PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS"

Transcripción

1 PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS. Qué es cierto: 3 < 3 o 3 < 3? 2. Sea a 2 R tal que a 3 2a 2 0a = 20. Prueba que a y a 2 so dos úmeros irracioales. 3. Sea a; b; c 2 R tales que a b c = 2; ab bc ca = ; abc = 2. Calcula el valor de las expresioes: a) a 2 b 2 c 2, b) a 3 b 3 c 3, c) a 4 b 4 c Calcula a; b 2 R para que el poliomio ax 4 bx 3 sea divisible por x 2 2x.. Calcula a; b 2 R para que el poliomio x ax 3 b tega ua raíz real múltiple. 6. Sea a; b; c 2 R. Se sabe que ua de las raíces del poliomio x 3 ax 2 bxc es la suma de las otras dos. Prueba que a 3 4ab 8c = Teemos 00 úmeros e progresió aritmética tales que su suma es. Si la suma de los térmios de subídice par es, cuáto vale la suma de los cuadrados de los cie úmeros? 8. Prueba la siguiete relació etre las llamadas medias armóica, geométrica y aritmética: 2 x y p xy x y ; 8x; y > 0: 2 Discute cuádo se alcaza la igualdad etre ellas. Aplica la coveiete relació etre las ateriores medias que te ayude a probar que: a; b; c > 0 : ( a) ( b) ( c) = 8 =) abc : 9. Sea a; b; c 2 R tales que a 2 b 2 c 2 =. Prueba que =2 ab bc ca : Para qué valores de los tres parámetros se alcaza las igualdades? 0. Sea a; b; c > 0. Prueba que a b c b c a Estudia e qué casos se tiee la igualdad. c a b 3=2:

2 . Ecuetra todos los aturales de cuatro cifras tales que sea iguales al cubo de la suma de sus cifras. 2. Se te pide que des ua fórmula explícita para la derivada -ésima de la fució f : R f ; g! R j f (x) = x 2 : 3. Prueba que si tres putos del plao z ; z 2 ; z 3 so tales que jz j = jz 2 j = jz 3 j = y z z 2 z 3 = 0; etoces se trata de los tres vértices de u triágulo equilátero sobre la circuferecia uidad. 4. Ecuetra ua biyecció del itervalo ]0; ] e el itervalo ]0; [ :. Ecuetra ua biyecció de N N e N: 6. Prueba que R o se puede escribir de la forma fa ; a 2 ; : : : ; a ; : : :g. (Sigi ca que o es umerable, que o se puede umerar.) 7. Prueba que la relació = 30 (múltiplo de 30) se veri ca para cualquier úmero etero. (Idicació: ( ) = 2 y 2 2 = 3:) 8. Prueba que, para cada atural, se tiee la relació: 2 p < p ; 2 2 siedo estricta la primera desigualdad para 2: 9. Ecuetra las cuatro raíces (complejas) de la ecuació x 4 x 3 x 2 x = 0: 20. Teemos 0 chas umeradas del al 0. El objetivo es colorearlas, e rojo o e azul, e fució de las siguietes reglas: la cha úmero es azul, y el resto obedece a: Si las chas co úmeros x e y so de distito color, etoces la cha úmero jx yj se pita de color rojo. Si las chas co úmeros x e y so de distito color y el úmero xy 2 f; 2; 3; : : : ; 49; 0g, etoces la cha úmero xy se pita de color azul. Determia cuátas coloracioes distitas se puede realizar e ese cojuto de chas. 2

3 2. E la pared de u barraco hay 20 huecos dispuestos a ser ocupados por ua badada de 2 palomas. Razoa que si todas decide alojarse e ellos, al meos uo de dichos huecos será usado por más de ua de las palomas. 22. Cosidera cico putos e el iterior de u cuadrado de lado. Prueba que las distacias etre ellos, e al meos uo de los casos, es meor que p 2=2: 23. Prueba que e cualquier reuió de persoas siempre ha de existir, al meos, dos de ellas que haya realizado el mismo úmero de saludos al iicio de la misma. 24. La familia López-Pérez ha orgaizado ua esta e casa para otras tres parejas. Al llegar, como es atural, los asistetes se ha saludado; pero, eso sí, siguiedo las ormas de setido comú: adie ha saludado a su propia pareja, i se ha saludado a sí mismo! Al acabar la esta, López pregutó a cada uo de los asistetes qué úmero de saludos había realizado; y oh, casualidad, que resultó que iguo de los pregutados había realizado el mismo úmero de saludos! Podrías decir a qué úmero de persoas saludó Pérez al comiezo de la esta? 2. Escogemos úmeros distitos desde el al 2. a) Prueba que siempre hay dos que so primos etre sí. b) Demuestra que siempre hay uo que es divisible por otro. So ciertas las a rmacioes ateriores si tomamos sólo úmeros e vez de? 26. Prueba que la matriz cuadrada (y simétrica) de orde dada por B A tiee determiate igual a. 27. Cuádo se tiee que! 3 > 0? 28. Prueba que toda fució de puede descompoer de maera úica como la suma de ua fució par y otra impar. 29. Prueba que el producto de cuatro aturales cosecutivos uca puede ser u cuadrado perfecto. (Idea: desarrolla y relacioa los productos ( 3) y ( ) ( 2).) 30. Prueba que si 2 N, etoces 3 = 6 (múltiplo de 6). 3

4 3. Prueba que si m; ; p 2 N so tales que m p = 6, etoces m 3 3 p 3 = Calcula el valor de la suma para cada valor del atural. 33. Cosidera esta sucesió: ) 7 6; 6; 6; 6; : : : de modo que a partir del úmero 6 lo que hacemos, sucesivamete, es itroducir u e el cetro de la ueva cifra. Prueba que todos estos úmeros so cuadrados perfectos. 34. Prueba que el úmero es múltiplo de Prueba la fórmula del biomio de Newto: a; b 2 R; 2 N =) (a b) = X k=0 a k k b k 36. Calcula las siguietes sumas co 2 N: a: P k k; b: P k k 2 ; c: P k k : 37. Calculad el úmero de ceros e que termia el úmero 000! = : 38. Ídem del ejercicio aterior para 20! = : 39. Ecuetra la expresió geeral de las fucioes aditivas racioales de variable racioal; es decir: f : Q! Q j f (x y) = f (x) f (y) ; 8x; y 2 Q: 40. Prueba que o existe igua fució f : R! R tal que f x 2 y = f (x) y 2 : 4. Ecuetra todas las fucioes f : N! N tales que para cada atural. f () f (f ()) f (f (f ())) = 3 4

5 42. Ecuetra todos los poliomios P de coe cietes reales tales que P (P (x)) = [P (x)] 2007 : 43. Existe algú poliomio p para el que se veri que que xp (x ) = (x ) p (x) para cualquier valor del úmero real x? 44. Dado u úmero real s, cosidera el poliomio p (x) = 3x 2 3sx s 2 del que supodremos que y so raíces suyas. Prueba que p 3 = p 3 : 4. Halla todos los úmeros aturales m y tales que! = (m! ) 2 : 46. Sea a; b; c 2 R f0g y distitos dos a dos. Si los poliomios x 2 ax bc y x 2 bx ac tiee ua raíz comú, etoces las otras dos raíces (ua de cada uo) so las raíces del poliomio x 2 cx ab. 47. Prueba que la serie P = o tiee suma ita; es decir, la serie de la suma de los recíprocos de los aturales es divergete. 48. Prueba que la suma de los recíprocos de los aturales que e su represetació decimal o cotiee al dígito 9, es ita. 49. Calcula el límite lim 0. Calcula la suma Del poliomio p (x) := x 3 x k se sabe que tiee tres raíces eteras distitas. Quié puede ser k? 2. Sea 2 R. Se sabe de las solucioes de la ecuació x 3 2x 2 x 0 = 0 que so reales y está e progresió aritmética. Hállalas.

6 3. Calcula las solucioes reales de la ecuació 4p 97 x 4 p x =. 4. Calcula a 2 R tal que la suma de los cuadrados de las raíces del poliomio sea míima. Calcula dicha suma. p (x) = x 3 2ax 2 (a ) x a 3. Prueba la desiguadad de Cauchy-Schwarz-Buyakowski: para cualesquiera 2 úmeros reales a ; : : : ; a ; a b ; : : : ; b ; se tiee que v v X ux a k b k t (a k ) 2 ux t (b k ) 2 ; dádose la igualdad si y sólo si a b = a2 b 2 = = a b : 6. Comprueba que la sucesió de térmio geeral x = es estrictamete creciete a través del estudio de la fució f (x) = x x, para x > Dibuja la regió R del plao dada por R := f(x; y) j jxj jyj ; jyj g y calcula su área. 8. Prueba (usado el desarrollo de ( i) ) que p 2 cos = p 2 si = Prueba que si 2 es u cuadrado perfecto, etoces = a 2 ( a) 2, para coveiete a. 60. Prueba que si a; b; c so las logitudes de los lados de cualquier triágulo, etoces 3 (ab bc ca) (a b c) 2 4 (ab bc ca) : 6. Prueba que el producto de úmeros aturales cosecutivos siempre es múltiplo de!. 62. Prueba que para todo etero : ) 3 = : 27 6

7 63. Prueba que de etre todos los rectágulos circuscritos e ua circuferecia dada, el cuadrado es el de mayor área. 64. (Lewis Carroll) E ua batalla ua escuadra de 00 persoas ha sufrido las bajas siguietes etre sus miembros: 8 de ellos ha perdido ua piera, 80 la de u brazo, 7 ha perdido u ojo y 70 la de ua oreja. U úmero idetermiado x de ellos ha perdido piera, braxo, ojo y oreja. Prueba que 0 x 70. 7

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Ejercicios de preparación para olimpiadas. Funciones

Ejercicios de preparación para olimpiadas. Funciones Ejercicios de preparació para olimpiadas. Fucioes 5 de diciembre de 04. Fucioes covexas Comezamos estas otas hablado de fucioes covexas. Auque la covexidad de ua fució se puede estudiar por técicas de

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

Sesión de Preparación de Olimpiada Matemática.

Sesión de Preparación de Olimpiada Matemática. Sesió de Preparació de Olimpiada Matemática 6 de Diciembre de 06 Ferado Mayoral Desigualdades (y Poliomios y otras fucioes) (I) -Alguas desigualdades básicas ) x 0 para cualquier x R La igualdad sólo se

Más detalles

Desigualdad entre las medias Aritmética y Geométrica

Desigualdad entre las medias Aritmética y Geométrica Desigualdad etre las medias Aritmética y Geométrica Jorge Tipe Villaueva Dados reales positivos a 1, a,..., a, defiimos la media aritmética de a 1, a,..., a como el úmero a 1 + a +... + a y la media geométrica

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - Curso de Verao 016 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c y

Más detalles

2. CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO)

2. CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) Portal Fueterrebollo Cocurso Primavera Matemáticas: NIVEL IV (BACHILLERATO). CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) 1. Co las letras de la palabra NADIE podemos formar 10 palabras

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ALGEBRA I GUÍA DE PROGRESIONES Y TEOREMA DEL BINOMIO Profesor: David Elal OLivero Primer año Pla Comú de Igeiería Primer Semestre

Más detalles

Sumatoria, Progresiones y Teorema del Binomio

Sumatoria, Progresiones y Teorema del Binomio Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega

Más detalles

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos.

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos. Cálculo Tarea y Problema. Calcula el supremo y el ífimo de los siguietes cojutos. a) A = {x : 0 x }. Es imediato que sup A = e íf A = 0. b) A = {x : 0 < x < }. Es imediato que sup A = e íf A = 0. c) A

Más detalles

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K.

RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K. SEMANA 1 RAZONES Y PROPORCIONES 1. Si: a b c d y 7 4 1 6 ab + cd = 500, halle el valor de (a + c) A) 75 B) 80 C) 90 D) 95 E) 100 a b ab K K 7 4 8 d e de K K 1 6 7 Luego: 500 100K K = 5 Luego: a = 5, d

Más detalles

bc (b) a b + c d = ad+bc a b = b a

bc (b) a b + c d = ad+bc a b = b a 1 Cojutos 1 Describa los elemetos de los siguietes cojutos A = { x x 1 = 0 } D = { x x 3 x + x = } B = { x x 1 = 0 } E = { x x + 8 = 9 } C = {x x + 8 = 9} F = { x x + 16x = 17 } Para los cojutos del ejercicio

Más detalles

Cálculo. 1 de septiembre de Cuestiones

Cálculo. 1 de septiembre de Cuestiones Cálculo. de septiembre de 005 Cuestioes. Si ua fució f(x, y) es cotiua e (0, 0), etoces: a) f(0, 0) = 0. b) f(x, y) = 0. (x,y) (0,0) c) f es difereciable e (0,0). d) igua de las ateriores. Si ua fució

Más detalles

Seminario de problemas Curso Hoja 12

Seminario de problemas Curso Hoja 12 Semiario de problemas Curso 014-15 Hoja 1 78. Resolver el siguiete sistema de ecuacioes dode x, y, z so reales positivos: x y z 8 x 1 y 4 z 9 10 Solució: E la figura CDE, EFG, GHA y ABC so triágulos rectágulos

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

( ) RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN A + B = 9K B + C = 11 K A + C = 10 K RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES. a b c d.

( ) RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN A + B = 9K B + C = 11 K A + C = 10 K RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES. a b c d. SEMANA 1 RAZONES Y PROPORCIONES 1. Si: a b c d y 7 4 1 6 ab + cd 500, halle el valor de (a + c) a c e g K b d f h b + d + e + g 67 a + c + f + h 4 a + c + e + g 88 1 A) 75 B) 80 C) 90 D) 95 E) 100 a b

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

DESIGUALDADES CLÁSICAS

DESIGUALDADES CLÁSICAS DESIGUALDADES CLÁSICAS PARA EL SEMINARIO DE PROBLEMAS (CURSO 017/018) ALBERTO ARENAS 1 Desigualdades etre medias La estrategia más geeral para probar desigualdades es trasformar la desigualdad a la que

Más detalles

Un numero en una sucesión: a n. Ejemplo: Qué termino de la sucesión. a n. Gráficamente:

Un numero en una sucesión: a n. Ejemplo: Qué termino de la sucesión. a n. Gráficamente: CONCEPTOS PREVIOS: Es u cojuto de úmeros que obedece a ua ley de formació. E geeral es ua fució del tipo : f:n R + 4 0 Ejemplo : a 64 3... 3 SUCESION CRECIENTE: a ; a > a SUCESION DECRECIENTE: + ; a+ a

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

XIV CONCURSO CANGURO MATEMÁTICO 2007

XIV CONCURSO CANGURO MATEMÁTICO 2007 XIV CONCURSO CANGURO MATEMÁTICO 007 Nivel (º de E.S.0.) Día 5 de marzo de 007. Tiempo : hora y 5 miutos No se permite el uso de calculadoras. Hay ua úica respuesta correcta para cada preguta. Cada preguta

Más detalles

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS

UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS SERIES DE POTENCIAS UNIVERSIDAD CATÓLICA DE TEMUCO FACULTAD DE INGENIERÍA DEPTO. DE CIENCIAS MATEMÁTICAS Y FÍSICAS Asigatura : Cálculo Numérico, MAT-23. Profesor : Emilio Cariaga L. Periodo : er. Semestre 205. SERIES DE POTENCIAS

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA APLICADA. Temas 5 y 6 Sucesiones y Series. Series de Potencias

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA APLICADA. Temas 5 y 6 Sucesiones y Series. Series de Potencias Temas 5 y 6 Sucesioes y Series. Series de Potecias SUCESIONES E los siguietes problemas determie si la sucesió { } ecuetre el límite e caso de ser covergete..- { }.- { } = 5 a.- { } a 5.- { a} = + 9 a

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I - Ferado Sáchez - - Números Cálculo I complejos 09 0 07 E el cuerpo de los úmeros reales ecuacioes como x + = 0 o tiee solució: el poliomio x + o tiee raíces reales. Hace falta exteder el cocepto de úmero

Más detalles

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11.

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11. rueba Itegral Lapso 03-7-76-77 /0 Uiversidad Nacioal Abierta Matemática I (Cód. 7-76-77) icerrectorado Académico Cód. Carrera: 6-36-80-08- -60-6-6-63 Fecha: 0 0-0 MODELO DE RESUESTAS Objetivos al. OBJ

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

NUMEROS REALES CLASIFICACIÓN DE LOS NÚMEROS. Reales, R

NUMEROS REALES CLASIFICACIÓN DE LOS NÚMEROS. Reales, R NUMEROS REALES El cuerpo de los úmeros reales esta formado por todo el cojuto de úmeros que hemos estado viedo e los distitos cursos ateriores; por ejemplo, el cuerpo de los úmeros racioales, irracioales,

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García EJERCICIOS DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Ídice 3. Sucesioes y series. 3.. Sucesioes de úmeros reales..............................

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

X Olimpiada Matemática Valencia 1999

X Olimpiada Matemática Valencia 1999 X Olimpiada Matemática Valecia 999 Fase Autoómica Valecia año 999. CATEGORÍA 4-6 AÑOS PROBLEMA. Números. Halla u úmero de cuatro cifras que cumpla las siguietes codicioes: La suma de los cuadrados de las

Más detalles

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R P á g i a INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA GUIA Nº 3: Sucesioes, Límite de Sucesioes y Límite de Fucioes e R GRADO: º AREA: MATEMÁTICAS PROFESORA: Ebli Martíez M. ESTUDIANTE: PERIODO: III

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1 Biomio de Newto I Itroducció al Biomio de Newto (para expoete etero y positivo ZZ + ) Teorema Sea: x; a 0 y ZZ + (x + a) = Desarrollado los iomios: C x -.a 0 (x + a) 1 = x + a (x + a) = x + xa + a (x +

Más detalles

Álgebra I Práctica 4 - Números enteros (Parte 1)

Álgebra I Práctica 4 - Números enteros (Parte 1) Divisibilidad y úmeros primos Álgebra I Práctica 4 - Números eteros (Parte 1) 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z: i) a b c a c y b c, ii) 4 a 2 2 a, iii) 2 a b 2 a ó

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen Criterio de Comparació Si a 0 y b 0. Si existe ua costate C > 0 tal que a Cb etoces la covergecia de b implica la covergecia de a. Ejemplo.- Sabemos que la serie coverge a, pero como (+), etoces la serie

Más detalles

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores Ejercicios para exámees de Matemáticas (CCAA y CTA Vectores Jua-Miguel Gracia 7 de octubre de 014 Ejercicio Sea a, b vectores de R 5 que satisface a = 10, a + b = 11, a b = 9 Demostrar que existe u β R

Más detalles

DESIGUALDADES. 1. Desigualdad de Cauchy-Schwarz. Para todo a 1,a 2,...,a n,b 1,b 2,...,b n números reales se cumple que:

DESIGUALDADES. 1. Desigualdad de Cauchy-Schwarz. Para todo a 1,a 2,...,a n,b 1,b 2,...,b n números reales se cumple que: DESIGUALDADES E las olimpiadas de matemáticas es frecuete la aparició de problemas cosistetes e la demostració de determiadas desigualdades. Auque o existe ua estrategia geeral para resolver los problemas

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES MATE 3032 - DR. UROYOÁN R. WALKER. Sucesioes Teorema.. Sucesioes mootóicas acotadas coverge. Ejemplo.2. Sea {a } la sucesió deida recursivamete

Más detalles

Álgebra Superior 1 Mat. Frank Patrick Murphy Hernandez Tarea 3 Combinatoria e Inducción

Álgebra Superior 1 Mat. Frank Patrick Murphy Hernandez Tarea 3 Combinatoria e Inducción Álgebra Superior 1 Mat. Fra Patric Murphy Heradez Tarea Combiatoria e Iducció 1. El alfabeto hawaiao cosiste de de 1 letras. Cuátas palabras de seis letras puede hacerse?.. Laya esta haciedo el sistema

Más detalles

Álgebra I Práctica 3 - Números Naturales e Inducción

Álgebra I Práctica 3 - Números Naturales e Inducción FCEyN - UBA - er cuatrimestre 06 Sumatoria Álgebra I Práctica 3 - Números Naturales e Iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria (a) + + 3 + 4 + + 00, (b) + + 4 +

Más detalles

TALLER SOLUCIÓN NUMÉRICA DE ECUACIONES

TALLER SOLUCIÓN NUMÉRICA DE ECUACIONES . Apliue los métodos de bisecció y de la regla falsa para ecotrar todas las solucioes detro de 0 para 7 + 6 = 0. 5. Apliue el método de bisecció para solucioes eactas detro de 0 para: a. = 0 R: 0.68. Apliue

Más detalles

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +

Más detalles

Álgebra I Práctica 2 - Números Naturales e Inducción

Álgebra I Práctica 2 - Números Naturales e Inducción FCEyN - UBA - Verao 07 Sumatoria Álgebra I Práctica - Números Naturales e Iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria: (a) + + 3 + 4 +... + 00 (b) + + 4 + 8 + 6 +...

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1 1º Bachillerato - Matemáticas I Dpto de Matemáticas- I.E.S. Motes Orietales (Izalloz)-Curso 2011/2012 TEMS 1 y 3.- NÚMEROS RELES Y ÁLGEBR- 1 1.- TIOS DE NÚMEROS. ROXIMCIONES DECIMLES 1.1.- Tipos de úmeros

Más detalles

I.1. Relación 1.El cuerpo de los números reales.

I.1. Relación 1.El cuerpo de los números reales. I.. MARIBEL RAMÍREZ 3 I.. Relació.El cuerpo de los úmeros reales...- Se cosidera u circuito elétrico formado por dos resistecias e paralelo R yr. La resitecia total R e ohmios del cicuito viee dada por

Más detalles

OBJETIVO: RESOLVER PROBLEMAS DE PROGRESIÓN ARITMETICA APLICANDO FORMULA ULTIMO TÉRMINO Y DE LA SUMA

OBJETIVO: RESOLVER PROBLEMAS DE PROGRESIÓN ARITMETICA APLICANDO FORMULA ULTIMO TÉRMINO Y DE LA SUMA I. Muicipalidad De Providecia Corporació De Desarrollo Social Liceo Polivalete Arturo Alessadri Palma A Nº Depto. de Matemática Profesor: Pedro Campillay GUÍA MEDIO COEFICIENTE DOS MODULO MATEMATICO NOMBRE:

Más detalles

Enunciados y Soluciones

Enunciados y Soluciones LIII Olimpiada matemática Española (Cocurso Fial) Euciados y Solucioes. Determia el úmero de valores distitos de la expresió dode {,,..., 00}. +, Solució. Sumado y restado al umerador se obtiee a + + +

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

Aritmética. Introducción. De la definición anterior se pueden deducir las siguientes propiedades:

Aritmética. Introducción. De la definición anterior se pueden deducir las siguientes propiedades: Aritmética Itroducció Bautizo: Decimos a divide a b (a factor de b, a es divisor de b, b es múltiplo de a, b es divisible por a) si existe u etero c tal que b=ac Lo aterior se simboliza como a b, e caso

Más detalles

No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular

No negatividad. Definición positiva. Propiedad multiplicativa. Desigualdad triangular. Identidad de indiscernibles. Desigualdad triangular Repaso: Propiedades fudametales del Valor absoluto: x 0 x = 0 x = 0 xy = x y x + y x + y x = x x y = 0 x = y x y x z + z y x y x y No egatividad Defiició positiva Propiedad multiplicativa Desigualdad triagular

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

CÁLCULO INTEGRAL APUNTES SERIES

CÁLCULO INTEGRAL APUNTES SERIES UN I V E R S I D A D MA Y O R FA C U LT A D DE IN G E N I E R Í A SE G U N D O SE M E S T R E 0 CÁLCULO INTEGRAL AUNTES SERIES CRITERIOS. Criterio del -ésimo térmio para la divergecia Si la serie a coverge,

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

/ n 0 N / D(f) = {n N / n n 0 }

/ n 0 N / D(f) = {n N / n n 0 } Liceo Nº 10 016 SUCESIONES Primera defiició Ua sucesió de úmeros reales es ua fució cuyo domiio es el cojuto de los úmeros aturales (N) y cuyo recorrido está coteido e el cojuto de los úmeros reales (R).

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

FACULTAD de INGENIERÍA Análisis Matemático A. TRABAJO PRÁCTICO N 6: Series numéricas - Series de potencias

FACULTAD de INGENIERÍA Análisis Matemático A. TRABAJO PRÁCTICO N 6: Series numéricas - Series de potencias FACULTAD de INGENIERÍA Aálisis Matemático A TRABAJO PRÁCTICO N 6: Series uméricas - Series de potecias a se sabe que su sucesió de sumas parciales {S } está dada por = ) De la serie + N. Calcule el carácter

Más detalles

Capítulo III Teoría de grupos

Capítulo III Teoría de grupos Capítulo III Teoría de grupos Tema 1. Leyes de composició iteras. 1.1 Leyes de composició iteras. Dado u cojuto A, se defie como Ley de composició itera defiida e A a toda aplicació, A A A ( x, y) x y

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x ALGUNOS PROBLEMAS PROCEDENTES DE EXÁMENES PRECEDENTES.. problemas de ites y series. Pruebe, usado la defiició, que: x 3/ x 8 x = 4. Solució. Dado ɛ > 0 queremos que x 8 ( 4 x, sea meor que ɛ cuado x esté

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

POLINOMIOS DEF. Llamaremos polinomio en x con coeficientes en C a una expresión de la forma

POLINOMIOS DEF. Llamaremos polinomio en x con coeficientes en C a una expresión de la forma POLINOMIOS DEF. Llamaremos poliomio e x co coeficietes e C a ua expresió de la forma px ( ) ax axax... ax 0 1 2 0 1 2 dode a, a, a,..., a 0 1 2 GRADO DE UN POLINOMIO DEF. Sea el poliomio e x co coeficietes

Más detalles

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica

Más detalles

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA. Práctica nº 3: Sucesiones y series numéricas.

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA. Práctica nº 3: Sucesiones y series numéricas. INGENIERÍA TÉCNICA INDUSTRIAL - ESP. ELECTRÓNICA INDUSTRIAL CURSO 2003-2004 FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Práctica º 3: Sucesioes y series uméricas. Abordamos e esta práctica el tratamieto co

Más detalles

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN

GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN GUÍA DE REPASO DE FACTORIZACIÓN, POTENCIACIÓN Y RADICACIÓN FACTOR COMUN 1. FACTOR COMUN MONOMIO: Factor comú moomio: es el factor que está presete e cada térmio del poliomio: Ejemplo N 1: cuál es el factor

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 4 de febrero de 2002

Soluciones de los ejercicios del examen de Cálculo del 4 de febrero de 2002 Solucioes de los ejercicios del exame de Cálculo del de febrero de 00 Problema. (a) Calcular los límites lím + 3 + 3 (+) + + 3 ; lím (cos(/)) (b) Estudiar para qué valores de a > 0 es covergete la serie

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

d) 2:00 p.m. y 10º C e) 2:00 a.m. y 30º C

d) 2:00 p.m. y 10º C e) 2:00 a.m. y 30º C Prueba Aptitud Académica. Modelo 4. CNU Veezuela 006. Trascrita y resuelta Tels: 046-59965, 044-64, 04-090 Caracas, Veezuela.. Para dos úmeros reales x, y o ambos ulos, se defie la operació @ etre ellos

Más detalles

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE

TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE TEMA CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE Derivada de ua ució e u puto Sea : D y u puto iterior de Se dice que es derivable e eiste lim Dicho límite recibe el ombre de derivada de e Notas ) Notaremos

Más detalles

4. Con b = ( 1) 1 n. 6. Con c = n = p = 1, 1, ( 1) 1 2, ( 1) 1 3, ( 1) 1 4, ( 1) 1 5, ( 1) , 1 3, 1 2, 1 6 6, 5, 1.

4. Con b = ( 1) 1 n. 6. Con c = n = p = 1, 1, ( 1) 1 2, ( 1) 1 3, ( 1) 1 4, ( 1) 1 5, ( 1) , 1 3, 1 2, 1 6 6, 5, 1. Respuestas Respuestas al desarrollo de la competecia del capítulo E los problemas del al, ecuetra los primeros 6 térmios de la sucesió dada. Verifica tus respuestas co el comado Secuecia[ , ,

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n Uidad 5 Covergecia Uiforme 5.1 Series de potecias y radio de covergecia. Serie de Potecias Deició 1. A ua serie de la forma a () dode a 1, a 2,..., a,... so costates y c R es jo, se le llama serie de potecias

Más detalles

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 6. SUCESIONES Y SERIES NUMÉRICAS 6... Sucesioes de úmeros reales 6.. SUCESIONES NUMÉRICAS Se llama sucesió de úmeros reales a cualquier

Más detalles

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en:

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en: UCEIÓN CPR. JORGE JUAN Xuvia-Naró Ua sucesió, (a ), de úmeros reales es ua fució que hace correspoder a cada úmero atural, excluido el cero, u úmero real, la cual viee defiida segú: f: N* R a a i a Número

Más detalles

Listado para la Evaluación 2 Cálculo II (527148)

Listado para la Evaluación 2 Cálculo II (527148) Uiversidad de Cocepció Facultad de Ciecias Físicas y Matemáticas Departameto de Matemática Área, Volume y Logitud de arco. Listado para la Evaluació Cálculo II (5748). Calcular el área ecerrada por la

Más detalles

Eje I: Números y Operaciones

Eje I: Números y Operaciones Colegio Provicial de Educació Secudaria Nº Gregorio Álvarez Maestro Patagóico C I C L O Eje I: Números y Operacioes L E C T I V O 0 1 8 ALUMNO: PROFESORA: MARÍA ELISA PALMAS Eje I: Números y Operacioes

Más detalles

x 4 1 x 2 T2)a) Analice si alguna de las siguientes integrales es impropia. Justifique. Si encuentra alguna que lo sea, resuélvala:

x 4 1 x 2 T2)a) Analice si alguna de las siguientes integrales es impropia. Justifique. Si encuentra alguna que lo sea, resuélvala: Asigatura : Aálisis Matemático I Fecha: Eame Fial T) a)defia cotiuidad e u puto y e u itervalo cerrado. ) Eucie algua propiedad de las fucioes cotiuas e u itervalo cerrado. c) Defia ua fució f: [-,], que

Más detalles

Sucesiones I Introducción

Sucesiones I Introducción Temas Qué es ua sucesió? Notacioes y coceptos relacioados. Maeras de presetar ua sucesió. Gráfico de sucesioes. Capacidades Coocer y compreder el cocepto de sucesió. Coocer y maejar las diferetes maeras

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43 TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a Págia. a) Es la sucesió de los úmeros impares:, 5, 7 b) Se suma al valor absoluto del úmero y se cambia de sigo: 7, 0, c) Se

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

GUÍA SUCESIONES Y SERIES. a n 1 1. a) La suma de los 5 primeros términos de la sucesión. b) La suma de los 10 primeros términos de la sucesión.

GUÍA SUCESIONES Y SERIES. a n 1 1. a) La suma de los 5 primeros términos de la sucesión. b) La suma de los 10 primeros términos de la sucesión. ESCUELA DE GOBIERNO Y GESTIÓN PÚBLICA UNIVERSIDAD DE CHILE GUÍA SUCESIONES Y SERIES. Escriba los cico primeros térmios de la sucesió dada a) a = + b) a = ( ) c) b = (+) d) c = - (-). Sea a la sucesió defiida

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles