ORGANIZACIÓN DE LOS DATOS.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ORGANIZACIÓN DE LOS DATOS."

Transcripción

1 ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar o e bruto. Los datos e bruto so largas listas de úmeros que o so de gra utilidad y o brida al ivestigador la iformació que requiere si ates o se trata. Los datos si tratar se les debe sitetizar o resumir de maera que sea posible iterpretarlos, etederlos y utilizarlos. La maera de orgaizar los datos es mediate tablas de distribució de frecuecias. TABLAS DE DISTRIBUCIÓN DE FRECUENCIAS. E estadística existe ivestigacioes relacioadas co los precios de los productos de la dieta diaria, la estatura y el peso de u grupo de idividuos, los salarios de los empleados, los grados de temperatura del medio ambiete, las calificacioes de los estudiates, etc., que puede adquirir diferetes valores gracias a ua uidad apropiada, que recibe el ombre de variable. La represetació umérica de las variables se deomia dato estadístico. Las tablas de distribució de frecuecia es ua disposició tabular de datos estadísticos, ordeados ascedete o descedetemete, co la frecuecia (fi) de cada dato. Las distribucioes de frecuecias puede ser para datos o agrupados y para datos agrupados o de itervalos de clase. TABLA DE DISTRIBUCIÓN DE FRECUENCIA PARA DATOS NO AGRUPADOS. Es aquella distribució que idica las frecuecias co que aparece los datos estadísticos, desde el meor de ellos hasta el mayor de ese cojuto si que se haya hecho igua modificació al tamaño de las uidades origiales. E estas distribucioes los valores de cada variable ha sido solamete reagrupados, siguiedo u orde lógico co sus respectivas frecuecias. La distribució de frecuecias o agrupadas o tabla co datos o agrupados se emplea si las variables toma u úmero pequeño de valores o la variable es discreta (siempre se asocia co valores eteros). Tipos de frecuecias. Frecuecia absoluta (fi). La frecuecia absoluta es el úmero de veces que aparece u determiado valor e u estudio estadístico. La suma de las frecuecias absolutas es igual al úmero total de datos, que se represeta por N. fi1 + fi 2 + fi 3...fi = N

2 Frecuecia relativa (fri). La frecuecia relativa es el cociete etre la frecuecia absoluta de u determiado valor y el úmero total de datos. Se puede expresar e tatos por cieto y se represeta por fri. fi fri = La suma de las frecuecias relativas es igual a 1. N Frecuecia acumulada (fai). La frecuecia acumulada es la suma de las frecuecias absolutas de todos los valores iferiores o iguales al valor cosiderado. Frecuecia relativa acumulada (frai). La frecuecia relativa acumulada es el cociete etre la frecuecia acumulada de u determiado valor y el úmero total de datos. Se puede expresar e tatos por cieto fai frai = N Ejemplo resuelto. Los siguietes datos correspode al úmero de libros leídos por u grupo de alumos, e u lapso de 2 años. Elaborar la tabla de distribució de frecuecias

3 E la primera columa de la tabla colocamos la variable ordeada de meor a mayor, e la seguda hacemos el recueto y e la tercera aotamos la frecuecia absoluta. N de libros leídos. Frecueci a fi Frecuecia relativa fri Frecuecia acumulada fai Frecuecia relativa acumulada frai = = = = = =18 18 = = =25 25 = = =28 28 = = = = 1 Total 1 Nota. Los valores de la frecuecia relativa y la frecuecia relativa acumulada al multiplicarse por 100%, os daría el porcetaje que represeta la variable que se aaliza. Qué porcetaje de alumos leyero 5 libros? 0.066x100%= 6.6% Qué porcetaje de alumos leyero meos de 4 libros? 0.83x100%= 83%

4 TABLA DE DISTRIBUCIÓN DE FRECUENCIA DE CLASE O DE DATOS AGRUPADOS. Es aquella distribució e la que la disposició tabular de los datos estadísticos se ecuetra ordeada e clases y co la frecuecia de cada clase; es decir, los datos origiales de varios valores adyacetes del cojuto se combia para formar u itervalo de clase. No existe ormas establecidas para determiar cuádo es apropiado utilizar datos agrupados o datos o agrupados; si embargo, se sugiere que cuado el úmero total de datos (N) es igual o superior 50 y además el rago o recorrido de la serie de datos es mayor de 20, etoces, se utilizará la distribució de frecuecia para datos agrupados, tambié se utilizará este tipo de distribució cuado se requiera elaborar gráficos lieales como el histograma, el polígoo de frecuecia o la ojiva. La distribució de frecuecias agrupadas o tabla co datos agrupados se emplea si las variables toma u úmero grade de valores o la variable es cotiua (se le puede asociar co u úmeros racioales e irracioales). La orgaizació de los datos geeralmete implica el arreglo de las observacioes e clases. Al arreglo de los datos para expresar la frecuecia de ocurrecia de las observacioes e cada ua de estas clases se cooce como distribució de frecuecias. La costrucció de ua tabla de distribució de frecuecias requiere e primer lugar de la selecció de los itervalos de clase. Au cuado la selecció de los itervalos de clase es u arte y depede de los datos ivolucrados, los siguietes pasos resultara útiles: Paso 1. Ordear los datos de meor a mayor para su clasificació. Paso 2. Calcular el rago (R) de los datos, es decir, la logitud del itervalo (I) que los cotiee: R = Xmáx Xmi I=[ Xmi, Xmáx] R=Rago. Xmáx= Dato de mayor valor umérico. Xmi=Dato de meor valor umérico. I= Itervalo umérico.

5 Paso 3. Defiir el úmero de clases (Nc), el cual o deberá ser ta pequeño (meos de 6) o ta grade (más de 20) que la verdadera aturaleza de la distribució sea imposible visualizar. A cotiuació se debe elegir u úmero específico de clases o categorías e las que se debe clasificar los datos, la elecció del úmero de clases o categorías es de maera arbitraria, si embargo deberá elegirse u úmero suficiete de clases de modo que los datos o quede amotoados, pero tampoco se elije demasiados puesto que las tablas de distribució de frecuecias sería difícil de maejar. Existe dos métodos para determiar el úmero de clases, los cuales so los más utilizados: 1er. Método. Método de la raíz, el cual cosiste e extraer la raíz cuadrada del tamaño de la muestra y redodear el resultado así obteido al etero mayor. Nc = Nc=Número de clases. = Tamaño de la muestra. 2do. Método. Método de Sturges. Este método puede daros ua aproximació razoable para determiar el úmero de clases; éste se obtiee co el siguiete modelo matemático. Nc= (log) Nc= Número de clases. Log= Logaritmo de base 10. = Tamaño de la muestra.

6 Paso 4. El siguiete paso cosiste e determiar la Amplitud de clase (Ac), es coveiete que el tamaño de las clases sea u úmero etero, por tato es ecesario redodear el cociete al etero más cercao. Ac = R Nc Ac= Amplitud de clase. R=Rago. Nc = Número de clases. Paso 5. A cotiuació clasifiquemos los datos e cada ua de las clases defiiedo el límite iferior (Li) y el límite superior (Ls) de cada clase. E el caso e que se llegue a presetar u exceso o faltate co respecto al dato de mayor valor umérico (Xmáx) se deberá repartir el exceso o faltate de la maera más equitativa posible etre los extremos del itervalo. Paso 6. Defiir los límites reales de clase de acuerdo a la siguiete forma: Límite real iferior (Lri)= Li Limite real superior (Lrs)= Ls Paso 7. Defiir las frecuecias de cada clase (fi), los cuales so el úmero de datos que queda icluidos e cada itervalo de clase.

7 Paso 8. Defiir las frecuecias relativas de cada clase (fri), éstas so porcetajes de los datos que hay e cada itervalo de clase co respecto al tamaño de la muestra, por lo que para obteerlas se divide la frecuecia de cada itervalo de clase etre el tamaño de la muestra. fi fri = fri=frecuecia relativa de la clase i. fi= Frecuecia de la clase i. =Tamaño de la muestra. Paso 9. Determiar la marca de clase (mi), es el puto medio de la amplitud de clase. Li + Ls mi = mi= marca de clase de la clase i. 2 Paso 10. Defiir la frecuecias acumuladas (fai), se puede obteer secillamete si se suma las frecuecias de los itervalos de clase precedetes. Paso 11. Defiir la frecuecia relativa acumulada (frai), Se obtiee dividiedo cada ua de las frecuecias acumuladas etre el tamaño de la muestra () fai frai = frai=frecuecia relativa acumulada de la clase i. fai= Frecuecia acumulada de la clase i. =Tamaño de la muestra.

8 Ejemplo resuelto 1. Los siguietes datos correspode al úmero de clietes que acudiero al CAFÉ INTERNET INN durate 40 días Para elaborar la tabla de distribució de frecuecia, seguir los siguietes pasos. Paso 1. Ordear de meor a mayor Paso2. Calcular el rago R= Xmáx Xmi R= R= 29 Paso 3. Calcular el úmero de clases Nc= Nc= 40 Nc=6.32= 6 Paso 4. Calcular la amplitud de clase. Ac = Ac R Nc 29 = 6 = 4.8 = 5 Paso 5 al paso 11. Tabla de distribució de frecuecias Frecuecia marca de frecuecia frecuecia relativa Clase Límites de clase Límites reales de clase Frecuecia relativa clase acumulada acumulada N Li Ls Lri Lrs fi fri mi fai frai

9 Como llear la tabla. Para los límites de clase. Para la clase 1 Li=Xmi= 10 Ls=Xmi + (Ac-1) esto es porque el itervalo debe correspoder a la Ac. Ls= 10+4= 14 Para la clase 2 Li= Ls de la clase aterior más 1 Li= 14+1=15 Ls= Li de la clase 2 + (Ac-1) Ls= 15+4=19 Así sucesivamete para las clases posteriores. Para los límites reales de clase. Para la clase 1 Lri= Límite real iferior= Li 0.5 Lri=10-0.5=9.5 Lrs= Límite real superior= Ls Lrs=14+0.5=14.5 Así sucesivamete para las clases posteriores. Para la frecuecia de cada clase. fi= Número de datos que queda icluidos e cada itervalo de clase. Para la clase 1. Para saber cuátos datos queda icluidos e el itervalo I= [10,14], se deberá cotar e los datos ordeados, para esta primera clase fi= 7, que correspode a los datos 10, 12, 13, 13, 13, 14 y 14 Para la clase 2. Para saber cuátos datos queda icluidos e el itervalo I= [15,19], se deberá cotar e los datos ordeados, para esta primera clase fi= 5, que correspode a los datos 15, 16, 17, 18 y 19. Así sucesivamete para las clases posteriores. Para la frecuecia relativa. Para la clase 1. fi fri = 7 fri = = Para la clase 2. fi fri = 5 fri = = Así sucesivamete para las clases posteriores.

10 Para el cálculo de la marca de clase (mi). mi = Li + Ls 2 Para la clase mi = = = Para la clase mi = = = Así sucesivamete para las clases posteriores. Para la frecuecia acumulada (fai). Se puede obteer secillamete si se suma las frecuecias de los itervalos de clase precedetes. Para la clase 1. Como o hay clases precedetes fai= la frecuecia de la clase 1. fai=7 Para la clase 2. Como ya es la seguda clase, sumamos la frecuecia de la clase 2 más la frecuecia de las clases precedetes. fai= 5+7=12 Para la clase 3. fai= =23 Así sucesivamete para las clases posteriores. Para la frecuecia relativa acumulada. fai frai = Para la clase 1. 7 frai = = Para la clase frai = = Así sucesivamete para las clases posteriores

11 Ejemplo resuelto 2. Los siguietes datos correspode al úmero de goles aotados e 40 partidos de futbol rápido e la liga local E base a estos datos se costruyo la siguiete tabla de distribució de frecuecia. Tabla de distribució de frecuecias Clase Límites de clase Límites reales de clase Frecuecia Frecuecia relativa marca de clase frecuecia acumulada frecuecia relativa acumulada N Li Ls Lri Lrs fi fri mi fai frai E base a la tabla aterior cotestar lo siguiete: 1.- Cuál fue el meor úmero de goles que se aoto e la liga durate los 40 días? La respuesta a esto está e uestro meor dato, que es de 1gol aotado. 2- E cuátos partidos se aoto etre 1 y 8 goles? La respuesta es e 28 partidos, lo cual correspode a las frecuecias de clases 1y Qué porcetaje de partidos se aoto etre 5 y 8 goles? La respuesta se ecuetra e la frecuecia relativa de la clase 2 y correspode a 0.325x100%= 32.5%

12 4.- Qué porcetaje de los partidos se aoto 12 goles o meos? La respuesta se ecuetra e la frecuecia relativa acumulada desde la clase 1 hasta la clase 3, esta es de 0.875x100%=87.5% 5.- Qué porcetaje de los partidos se aoto más de 12 goles? Solo e las clases 4, 5 y 6 se aotaro más de 12 goles, y el porcetaje se obtiee sumado las frecuecias relativas de dichas clases, siedo e =0.125x100%= 12.5% 6.- E la mayoría de los partidos etre cuátos goles se aotaro? La respuesta es etre 1y 4 goles que correspode a 15 partidos.

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean ESTADÍSTICA Estadística: Es ua rama de la matemática que comprede Métodos y Técicas que se emplea e la recolecció, ordeamieto, resume, aálisis, iterpretació y comuicació de cojutos de datos. Població:

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas:

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas: ESTADÍSTICA Ejercicio º.- Al pregutar a 0 idividuos por el úmero de persoas que vive e su casa, hemos obteido las siguietes respuestas: Elabora ua tabla de frecuecias. Ejercicio º.- E ua empresa de telefoía

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es MATEMÁTICAS I 1º Bachillerato Capítulo 9: 393 Ídice 1. ESTADÍSTICA DESCRIPTIVA UNIDIMENSIONAL 1.1. INTRODUCCIÓN 1.. MÉTODO ESTADÍSTICO 1.3. CONCEPTOS BÁSICOS 1.4. TIPOS DE VARIABLES 1.5. DISTRIBUCIONES

Más detalles

Notas Docentes. Estadística para Economistas. Carlos Casacuberta. Nota Docente No. 08

Notas Docentes. Estadística para Economistas. Carlos Casacuberta. Nota Docente No. 08 Notas Docetes Estadística para Ecoomistas Carlos Casacuberta Nota Docete No. 08 Diploma e Ecoomía 004 Departameto de Ecoomía Facultad de Ciecias Sociales Estadística Notas de clase. Itroducció La estadística

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

2.- Estudio Poblacional y Muestral Univariante

2.- Estudio Poblacional y Muestral Univariante .- Estudio Poblacioal y Muestral Uivariate Població: Colectivo de persoas o elemetos co ua característica comú, objeto de estudio. Imposibilidad de estudio de esta característica e toda la població - Coste

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de:

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de: ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si u suceso puede teer lugar de m maeras distitas y cuado ocurre ua de ellas se puede realizar otro suceso imediatamete de formas diferetes, ambos sucesos, sucesivamete,

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística,, McGraw Hill. GLOSARIO ESTADÍSTICO Fuete: Murray R. Spiegel, Estadística,, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio cietífico de los La estadística posee tres campos métodos para recoger, orgaizar,

Más detalles

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo Test de Kolmogorov Smirov Técicas de validació estadística Bodad de auste Kolmogorov-Smirov Patricia Kisbye FaMAF 29 de mayo, 2008 Icoveiete: No es secillo costruir los itervalos a partir de las probabilidades.

Más detalles

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL ) MEDIA ARITMÉTICA MEDIDAS DE TENDENCIA CENTRAL CON EXCEL Las medidas de tedecia cetral so medidas represetativas que como su ombre lo idica, tiede a ubicarse hacia el cetro del cojuto de datos, es decir,

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z < Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

Tema 1. Análisis Estadístico de Datos.

Tema 1. Análisis Estadístico de Datos. Tema. Aálisis Estadístico de Datos. Presetació y Obetivos. La Estadística Descriptiva egloba ua serie de técicas de estructuració y de represetació gráica que permite ordear y presetar adecuadamete la

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10 SUCESIONES I. Determiar el térmio que cotiúa e cada ua de las siguietes sucesioes: 1. ; 5; 11; 0; 4. - ; 5; - 9 ; 19; A) 8 B) - 7 C) 7 D) - 8 E) 14 A) 8 B) 0 C) D) 1 E) 5. 5 4 7 6 9 8 ; ; ; ; ; ;... 4

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

BIOESTADÍSTICA I 1. DEFINICIONES

BIOESTADÍSTICA I 1. DEFINICIONES BIOESTADÍSTICA I 1. DEFINICIONES 1.1 ESTADÍSTICA. Es ua disciplia, que hace parte de la matemática aplicada, que provee métodos y procedimietos para colectar, clasificar, resumir y aalizar iformació (datos)

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 1. Itroducció al cálculo de

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas).

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas). ÁLGEBRA ELEMENTAL 1.- EXPRESIONES ALGEBRAICAS (GENERALIDADES) 1.1.- Alguas defiicioes Ua epresió algebraica es ua epresió matemática que cotiee úmeros, letras que represeta úmeros cualesquiera sigos matemáticos

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

Parámetros de tiempo para

Parámetros de tiempo para Parámetros de tiempo para cotrol y diagóstico INTRODUCCIÓN. Ua de las actividades importates a ivel de sistemas que se debe desarrollar e toda etidad que cuete co u recurso computacioal de soporte para

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

SOLUCIÓN EXAMEN I PARTE II

SOLUCIÓN EXAMEN I PARTE II Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

TEMA 5 ESTADÍSTICA. 3. Cómo debe de ser una muestra para ser correcta?

TEMA 5 ESTADÍSTICA. 3. Cómo debe de ser una muestra para ser correcta? TEMA 5 ESTADÍSTICA Estadística obteció, estudio e iterpretació de grades masas de datos Població es el cojuto de todos los elemetos que cumple ua determiada característica. Muestra es cualquier parte de

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Análisis en el Dominio del Tiempo para Sistemas Discretos

Análisis en el Dominio del Tiempo para Sistemas Discretos OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is

Más detalles

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007)

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007) IS Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua INTRVALOS D CONFIANZA PARA PROPORCIONS (007) jercicio 1- Tomada, al azar, ua muestra de 10 estudiates de ua Uiversidad, se ecotró que 54 de ellos

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

3Soluciones a los ejercicios y problemas PÁGINA 79

3Soluciones a los ejercicios y problemas PÁGINA 79 Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

UN MODELO DE ESTUDIO PARA DEFINIR NIVELES DE CONFIABILIDAD EN UNA LÍNEA DE PRODUCCION.

UN MODELO DE ESTUDIO PARA DEFINIR NIVELES DE CONFIABILIDAD EN UNA LÍNEA DE PRODUCCION. FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA UN MODELO DE ESTUDIO PARA DEFINIR NIVELES DE CONFIABILIDAD EN UNA LÍNEA DE PRODUCCION. FERNANDO ESPINOSA FUENTES INTRODUCCION. U sistema productivo

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Señales en Tiempo Discreto

Señales en Tiempo Discreto Señales e Tiempo Discreto Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció.. Señales e tiempo discreto.3. Clasificació de las señales

Más detalles

Orden en los números naturales

Orden en los números naturales 88 Aritmética U istrumeto para medir usado fraccioes comues Refleioes adicioales Dividir ua uidad e partes iguales: El Teorema de Thales se refiere a dividir u segmeto e cualquier úmero de segmetos iguales.

Más detalles

ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse.

ANEXO. Es todo producto envasado y medido sin la presencia del consumidor y en condiciones de comercializarse. ANEXO 1. MUESTREO Y TOLERANCIAS DE PRODUCTOS PREMEDIDOS 2. APLICACIÓN El presete reglameto se aplicará para la verificació de los coteidos etos de los productos promedios, etiquetados, co coteido omial

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo.

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. Admítelo ua salchicha o es ua zaahoria. Así decía la revista El Cosumidor e u cometario sobre la baja calidad utricioal de las salchichas. Hay tres tipos

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

Matemáticas 2º de Bachillerato Ciencias Sociales

Matemáticas 2º de Bachillerato Ciencias Sociales ESTADÍSTICA DESCRIPTIVA VARIABLES ALEATORIAS TEORÍA DE MUESTRAS INTERVALOS DE CONFIANZA TEST DE HIPÓTESIS Matemáticas º de Bachillerato Ciecias Sociales Profesor: Jorge Escribao Colegio Imaculada Niña

Más detalles

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL.

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. E estadística, la distribució biomial es ua distribució de probabilidad discreta que mide el úmero de éxitos e ua secuecia de esayos

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles