igeieros e Topografía, Geodesia y Cartografía. Uiversidad Politécica de Madrid

Más detalles

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA Métodos estadísticos y uméricos Estimació por Itervalos de cofiaa PROBLEMA REUELTO DE ETIMACIÓN POR INTERVALO DE CONFIANZA U adador obtiee los siguietes tiempos, e miutos, e 0 pruebas croometradas por

Más detalles

Intervalos de confianza Muestras grandes

Intervalos de confianza Muestras grandes Itervalos de cofiaza Muestras grades Por qué u itervalo de cofiaza? E la Uidad 3 revisamos los coceptos de població y muestra. Los parámetros poblacioales so la media μ y la variaza σ. So costates y geeralmete

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

TEMA 2: INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.

TEMA 2: INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. TEMA : INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA...- CONCEPTOS FUNDAMENTALES. Iferecia estadística. Ua iferecia es ua extesió de lo particular a lo geeral. La iferecia iductiva es u proceso co riesgo ya

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que

Más detalles

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco

Capítulo 4 (Continuación) MÉTODOS ESTADÍSTICOS. Autor: José María García Palanco Capítulo 4 (Cotiuació MÉTODOS ESTADÍSTICOS Autor: José María García Palaco Técicas Eperimetales Medida de magitudes 4.8 Métodos Estadísticos Ya hemos visto e los apartados ateriores, que u procedimieto

Más detalles

CAPÍTULO 7 DISTRIBUCIONES EN EL MUESTREO Introducción

CAPÍTULO 7 DISTRIBUCIONES EN EL MUESTREO Introducción CAPÍTULO 7 DISTRIBUCIONES EN EL MUESTREO 7.. Itroducció Geeralmete, las poblacioes tiee tamaños que hace que estudiarla e su totalidad sea poco práctico desde diversos putos de vista; costo, tiempo, tipo

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció ( p ). Para

Más detalles

Análisis estadístico de datos simulados

Análisis estadístico de datos simulados Aálisis estadístico de datos simulados Ídice 1. Itroducció 1 2. Selecció de ua distribució de probabilidad 2 2.1. Distribucioes cotiuas.................................. 3 2.2. Distribucioes discretas...................................

Más detalles

5.1. Tipos de convergencia

5.1. Tipos de convergencia Estadística Tema 5 Covergecia de Variables Aleatorias 51 Tipos de covergecia 52 Ley de los grades úmeros 53 Teorema cetral del límite 54 Método delta Objetivos 1 Motivació estudio secuecias de VAs 2 Covergecia

Más detalles

Luis González Abril y Luis M. Sánchez-Reyes {luisgon, - Dpto. Economía Aplicada I Universidad de Sevilla

Luis González Abril y Luis M. Sánchez-Reyes {luisgon, - Dpto. Economía Aplicada I Universidad de Sevilla ETUDIO OBRE EL EXCEO DE AMPLITUD EN LA CONTRUCCIÓN DE INTERVALO DE CONFIANZA PARA LA MEDIA POBLACIONAL CON VARIANZA DECONOCIDA EN UNA POBLACIÓN NORMAL Luis Gozález Abril y Luis M. áchez-reyes {luisgo,

Más detalles

MUESTREO ESTRATIFICADO. TECNICAS DE MUESTREO II

MUESTREO ESTRATIFICADO. TECNICAS DE MUESTREO II MUESTREO ESTRATIFICADO TECNICAS DE MUESTREO II Email:cgozales@lamolia.edu.pe CONSTRUCCION DE OS ESTRATOS Cuál es la mejor característica para la costrucció de los estratos? Cómo se determia los límites

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA . Metodología e Salud Pública INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA Autor: Clara Lagua 5.1 INTRODUCCIÓN La estadística iferecial aporta las técicas ecesarias para extraer

Más detalles

Práctica 2 VARIABLES ALEATORIAS CONTINUAS

Práctica 2 VARIABLES ALEATORIAS CONTINUAS Práctica. Objetivos: a) Apreder a calcular probabilidades de las distribucioes Normal y Chi-cuadrado. b) Estudio de la fució de desidad de la distribució Normal ~ N(µ;σ) c) Cálculo de la fució de distribució

Más detalles

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA RECUPERATIVA N 2 Profesor: Hugo S. Salias. Segudo Semestre 2009 DESARROLLO

Más detalles

Capítulo 4. Inferencia Estadística: Introducción Preliminares Noción de Muestra.

Capítulo 4. Inferencia Estadística: Introducción Preliminares Noción de Muestra. Capítulo 4 Iferecia Estadística: Itroducció. 4.. Prelimiares. Nos hemos maejado co la Teoría de la Probabilidad y os dispoemos a afrotar problemas de Iferecia Estadística. Para ello, además del maejo de

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS

Tema 8. Sesiones 15 y 16 Guía de clase 8. CONTRASTE DE HIPOTESIS UNIVERSIDAD DE LOS ANDES NUCLEO UNIVERSITARIO RAFAEL RANGEL DEPTO DE CIENCIAS ECONOMOMICAS Y ADMIMISTRATIVAS AREA DE ESTADÍSTICA ESTADÍSTICA BASICA CONTADURÍA PÚBLICA Tema 8. Sesioes 5 y 6 Guía de clase

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS

4 - DESIGUALDAD DE CHEBYSHEV- LEY DE LOS GRANDES NUMEROS arte Desigualdad de Chebyshev rof. María B. itarelli 4 - DESIGULDD DE CHEBYSHE- LEY DE LOS GRNDES NUMEROS La desigualdad de Chebyshev es ua importate herramieta teórica. Etre otras aplicacioes costituirá

Más detalles

n x i n y i = 0 ,..., x n u)... exp 1 y 1 y y n u . Demuestre que i=1 Y n

n x i n y i = 0 ,..., x n u)... exp 1 y 1 y y n u . Demuestre que i=1 Y n 47 Capítulo 9 Propiedades de los estimadores putuales y métodos de estimació ii Demuestre que para que esta relació sea idepediete de p, debemos teer x i y i = 0 o x i = y i. iii De acuerdo co el método

Más detalles

Pasos básicos para docimar una hipótesis:

Pasos básicos para docimar una hipótesis: Pasos básicos para docimar ua hipótesis:. Defiir cual es la població y el o los parámetro de iterés.. Establecer la hipótesis (ula y alterativa). 3. Establecer el ivel de sigificació α. 4. Recoger los

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis.

8.1 Al finalizar el tema el alumno debe conocer Características de la estimación utilizando los contrastes o test de hipótesis. TEMA 8. Cotrastes de hipótesis. E este capítulo se epodrá el cotraste o test de hipótesis estadísticas, que está muy relacioado co la «estimació por itervalos» del capítulo aterior. Va a defiirse importates

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

Tema 5. Sucesiones de Variables Aleatorias

Tema 5. Sucesiones de Variables Aleatorias CSA. Sucesioes de VA Tema 5. Sucesioes de Variables Aleatorias. CONCEPTO E muchos problemas de procesado de señal o image, cotrol digital y comuicacioes dispoemos de datos muestreados e u determiado orde

Más detalles

Capítulo VARIABLES ALEATORIAS

Capítulo VARIABLES ALEATORIAS Capítulo VI VARIALES ALEATORIAS. Itroducció Detro de la estadística se puede cosiderar dos ramas perfectamete difereciadas por sus objetivos y por los métodos que utiliza: Estadística Descriptiva o Deductiva

Más detalles