Tema 9. Inferencia Estadística. Intervalos de confianza.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 9. Inferencia Estadística. Intervalos de confianza."

Transcripción

1 Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció Itervalo de cofiaza para media poblacioal. Tamaño de la muestra Itervalo de cofiaza Tamaño de la muestra Resume Itervalo de cofiaza para ua proporció Aputes realizados por José Luis Lorete (www.joseluislorete.es) Págia 1

2 1. Itroducció. El problema de la iferecia estadística es el iverso a los temas ateriores, que buscábamos la probabilidad de que ocurra distitas distribucioes plateadas. Ahora se trata a partir de los datos de muestras represetativas se iferirá resultados acerca de la població, como por ejemplo estimar el valor de µ (estimació putual de µ). Por ejemplo si queremos calcular la altura media de todos los escolares, y para ello teemos ua muestra de =100. qué valor elegimos como el más aproximado a µ?. Si la media de la muestra es de 165cm, podremos afirmar que es aproximadamete de 165 cm. Pero o podemos decir que exactamete el valor de µ es de 165cm, pues geeralmete el valor de la media muestral o es exactamete el mismo que la media poblacioal. Es por esto que esta ésta estimació se dice estimació putual. Los estimadores putuales sólo da ua idea aproximada del verdadero valor del parámetro a estimar, si saber como de fiable es tal aproximació. La estimació putual es poco útil, es mucho más iteresate obteer u itervalo detro del cual se tiee cierta cofiaza (fijada de atemao) de que se ecuetre el parámetro que se desee aproximar. Estimar u parámetro poblacioal, por ejemplo µ, mediate u itervalo [a,b] co u ivel de cofiaza 1-α (que se suele dar e tato por cié) se deomia estimació por itervalo de cofiaza P(a µ b)=1-α 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra Itervalo de cofiaza Partimos de ua població formada por u gra úmero de elemetos y de la que queremos estudiar ua variable aleatoria X que sigue ua distribució ormal N(µ,) co media, µ, y desviació,, descoocidas. Co el fi de estimar µ se toma ua muestra aleatoria simple de tamaño que os proporcioa ua media, que será el estimador putual de µ. Por el teorema cetral del límite (que vimos e el tema aterior) sabemos que la si la població grade, >30, etoces las medias sigue la ley ormal N(µ,/ ), de forma que la variable Aputes realizados por José Luis Lorete (www.joseluislorete.es) Págia 2

3 tipificada será x z µ = que sigue distribució ormal (N(0,1)). Si os dice el ivel de cofiaza es 1-α, el itervalo de cofiaza e Z será: IC Z =[ /, / ]. Siedo / el valor que cumple P(Z / )=1-α/2. Veámoslo gráficamete: Área=α/2 Área=1-α Área=α/2 P(z z α/2 )=1-α+α/2=1-α/2 Para obteer el itervalo de cofiaza de las medias de x,, y o de Z sólo teemos que deshacer la tipificació, si x z µ = x = µ + z. De esta forma se cumple que el itervalo [a,b] de cofiaza de, equivalete al de z, IC Z =[ /, / ], será itervalo de cofiaza es etoces: -z α/2 0 z α/2 a = x + zα / 2, b= x zα / 2 y x por lo que el IC=[ x zα / 2, x + zα / 2 ] Siedo el error máximo cometido al estimar µ mediate co precisió de 1-α igual a E= z / 2. Si 30 podemos asumir que =s, variaza muestral. α Los valores de z α/2 se ecuetra si problema e la tabla de distribució ormal, auque e la siguiete tabla poemos los valores más usualmete usados: Aputes realizados por José Luis Lorete (www.joseluislorete.es) Págia 3

4 Probabilidad 80% 90% 95% 99% 1-α 0,8 0,9 0,95 0,99 α(ivel sigificació) 0,2 0,1 0,05 0,01 α/2 0,1 0,05 0,025 0,005 z α/2 1,282 1,645 1,960 2,575 Para cualquier otro valor de α, se debe utilizar la tabla de probabilidad, buscado z α/2 de forma que se cumpla p(z z α/2 )=1 α Ejemplo: E los paquetes de arroz de cierta marca poe que el peso que cotiee es de 500 gramos. Ua asociació de cosumidores toma 100 paquetes para los que obiee ua media de 485g y desviació típica 10 g. a) Se puede aceptar co u grado de sigifiació igual a 0,05 que el fabricate está empaqutado realmete ua media de 500g? b) Calcular el itervalo de cofiaza al ivel de 99% para el peso de los paquetes. Solució: Deducimos del euciado quela media muestral es 485 y la desviació muestral es =10, para =100, co α=0,05. a) Para α=0,05, se cumple que z α/2 =1,96, co lo que E=z α/2 de forma que el itervalo de cofiaza es etoces: =1,96 1,96, IC= -E, +E)=( , )=(483.04, ), como 500 IC se puede estimar que las medias so diferetes, y por tato o puede aceptarse que el fabricate esté empaquetado co ua media de 500g. b) E este caso =500g, y α=0,01. De esta forma, z α/2 =2.575, co lo que el error máximo es E= z α/2 =2.575 = El itervalo de cofiaza es ahora: IC=( , )=( , ) Aputes realizados por José Luis Lorete (www.joseluislorete.es) Págia 4

5 2.2. Tamaño de la muestra Recordemos que el error máximo cometido o radio del itervalo es E= z α 2 / /, y que por tato el error dismiuye co el tamaño de la mustra,. Esto permite determiar el tamaño adecuado de la muestra como veremos e el siguiete ejemplo: Ejemplo: Ua variable X se distribuye segú ua ley ormal N(µ,). cuál debe de ser el tamaño de la muestra para que al estimar µ mediate la media muestral,, al ivel de cofiaza del 95% se cometa u error iferior a 0,3? Solució: E este problema lo que fijamos es el valor de error máximo, E=0.3, y buscamos el valor de. Al ser el ivel de cofiaza de 95%, α=0,05 y por tato z α/2 =1.96. Despejado del error podemos calcular fácilmete el valor de : E= z α/2 z, siedo E 0.3 α / = = E 0, Resume E los problemas de itervalos de cofiaza para la media, m, de ua població grade co desviació típica,, coocida ( o aproximada a partir de la desviació muestral, s) iterviee los siguietes elemetos: El tamaño de la muestra: La media muestral = La distribució muestral de la media, : N(µ, / ) El ivel de cofiaza (e tato por cie): 95%, 99%, etc El ivel de sigificació, α, que es el tato por uo de la diferecia 100- ivel cofiaza (0,05, 0,01, etc) El valor crítico de la variable tipificada, z α/2, que es el valor que cumple p(z z α/2 )=1-α/2 (se ecuetra e la tabla de la distribució ormal). El radio del itervalo o error máximo es E= z α/2 El cetro de la muestra, = El itervalo de cofiaza IC=[ x zα / 2, x + zα / 2 ] Aputes realizados por José Luis Lorete (www.joseluislorete.es) Págia 5

6 Ejercicios resueltos: Tipos de ejercicios que puede platearse so básicamete tres tipos de problemas: Dada ua distribució coocido,, α y la media = determiar el itervalo de cofiaza Dada ua distribució N(µ,) y coocidos, α, y el itervalo de cofiaza o E calcular el tamaño de la muestra. Dados, e I determiar la media muestral = y el ivel de cofiaza α. P1. Ua variable aleatoria X se distribuye co media µ descoocida y variaza =2,5. Se extrae ua muestra aleatoria de tamaño =100 y si tiee que su media 100=4,3. Costruir u itervalo de cofiaza de µ al 95%. Solució: Segú el euciado α=0,05, y por tato z α/2 =1.96, y el error máximo es etoces E= z α/2 = Así el IC=( 100-E, 100+E)=(3.81, 4.79). P2. Los estudiates de Bachillerato de España duerme u úmero de horas diarias que se distribuye de forma ormal co media µ descoocida y desviació =3. A partir de ua muestra aleatoria de tamaño 30 se ha obteido ua media muestral de 7 horas. Hallar u itervalo de cofiaza, al 96%, para la media de horas de sueño, µ. Solució: Sea X= horas de sueño que sigue la distribució ormal N(µ,=3). Co fi de estimar el valor de µ tomamos la muestra co =30 y media 30=7 horas, que es u estimado putual de µ. La media de las muestras de tamaño =30, 30 sigue u distribució ormal: 3 N(µ, ) =N(µ,1.73). El error máximo cometido co µ y co itervalo de cofiaza 30 del 96% (α=0,04) será E= z α/2. Para calcular zα/2 miramos la tabla de la distribució ormal el valor que cumple P(z z α/2 )=1-α/2=0.98 z α/2 =2.06, y por tato el error máximo es E= = Co los datos calculados ates se cumple etoces que IC=( 30-E, 30+E)=(5.9, 8.1). Aputes realizados por José Luis Lorete (www.joseluislorete.es) Págia 6

7 P3. El peso de los iños de 10 semaas de vida se distribuye segú ua ormal co variaza de 87g. cuátos iños será suficietes para estimar co ua cofiaza del 95% el peso medio de esa població co u error que o supere a 15g? Solució: La variable aleatoria peso X sigue distribució N(µ,=87) co µ descoocida y co error iferior E 15g. Se cumple que E= z α/2 z 15 α / 2 = 129, 641 E Por tato el úmero de datos de la muestra ha de ser al meos de 130. P4. a) Determiar el itervalo de cofiaza co el 95% para la media de ua variable ormal que tiee ua desviació típica =3, teiedo e cueta que se ha obteido ua muestra de tamaño 100 para el que = 100=5. b) Cuáto debería haber sido el tamaño de la muestra si se quiere obteer u itervalo de cofiaza para la media, tambié al 95%, co amplitud de 0,4. Solució: La variable aleatoria X sigue ua distribució ormal co µ descoocida 3 y =3. Por tato = 100 sigue ua ley ormal N(µ, ) 100 a) Para ivel cofiaza del 95%, por lo que α=0,05 y por tato z α/2 =1.96. El itervalo de cofiaza será (, ) co E= z α/2 IC=(4.412, 5.588) =0,588, co lo que 2 z b) Ahora 2E=2 z α/2 0,4 / 2 α = Luego tiee que ser 0.4 mayor que 865. Aputes realizados por José Luis Lorete (www.joseluislorete.es) Págia 7

8 3. Itervalo de cofiaza para ua proporció. Recordemos el teorema del límite para las proporcioes: Si la distribució de ua població grade tiee ua prporció p de que ocurra u suceso A (q=1-p de que o ocurra), etoces la variable aleatoria P, de las porporcioes muestrales extraidas de esa població se aproxima si el tamaño es grade ( 30) a ua distribució ormal: P N(µ p =p, p = ). Co el fi de estimar el valor de p se toma ua muestra aleatoria simple de tamaño, que proporcioa ua media de proporció p, que es el estimador putual de p. Pero si 30 etoces sigue la distribució ormal N(µ p =p, p = variable tipificada Z= p p pq ), co lo que la. Si coocemos el ivel de cofiaza determiamos α, y co este z α/2. De esta forma el error E=z α/2 y por tato IC=(p -E, p +E). Al igual que e el partado aterior podemos calcular el tamaño de la muestra mímo coocido el error máximo cometido. Sólo hay que despejar de la fórmula del error: z / α E 2 2 p q Ejercicios resuelto: P.1 E ua ecuesta realizada etre 50 persoas de ua gra població, se ha ecotrado que el procetaje de idividuos co gafas es del 25%. Determiar u itervalo de cofiaza al 99% para la proporció poblacioal, p, de los idividuos co gafas. Solució: Para =50 se cumple que p 50 =25/100=0.25. Se cumple que la variable aleatoria P, de la proporició muestral sigue la ormal N(µ p =p, = ). Aputes realizados por José Luis Lorete (www.joseluislorete.es) Págia 8

9 Como el ivel de cofiaza es del 99%, α=0,01 y z α/2 = Co lo que el error máximo es E= z α/2 = =0,16, y así el itervalo de cofiaza para 50 la proporicó de gete co gafas es IC=(p 50 -E, p 50 +E)=(0.9, 0.41). P.2. E ua muestra de 120 persoas extraida de cierta població muy umerosa, 20 de ellas era portadores de u virus. Estima el itervalo de cofiaza para el porcetaje de persoas que so portadores del virus e dicha població co u ivel de cofiaza del 90% y al 99%. Solució: Teemos ua muestra de ua població, y ua variable biomial (A=teer virus, =o teerla). Si llamamos a la media de la proporició, esta sigue ua distribució pq ormal co media =20/120=1/6 y desviació µ= = 0, 034 N(1/6, 0.034). a) Si la cofiaza es del 90%, etoces α=0.1 y z α/2 = De esta forma el error máximo es E= z α/2 =0.056 IC=[0.111, 0.223] b) Si la cofiaza es del 99%, etoces α=0.01 y z α/2 = De esta forma el error máximo es E= z α/2 =0.088 IC=[0.079, 0.254] Aputes realizados por José Luis Lorete (www.joseluislorete.es) Págia 9

10 Ejercicios propuestos: P1. Sabemos que la edad de ua població se comporta como ua N(µ,10). Para estimar extraemos ua muestra de tamaño 100, cuya media resulta ser de 37. Estimar µ mediate u itervalo de cofiaza del 90%. P2. El peso de los alumos de Bachillerato de cierta ciudad tiee ua media descoocida y ua desviació típica =5.4 kg. Tomamos ua muestra aleatoria de 100 alumos de Bachillerato de esa ciudad. Si la media poblacioal es de 60 kg. Calcular al ivel de cofiaza del 99% el itervalo de cofiaza para el peso medio de todos los alumos de Bachillerato de la ciudad. P3. Se hizo ua ecuesta a 325 persoas mayores de 16 años y se ecotró que 120 iba al cie regularmete. Hallar co u ivel de cofiaza del 94% u itervalo para estudiar la proporció y el porcetaje de los ciudadaos que va al cie regularmete. P4. Tomado al azar ua muestra de 500 persoas de ua determiada comuidad se ecotró que 300 leía la presa regularmete. Halla, co cofiaza del 90% u itervalo para estudiar la proporció de lectores etre las persoas de esa comuidad. P5. El 60% de los empleados de ua fábrica está a favor de trabajar los sábados. Se toma ua muestra aleatoria. Cuál deberá ser el tamaño de la muestra para que co u ivel de cofiaza del 95% el error máximo admisible e la estimació de 0.08? P6. E ua comuidad autóoma se sabe que la desviació típica del úmero de días que dura u cotrato temporal es igual a 57 días. Idica el úmero míimo de cotratos e los que se ha mirado su duració para que el itervalo co u ivel de cofiaza del 95% que da la duració media de u cotrato de ese tipo tega ua amplitud o mayor de 10 días. Aputes realizados por José Luis Lorete (www.joseluislorete.es) Págia 10

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 98 Cuátas caras cabe esperar? El itervalo característico correspodiete a ua probabilidad del 95% (cosideramos casas raros al 5% de los casos extremos)

Más detalles

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 1 INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL La mayoría de estos problemas ha sido propuestos e exámees de selectividad de los distitos distritos uiversitarios españoles. 1. Ua muestra aleatoria de 9 tarrias

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN 3 INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 99 REFLEXIONA Y RESUELVE Cuátas caras cabe esperar? Repite el razoamieto aterior para averiguar cuátas caras cabe esperar si lazamos 00 moedas

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

14 Intervalos de confianza

14 Intervalos de confianza Solucioario 14 Itervalos de cofiaza ACTIVIDADES INICIALES 14.I. Calcula tal que P z < Z z α α = 0,87. P zα < Z zα = P Z zα P Z < zα = P Z zα 1= 0,87 P Z P Z P Z = 1,87 = 0,935. Buscado e el iterior de

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) -1-1 1 Sea las matrices A =

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A IES Fco Ayala de Graada Sobrates de 2012 (Modelo 1 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A EJERCICIO 1_A -1-6 -1 1 2 a 0 1 Sea las matrices A

Más detalles

Estimación puntual y por intervalos

Estimación puntual y por intervalos 0/1/011 Aálisis de datos gestió veteriaria Estimació putual por itervalos Departameto de Producció Aimal Facultad de Veteriaria Uiversidad de Córdoba Córdoba, 30 de Noviembre de 011 Estimació putual por

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció B Reserva, Ejercicio 4,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 5) SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 01 (MODELO 5) OPIÓN A EJERIIO 1_A ( 5 putos) U comerciate dispoe de 100 euros para comprar dos tipos de mazaas A y B. Las del tipo A las compra a 0 60 euros/kg

Más detalles

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA Autores: Ágel A. Jua (ajuap@uoc.edu), Máimo Sedao (msedaoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS Defiició Propiedades

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.-.3 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4) IES Fco Ayala de Graada Sobrates de 8 (Modelo 4) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 8 (MODELO 4) OPCIÓN A EJERCICIO 1_A (3 putos) U joyero fabrica dos modelos

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 008 (Modelo 1) Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 007-008 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A

Más detalles

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1 IS Fco Ayala de Graada Sobrates 009 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A JRCICIO 1 ( putos) Sea las matrices: -1 4-1 - 1 5 - -6 A ; B 0-1 y C 0-1 1 0 1-0 -1 Determie X e la ecuació matricial

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y,

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 013 MODELO OPCIÓN A EJERCICIO 1 (A) Sea R la regió factible defiida por las iecuacioes x 3y, x 5, y 1. (0 5 putos) Razoe si el puto (4 5,1 55) perteece

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMÁTICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B).

Más detalles

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6.

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6. Materiales producidos e el curso: Curso realizado e colaboració etre la Editorial Bruño y el IUCE de la UAM de Madrid del 1 de marzo al 30 de abril de 013 Título: Curso Moodle para matemáticas de la ESO

Más detalles

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441 PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 014 (Geeral Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices A = y

Más detalles

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+ IES Fco Ayala de Graada Sobrates 009 (Modelo 3 Juio) Solucioes Germá-Jesús Rubio Lua+ MATEMÁTICAS CCSS JUNIO 009 (MODELO 3) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea la igualdad A X + B = A, dode

Más detalles

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal.

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal. Departameto de Estadística Uiversidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de prevalecia (trasversales) CONCEPTOS CLAVE 1) Características del diseño e u estudio de prevalecia, o trasversal

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

Variables aleatorias. Distribución binomial y normal

Variables aleatorias. Distribución binomial y normal Variables aleatorias. Distribució biomial y ormal Variable aleatoria Def.- Al realizar u experimeto aleatorio teemos u espacio muestral E. A cualquier ley o aplicació que a cualquier suceso de E le asocie

Más detalles

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014.

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014. EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. -Septiembre-04. APELLIDOS: DNI: NOMBRE:. Se quiere hacer u estudio sobre las persoas que usa iteret e ua regió dode el 40% de los habitates so mujeres.

Más detalles

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p :

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p : Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué proporció de mujeres espera compartir las tareas de la casa co su pareja?

Más detalles

TEMA 8: ESTIMACIÓN POR INTERVALOS

TEMA 8: ESTIMACIÓN POR INTERVALOS MÉTODOS ESTADÍSTICOS ARA LA EMRESA TEMA 8: ESTIMACIÓN OR INTERVALOS 8..- Itroducció a la estimació por itervalos 8..- Itervalos de cofiaza. Costrucció y características 8.3.- Itervalos de cofiaza para

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4 IES Fco Ayala de Graada Sobrates de 2002 (Modelo 6 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 2 1-1 Sea la matriz A = 0 m-6 m+1 2 0 (1 puto) Calcule los valores de m para que dicha

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS 1. El peso medio de ua muestra aleatoria de 100 arajas de ua determiada variedad es de 272 g. Se sabe que la desviació típica poblacioal es de 20 g. A u ivel

Más detalles

TALLER DE ESTADÍSTICA 7. MUESTRAS Y ESTIMACIONES. INFERENCIA ESTADÍSTICA. MAURICIO CONTRERAS

TALLER DE ESTADÍSTICA 7. MUESTRAS Y ESTIMACIONES. INFERENCIA ESTADÍSTICA. MAURICIO CONTRERAS TALLER DE ESTADÍSTICA 7. MUESTRAS Y ESTIMACIONES. INFERENCIA ESTADÍSTICA. MAURICIO CONTRERAS MUESTRAS Y ESTIMACIONES EN LA ESO Itroducció Cómo debe seleccioarse la muestra para que sea represetativa de

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 00 (Modelo 5 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A (3 putos) Para fabricar tipos de cable, A y B, que se vederá a 50 y 00 pts el metro, respectivamete,

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2) IES Fco Ayala de Graada Sobrates de 0 (Modelo ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 0 (MODELO ) OPCIÓN A EJERCICIO _A ( 5 putos) Halle la matriz X que verifique la ecuació

Más detalles

INDICE UNIDAD I UNIDAD II

INDICE UNIDAD I UNIDAD II INDICE UNIDAD I TEORIA DEL MUESTREO Muestras aleatorias Errores e el muestreo Distribucioes muestrales Teorema del límite cetral Distribució muestral de medias Distribució muestral de proporcioes Distribució

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

CURSO 2.004-2.005 - CONVOCATORIA:

CURSO 2.004-2.005 - CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 4-5 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A =

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A = IES Fco Ayala de Graada Sobrates de 007 (Juio Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1-1 x -x Sea las matrices A, X y e Y -1 3 0 - z (1 puto) Determie la matriz iversa de A. ( putos)

Más detalles

0.- INTRODUCCIÓN HISTÓRICA

0.- INTRODUCCIÓN HISTÓRICA CONTENIDOS:.- INTRODUCCIÓN HISTÓRICA... 1 1.- INTRODUCCIÓN....- INTERVALO DE CONFIANZA PARA LA PROPORCIÓN... 3.- INTERVALO DE CONFIANZA PARA LA MEDIA... 4 4.- ERROR ADMITIDO Y TAMAÑO DE LA MUESTRA... 5

Más detalles

Inferencia estadística. Distribuciones muestrales. 3. Establecer relaciones entre los parámetros de la población y los obtenidos de la muestra.

Inferencia estadística. Distribuciones muestrales. 3. Establecer relaciones entre los parámetros de la población y los obtenidos de la muestra. UNIDAD 9 Iferecia estadística. Distribucioes muestrales la Estadística se distigue dos partes perfectamete difereciadas. Ua de ellas se cooce co el ombre de Estadística Descriptiva y tiee como objetivo

Más detalles

UNIDAD 7: ESTADÍSTICA INFERENCIAL

UNIDAD 7: ESTADÍSTICA INFERENCIAL UNIDAD 7: ESTADÍSTICA INFERENCIAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1.- VARIABLES ESTADÍSTICAS. PARÁMETROS... 3.- DISTRIBUCIONES DE PROBABILIDAD... 3 3.1.- Distribució Biomial... 4 3..- Distribució

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 1) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua fábrica de muebles dispoe de 600 kg de madera para fabricar librerías de 1 y de 3 estates.

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

Análisis estadístico de datos simulados Estimadores puntuales

Análisis estadístico de datos simulados Estimadores puntuales Aálisis estadístico de datos simulados Estimadores putuales Georgia Flesia FaMAF 5 de mayo, 2015 Aálisis estadístico Modelizació estadística: Elegir ua distribució e base a los datos observados. Estimar

Más detalles

Estadística Inferencial

Estadística Inferencial Estadística Iferecial El presete documeto es ua guía para el curso de iferecia estadística impartido e el Istituto Nacioal de Estadística Geografía e Iformática (INEGI), e el edificio de capacitació; y

Más detalles

(PROBABILIDAD) (tema 15 del libro)

(PROBABILIDAD) (tema 15 del libro) (PROBABILIDAD) (tema 15 del libro) 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. SUCESOS Defiició: U feómeo o experiecia se dice aleatorio cuado al repetirlo e codicioes aálogas o se puede predecir el

Más detalles

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...}

ESTADÍSTICA BÁSICA. Discretas. Función de masa de probabilidad: P(X=x i ) Sólo se toma un conjunto finito valores {x 1, x 2,...} ESTADÍSTICA BÁSICA 1.) Coceptos básicos: Estadística: Es ua ciecia que aaliza series de datos (por ejemplo, edad de ua població, altura de u equipo de balocesto, temperatura de los meses de verao, etc.)

Más detalles

Matemáticas 2º de Bachillerato Ciencias Sociales

Matemáticas 2º de Bachillerato Ciencias Sociales ESTADÍSTICA DESCRIPTIVA VARIABLES ALEATORIAS TEORÍA DE MUESTRAS INTERVALOS DE CONFIANZA TEST DE HIPÓTESIS Matemáticas º de Bachillerato Ciecias Sociales Profesor: Jorge Escribao Colegio Imaculada Niña

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007)

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007) IS Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua INTRVALOS D CONFIANZA PARA PROPORCIONS (007) jercicio 1- Tomada, al azar, ua muestra de 10 estudiates de ua Uiversidad, se ecotró que 54 de ellos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-2. - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

Soluciones problemas del Tema 2

Soluciones problemas del Tema 2 1 Solucioes problemas del Tema 1) a) E(W ) = E(X + Y + Z) = E(X) + E(Y ) + E(Z) = 0; V ar(w ) = V ar(x) + V ar(y ) + V ar(z) + (Cov(X, Y ) + Cov(X, Z) + Cov(Y, Z)) = 1 + 1 + 1 + ( 1 + 0 ) 1 4 4 = 3 b)

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia)

PRESENTACIONES ESTADISTICAS. Número de Trabajadores (frecuencia) Distribucioes de frecuecia: PRESENTACIONES ESTADISTICAS So tablas e las que se agrupa lo valores posibles de ua variable y se registra el úmero de valores observados que correspode a cada clase. Como ejemplo

Más detalles

Estimaciones Estadísticas: Un Acercamiento Analítico. (Statistical Estimations: An Analitical Approach)

Estimaciones Estadísticas: Un Acercamiento Analítico. (Statistical Estimations: An Analitical Approach) Daea: Iteratioal Joural of Good Cosciece. 5(1) 37-55. ISSN 1870-557X 37 Estimacioes Estadísticas: U Acercamieto Aalítico (Statistical Estimatios: A Aalitical Approach) Badii, M.H. & A. Guille* Resume.

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

INSTITUTO DE FÍSICA MECÁNICA ESTADÍSTICA. Curso 2012. Práctico I Introducción a los Métodos Estadísticos. Fecha de Entrega: 5 de Setiembre de 2012.

INSTITUTO DE FÍSICA MECÁNICA ESTADÍSTICA. Curso 2012. Práctico I Introducción a los Métodos Estadísticos. Fecha de Entrega: 5 de Setiembre de 2012. INSTITUTO DE FÍSICA MECÁNICA ESTADÍSTICA Curso 01 Práctico I Itroducció a los Métodos Estadísticos. Fecha de Etrega: 5 de Setiembre de 01. 1 Parte A: Ejercicios Teóricos: Ejercicio N o 1 Pruebas de Beroulli

Más detalles

Informe sobre el Cálculo de Errores de Muestreo Encuesta sobre Condiciones de Vida - ECV

Informe sobre el Cálculo de Errores de Muestreo Encuesta sobre Condiciones de Vida - ECV Iforme sobre el Cálculo de Errores de Muestreo Ecuesta sobre Codicioes de Vida - ECV EUSKAL ESTATISTIKA ERAKUNDA INDICE. Itroducció...3 2. Método de expasió de Taylor...3 3. Cálculo de errores....4 3.

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL ) MEDIA ARITMÉTICA MEDIDAS DE TENDENCIA CENTRAL CON EXCEL Las medidas de tedecia cetral so medidas represetativas que como su ombre lo idica, tiede a ubicarse hacia el cetro del cojuto de datos, es decir,

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles