Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN ; ; ; ; ; ;

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10"

Transcripción

1 SUCESIONES I. Determiar el térmio que cotiúa e cada ua de las siguietes sucesioes: 1. ; 5; 11; 0; 4. - ; 5; - 9 ; 19; A) 8 B) - 7 C) 7 D) - 8 E) 14 A) 8 B) 0 C) D) 1 E) ; ; ; ; ; ; ; ; ; ; ; A) D) 11 1 B) E) 5 C) 1 11 A) B) 1 9 C) 5 D) 1 10 E) ; ; ; ; ; ; ; ; ; ; ; ; ; 6; 4; 6. 6; 6; ; 6; ; A) 6 B) 8 C) 4 D) E) 10 A) 86 B) 10 C) 84 D) 9 E) II. Qué úmero altera la sucesió e cada uo: 7. ; ; 4 ; 0 ; 8 ; 18 ; 10 ; 16; 16 ; ; 14 A) 4 B) 0 C) 8

2 D) 16 E) 10 A) - 0 B) 11 C) - 5 D) - 1 E) ; ; ;1; ; 14 ; 9 ; ; 4 A) 4 B) 14 C) 9 A) 1 9 B) C) 1 D) 1 E) D) 1 E) ; ; ; ; ; ; ; ; A) 1 4 D) ; ; ;1 ; 9 B) 11 0 E) 7 1 C) ; ; ; ; ; ; ; ; ; 14 ; 9 ; ; ;10;7;9;1;8;17;19;7;;6 A) 10 B) 9 C) 8 D) 19 E) E la sucesió: 4; 10; 16; ; ; 178. Calcule el úmero de térmios. A) 1 B) 8 C) 0 D) 5 E) ; - 1 ; ; -5 ; 11 ; - 0

3 t = = 6 0 = 14. Calcule la suma del vigésimo térmio y el úmero de térmios. - 8 ; - 5 ; - ; ; 79. A) 81 B) 79 C) 90 D) 80 E) 78 t = 11 0 ( ) t = 0 11 t0 = = 11 0 = = E la siguiete sucesió: 6; 57; 5;... determiar el séptimo térmio egativo. A) - B) - 0 C) - 8 D) - E) > 0 > 1.4 1er térmio = = 14 t 1 = - = 0 t0 = 16. Sea las sucesioes: 0 ; 1 ; 04 ; ; 0 40 ; 48 ; 50 ; 58 ; 88 Determiar cuátos térmios so comues a ambas sucesioes. A) 11 B) 9 C) 1 D) 0 E) 16 a1 8 = = = = 48 a6 8 = = = = = 88 a5 8 = = = = = 80 Hay 11 térmios comues. 17. José se propoe a escribir u libro. El primer día escribe 5 hojas; el segudo día 1 hojas; el tercer día hojas; el cuarto día 8 hojas y así sucesivamete hasta que el último día escribió 467 hojas Cuátos días estuvo escribiedo José? A) 1 B) 1 C) 14 D) 15 E) 16

4 t = + 4 k = 4p t = = + + O 465 = + = Halle el vigésimo quito térmio e: ; 7; 14; ;... A) 70 B) 18 C) 0 D) 480 E) 674 t1 t t t4 + 4 = k ( + ) = 4p ( + ) = ( p) 6 t ( p) 504,45 p,45 1,5 p 11,5 P = { ;;4;5;6;7;8;9;10;11 } PToma 10 valores tambié toma 10 valores 0. Si: S: ;11; 0; S : 9;16; ;...;70 Cuátos térmios so comues a ambas sucesioes? A) 0 B) 18 C) 11 D) 10 E) 5 t = ( ) ( ) t = = Cuátos térmios de la sucesió 6 ; 8 ; 10 ; ; 504 será cuadrados perfectos? A) 5 B) 7 C) 10 D) 1 E) 8 S :;11;0;9; S :9;16;; Térmios comues de a la vez: t = 6 + Acotado la sucesió. 9 t y

5 ,11 11,11 { 1;;;...;11} Etoces hay 11 térmios comues. 1. Si a,a,a,... so térmios de ua sucesió aritmética. Idicar el valor de a. A) 1 B) 4 C) 6 D) 8 E) a, a,a a a = a a = r a = 4a a a = 0 a( a ) = 0 a = Dada la sucesió: ; 1; ; A partir de que lugar los térmios so meores a 0,5? vo vo A) 0 B) 7 C) vo vo D) 17 E) ; ; ; = t < 0,5 7 vo < 7 16 < vo = 17. Que lugares ocupa los térmios cosecutivos de la siguiete sucesió cuya diferecia de cuadrados es ; 10 ; 14 ; 18; A) 0 ; 1 B) 5 ; 6 C) 1 ; D) 0 ; 1 E) 1 ; 6;10;14;18;...;4 + ; ( ) t = 4 + t = = ( ) ( ) ( ( 1) ) ( ) t t = 640 ( ) ( ) = 640 ( ) = = = 4. José desea comprar galletas de la siguiete maera: cada día 5 galletas mas que el día aterior. E que día se cumplirá que lo comprado ese día será de lo comprado 4 días ates y además sea veces lo comprado el primer día? A) 9 B) 10 C) 11 D) 1 E) 1

6 x + 5 ( 1) = x 5 ( 5) x 5 ( 1) x + + = x = x = + 5 = 9 5. Los águlos de u petadecágoo se ecuetra e progresió aritmética. Cuáto mide uo de dichos águlos? 7. Calcule m m 1 ; ; ; ; A) 5 B) 60 C) 7 D) 58 E) m ; ; ; ; A) 15º B) 158º C) 154º D) 155º E) 156º a ; a + r ; a + r ; ; a +14r. 15a + 105r = a + 7r = 156 ( ) 6. Calcule el térmio de lugar 00 e la siguiete sucesió: 1; 1; 9; 5; 81; Dar como respuesta la suma de cifras del resultado. A) 18 B) 1 C) 9 D) E) 9 t = ( ) ( ) t = t = = 9 t = + t = 7 = m 5 t = + t = m = = 6 8. Halle el térmio que ocupa el lugar 0 de la sucesió y dar como respuesta la suma de sus cifras. 4 ; 8 ; 1 ; 5 ; 164 ; A) 17 B) 1 C) 18 D) 4 E) 19

7 ( ) ( 1) ( ) ( ) t = t = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) t = t = Si: =18 a a+ 1 a+ 9,,,... correspode a ua sucesió geométrica, calcular el valor de a. A) 6 B) 7 C) 8 D) 9 E) 4 a a+ 1 a+ 9 ; ; a a + = = a + 1 a + ( ) a a a + 6 = + + 5a a + 6 = + a = 8 q 0. La suma de térmios de ua progresió aritmética es: S = + 4. Halle el térmio 0 de dicha P. A. A) 76 B) 80 C) 81 D) 9 E) 78 S S = T + T + T T = T + T + T + T T S S = T ( ) ( ) = T 0 78 = T 0 1. Cuátos térmios hay e la siguiete sucesió? 6 ; 17 ; 4 ; 57 ; ; 706 A) 15 B) 19 C) 17 D) 1 E) 14 t = = = = 15. E la siguiete sucesió: 17; ; 47; 6;..; Cuál es el térmio mas cercao a 600? A) 597 B) 599 C) 60 D) 607 E) 587

8 t = = ,86= = ( ) t = t = Halle x y e la siguiete sucesió: 1; - 11; x; - 10; - 14; y ; - 15 A) -1 B) - C) - D) -4 E) -5 x = - 1 y = - 9 x y = - 1 (-9) = Qué úmero cotiúa e la siguiete sucesió.,,, 4, 4,... Dar como respuesta la suma de cifras del resultado. A) 6 B) 8 C) 18 D) 4 E) 0 5. Cuál es el úmero que falta: A) B) 4 C) 1 D) E) 5 Columa derecha 6 = 16 8 = = 6. Escribir el úmero que falta A) 1 B) 16 C) 18 D) 0 E) 4 Térmio cetral ( ) 7 = 14 ( 5) = 50 ( ) 8 = = Calcule el úmero que falta.

9 A) 1 B) 18 C) 14 D) 8 E) = 1 = = Escribir el úmero que falta A) 10 B) 1 C) 14 D) 16 E) 18 cifras ( 6 ) = = 9 cifras ( 5 7) = 1 + = 40. Calcule el úmero que falta A) 1 B) C) D) 4 E) 5 Térmio cetral = = = 4 Columa derecha: 9 = 1 6 = = Qué úmero falta A) 6 B) 7 C) D) 9 E) 10 Térmio cetral 9 = + 7 = 9 cifras ( )

10 SERIES 41. Calcule el valor de la serie A) 500 B) 5100 C) 5000 D) 4900 E) t = = 0 = S = 50 = Calcule el valor de q e la siguiete serie: q=1640 A) 40 B) 50 C) 60 D) 70 E) = = = ( ) q = (40) = Calcule: (x+y), Si: x = 650, y además (y-)=65 A) 140 B) 145 C) 150 D) 155 E) 78 x x = 1... ( 50 17) x = 50 y + 1 = 5 y = = 67 RPTA.:? 44. Calcule la suma de los 0 primeros úmeros triagulares, sabiedo que u úmero triagular es el semi producto de los úmeros aturales tomados de dos e dos. A) 1 50 B) C) D) E) i i i4 0i = Calcule el valor de la siguiete serie: S= (0 sumados) A) B) C) D) E) (0 sumados) 4 ( 1 + 1) + ( + ) + ( 4+ ) ( ) = 1085

11 46. Dada la serie geométrica decreciete, idicar el valor de la suma limite: 1 1 S = A) 5 D) 9 4 B) 1 6 E) S = = = C) 47. Calcule el valor de la suma limite, de la siguiete serie geométrica decreciete: S = A) 10 7 D) 1 B) 10 E) 4 C) S = S = = = = Calcule el valor de la siguiete serie: S= sumados A) 6675 B) 6645 C) 6895 D) 6915 E) 694 S = S = (50 térmios) A) 1 B) 1 C) D) 4 E) S = = Halle el valor de la serie S = S = 50 = 6675 i 50. Halle el valor de la serie: S = 1x + x5 + x x9 A) 510 B) 51 C) 510 D) 51 E) 5140 ( ) ( i ) ( ) ( i )... + ( ) ( + 1) S = t = +

12 19i0i9 19i0 S = i + = Calcule el valor de S S = f = 1 Σ ( 1 ) Σ f ( ) = 5 Σ f ( ) = 15 Σ f ( 4) = 4 17 A) B) 4 5 C) 5 47 D) E) S = i4 4i7 7i10 40i S = 1 4 = i = Dado el siguiete arreglo de úmeros: Halle la suma de la fila 0 A) 400 B) 4100 C) 4010 D) 140 E) 800 ( + ) 1 f( ) = 0 ( 0 + 1) f( 0) = = Dado el siguiete arreglo umérico: Halle la suma de la fila 15. A) 80 B) 90 C) 95 D) 80 E) 490 ; 10 ; 0 ; 68; f = = 90 ( 15) 54. Halle la suma de la serie: S= A) 149 B) 1575 C) 1750 D) 184 E) 1594

13 S = S 1 = t = 1 1 térmios S = t = térmios + 6 S1 = 1 = S = 0 = 80 S = Si: a = +, halle el valor de: S = a1 + a + a a10 A) B) 660 C) D) 550 E) 670 a = + ( + ) ( + ) ( + ) S = + 6 ( + ) ( + ) ( + ) S = Para = 10 S = E u trabajo de reforestació, labora 5 persoas. Cada día plata árboles más que el día aterior. El último día plataro tatos árboles como el quítuplo del úmero de días que estuviero trabajado. Cuátos árboles plataro el segudo día, sabiedo que los platados el primer día y el último día totaliza 14? A) 46 B) 49 C) 4 D) 40 E) 0 x + = 5 x = x + + x + = 14 i x + = = 140 =0 Nº árboles = x+ 6= (0)+6 = Si la suma de los primeros úmeros eteros positivos es los 7/0 de la suma de los siguietes, halle. A) 10 B) 11 C) 1 D) 1 E) 14 ( + 1) 7 ( + 1) = + 0 = U comerciate ha estado ahorrado e este mes 178 soles y tiee co esto, S/ 1410 e la caja de ahorros, habiedo ecoomizado cada mes S/ 1 más que el mes aterior. Cuáto ahorro el primer mes? A) 8 B) 10 C) 1 D) 14 E) 16

14 178 = x + 1 ( 1) 190 = x x = 1 Además: x = x 190 x 1410 = 1 x = U tre salió de su paradero iicial co 7 pasajeros y e cada parada sube dos pasajeros más de los que hay. Si al llegar a su paradero fial se cotaro 574 pasajeros. E cuátas estacioes se detuvo a recoger pasajeros? A) 5 B) 6 C) 7 D) 8 E) 9 Nº estacioes 1º º º ( ) = 574 Subiero = = Si S 1, S, S,.,S 0 so la suma de los 0 primeros térmios de ua PA. cuyos primeros térmios so iguales a uo y sus razoes so 1,, 5, 7,..., respectivamete, calcule: M= S 1 +S +S +S 4 +.+S 0 1 A) B) C) 4 00 D) E) S = = Σ S = =Σ( ) S = = Σ(5 4) S 4 = =Σ(7 6) S = =Σ(19 8) 0 M=Σ( ) Σ( ) M=Σ400 Σ M = ( 0 ) M = M = Sobre el piso se ha dibujado u polígoo regular de 4 metros de lado, u atleta se para sobre uo de los vértices y recorre todo el polígoo; y luego repite el proceso sucesivamete recorriedo e cada día u lado meos. Si ha recorrido e total 864 m Cuátos lados tiee el polígoo? A) 5 B) 6 C) 7 D) 8 E) 9 ( ) ( ) ( ) ( ) ( ) ( ) = = = 6 = 8 6. De la gráfica mostrada:

15 ( 1)² S 17 = ( 17 1)² = ² = Efectuar: Ua arañita comieza e 1 y pasa a, luego a y así sucesivamete. Si la arañita ha girado a la izquierda 0 veces; determie la suma de todos los úmeros sobre los que ha girado. A) 850 B) 745 C) 855 D) 845 E) 955 S=(+)+(5+7)+(10+1)+(17+1)+... S = t = i = E el siguiete arreglo umérico: Idique la suma de los térmios de la fila 17. A) 1089 B) 1189 C) 989 D) 89 E) 1700 Suma f1 1 1 f,,4 9 f,4,5,6,7 5 f 4,5,6,7,8,9, S = (10 9 1) A) 81 B) 4 ( ) C) ( ) D) ( ) E) ( ) 81 Multiplicado S ' cufras 9, teemos: 4 9 S = cifras 9 S ( 10 1 ) ( 10 1 ) ( 10 1 )...10 ( 1 ) 4 = S = S = S = ( ) Fila 1 4 Suma

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

3Soluciones a los ejercicios y problemas PÁGINA 79

3Soluciones a los ejercicios y problemas PÁGINA 79 Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

9 SUCESIONES. LÍMITES DE SUCESIONES

9 SUCESIONES. LÍMITES DE SUCESIONES 9 SUCESIONES. LÍMITES DE SUCESIONES EJERCICIOS PROPUESTOS 9. Co ua calculadora, forma térmios de las siguietes sucesioes y estudia a qué valores tiede. a) a b) b c) c 5 a) a a 8 5,6 a 0 00,98 a 0 00 0

Más detalles

Unidad 7: Sucesiones. Solución a los ejercicios

Unidad 7: Sucesiones. Solución a los ejercicios Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224 Límite y cotiuidad E S Q U E M A D E L A U N I D A D.. Térmio geeral de ua sucesió págia 7.. Progresioes aritméticas y geométricas págia 7. Sucesioes págia 7. Idea ituitiva de límite de ua sucesió págia..

Más detalles

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean ESTADÍSTICA Estadística: Es ua rama de la matemática que comprede Métodos y Técicas que se emplea e la recolecció, ordeamieto, resume, aálisis, iterpretació y comuicació de cojutos de datos. Població:

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+ Problema. E el diagrama se preseta los tres primeros cuadriláteros de ua secuecia que iicia e u puto e el cetro del tablero crece desde ese puto hacia fuera, cuál es el úmero de putos que está e el perímetro

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

POLIGONO: Figura cerrada de n lados, llamada línea poligonal.

POLIGONO: Figura cerrada de n lados, llamada línea poligonal. POLIGONO: Figura cerrada de lados, llamada líea poligoal. Cuado el polígoo es regular, segú el umero de lados se desiga por Numero de lados Nombre. 3 Triagulo equilátero 4 Cuadrado 5 Petágoo 6 Hexágoo

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión Defiició y propiedades 5 5. Defiició y propiedades 6 5. Covergecia absoluta e icodicioal 65 5.3 Criterios de covergecia para series de térmios o egativos 66 5.4 Otros criterios 69 5.5 Suma de series 69

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

CAPÍTULO 3: SUCESIONES. 1. SUCESIONES DE NÚMEROS REALES

CAPÍTULO 3: SUCESIONES. 1. SUCESIONES DE NÚMEROS REALES 3 CAPÍTULO 3: SUCESIONES.. SUCESIONES DE NÚMEROS REALES.. Defiicioes Ua sucesió de úmeros reales es ua secuecia ordeada de úmeros. Las siguietes secuecias so sucesioes: a),, 3, 4, 5, 6, b), 4, 6, 8, 0,,

Más detalles

an = 4n - 3 a 4 =4. -3 = a 13= a0 = an =an-1 + an-2 con a1 = 1 y a2 = 1 a 3 =

an = 4n - 3 a 4 =4. -3 = a 13= a0 = an =an-1 + an-2 con a1 = 1 y a2 = 1 a 3 = TEMA 3: PROGRESIONES CONCEPTO DE SUCESIÓN Ua sucesió es u cojuto de úmeros ordeados segú ua ley, de modo que se puede umerar: primero, segudo, tercero,. Los elemetos de ua sucesió se llama térmios y se

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN CON SOLUCIONES DE LOS EJERCICIOS CURSO 005-06 Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3,

Más detalles

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino

Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto

Más detalles

CAPÍTULO XIII. SUCESIONES

CAPÍTULO XIII. SUCESIONES CAPÍTULO XIII SUCESIONES NUMÉRICAS SECCIONES A Sucesioes covergetes y límites de oscilació Sucesioes moótoas y acotadas B Sucesioes recurretes C Ejercicios propuestos 59 A SUCESIONES CONVERGENTES Y LÍMITES

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se deomia valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Procesadores aritméticos. Ejercicios

Procesadores aritméticos. Ejercicios UNIVERSITAT POLITÈCNICA DE CATALUNYA ESCOLA UNIVERSITÀRIA POLITÈCNICA DE VILANOVA I LA GELTRÚ Procesadores aritméticos. Ejercicios DEPARTAMENT: Arquitectura de Computadors ESPECIALITAT: Iformàtica de Gestió

Más detalles

Propiedades de las series numéricas (18.03.2015)

Propiedades de las series numéricas (18.03.2015) Propiedades de las series uméricas 8.03.205) ) Si itercalamos e la sucesió {a } N u úmero fiito de térmios de suma b, el carácter de la serie a o varía y, si coverge, su suma aumeta e b. D: Sea b +b 2

Más detalles

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 006 (Modelo 1 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua impreta local edita periódicos y revistas. Para cada periódico ecesita u cartucho de

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES POTENCIACIÓN Y RADICACIÓN (Tomado de: Stewart, James. "Precálculo". Quita Edició. Secció 1..) Si a; x R; ua expresió

Más detalles

Números complejos Susana Puddu

Números complejos Susana Puddu Números complejos Susaa Puddu 1. El plao complejo. E el cojuto C = IR IR defiimos la suma y el producto de dos elemetos de C de la siguiete maera a, b + c, d = a + c, b + d a, b.c, d = ac bd, ad + bc Dejamos

Más detalles

MATEMÁTICAS I OBJETIVO DE LA ASIGNATURA:

MATEMÁTICAS I OBJETIVO DE LA ASIGNATURA: MATEMÁTICAS I OBJETIVO DE LA ASIGNATURA: RESOLVERÁ PROBLEMAS O SITUACIONES DONDE UTILICE MÉTODOS ALGEBRAICOS Y SU INTERPRETACIÓN GRÁFICA EN MODELOS MATEMÁTICOS COMO OPERACIONES CON POLINOMIOS, ECUACIONES

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = -

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = - IES Fco Ayala de Graada Sobrates de 004 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A - 0 0 - - - Sea las matrices A=, B= y C= - 0 0 - ( puto) Calcule (A I ) B, siedo I la matriz idetidad

Más detalles

Progresiones SUCESIONES PROGRESIÓN ARITMÉTICA PROGRESIÓN GEOMÉTRICA INTERÉS COMPUESTO TÉRMINO GENERAL SUCESIONES RECURRENTES. SUMA DE n TÉRMINOS

Progresiones SUCESIONES PROGRESIÓN ARITMÉTICA PROGRESIÓN GEOMÉTRICA INTERÉS COMPUESTO TÉRMINO GENERAL SUCESIONES RECURRENTES. SUMA DE n TÉRMINOS Progresioes SUCESIONES TÉRMINO GENERAL SUCESIONES RECURRENTES PROGRESIÓN ARITMÉTICA TÉRMINO GENERAL SUMA DE TÉRMINOS PROGRESIÓN GEOMÉTRICA TÉRMINO GENERAL SUMA Y PRODUCTO DE TÉRMINOS SUMA DE INFINITOS

Más detalles

ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES.

ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. ALGEBRA ELEMENTAL INDICE AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa... Ley distriutiva... 1.- EXPONENTES Y RADICALES...

Más detalles

OPCIÓN A EJERCICIO 1_A x 1 0 1

OPCIÓN A EJERCICIO 1_A x 1 0 1 IES Fco Ayala de Graada Sobrates de 006 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x 1 0 1 Sea las matrices A = y B =. 1 x+1 (1 puto) Ecuetre el valor o valores de x de forma

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Cómo simplificar expresiones algebraicas?

Cómo simplificar expresiones algebraicas? Cómo simplificar expresioes algebraicas? Prof. Jea-Pierre Marcaillou OBJETIVOS: La calculadora CASIO ClassPad 330 dispoe de los comados [simplify] y [combie] del submeú desplegable Trasformació del meú

Más detalles

Selección de inversiones II

Selección de inversiones II Problemas de Ecoomía y Orgaizació de Empresas (º de Bachillerato) Euciado Selecció de iversioes II Problema 6 U fabricate de evases de arcilla para la alimetació está aalizado la posibilidad de istalar

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

FORMULAS Y EJEMPLOS PARA EL CÁLCULO DE INTERESES DE UN DEPÓSITO A PLAZO FIJO CONVENCIONAL

FORMULAS Y EJEMPLOS PARA EL CÁLCULO DE INTERESES DE UN DEPÓSITO A PLAZO FIJO CONVENCIONAL FORMULAS Y EJEMLOS ARA EL CÁLCULO DE NERESES DE UN DEÓSO A LAZO FJO CONVENCONAL 1. GLOSARO DE ÉRMNOS a. Depósito a plazo fijo: roducto e el que el cliete podrá depositar ua catidad de diero a ua tiempo

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

TEMA 4: POLINOMIOS EN UNA INDETERMINADA.

TEMA 4: POLINOMIOS EN UNA INDETERMINADA. I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 6 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (2 putos) Sea las matrices A= y B = (1 1). -5-4 Eplique qué dimesió debe teer la matriz X para

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z < Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula

Más detalles

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2004 (Juio Modelo 5) Solucioes Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x+y 6 3x-2y 13 Sea el sistema de iecuacioes. x+3y -3 x 0 (2 putos) Dibuje el recito cuyos

Más detalles

NOMBRE: CURSO: FECHA:

NOMBRE: CURSO: FECHA: AMLIACIÓN co solucioes. EJERCICIO RESUELTO E ua jeriguilla cogemos 3 cm 3 de aire. E ese mometo la presió que ejerce dicho gas es de a. a) Escribe el valor de la presió e atmósferas, e milímetros de mercurio,

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Problema del flujo de coste mínimo. 15.053 Martes, 19 de marzo. Formulación. Pricing Out. Costes reducidos de ciclos

Problema del flujo de coste mínimo. 15.053 Martes, 19 de marzo. Formulación. Pricing Out. Costes reducidos de ciclos . Martes, 9 de marzo Método simplex para redes aplicado a la solució del problema del flujo de coste míimo Etregas: material de clase Nota: hay mucho que decir acerca del algoritmo simplex para redes,

Más detalles

Uso de Excel en la enseñanza de las series 1

Uso de Excel en la enseñanza de las series 1 Uso de Excel e la eseñaza de las series Carlos E. Azofeifa Resume El presete trabajo tiee como objetivo mostrar el uso de la herramieta muy coocida y flexible como lo es la hoja electróica Excel, e el

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS INTRODUCCIÓN

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo ) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2016 MODELO

IES Fco Ayala de Granada Junio de 2016 (Modelo ) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2016 MODELO IES Fco Ayala de Graada Juio de 016 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 016 MODELO OPCIÓN A EJERCICIO 1 (A) Las filas de la matriz P idica los respectivos

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

( ) ( )( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( ) Algebra uiversitaria UNIDAD III. POLINOMIOS 3.. Técicas elemetales para buscar raíces Recordado la defiició de raíz U poliomio P(x) tiee ua raíz r si y solo si P(r) = 0. Recordar el teorema de factorizació

Más detalles

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2)

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2) EJERCICIOS de POTENCIAS º ESO opc. B RECORDAR a m a a m m ( a ) a b a a (a b) a m a a b m a m+ b a a - a b a - b a Tambié es importate saber que algo ( base egativa) par (- ) ( base egativa) impar (- )

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 3 Progresioes Recuerda lo fudametal Curso:... Fecha:... PROGRESIONES SUCESIONES Ua sucesió es u cojuto de...... Se llama térmio geeral de ua sucesió a... Por ejemplo, e la sucesió 1, 4, 9, 16, 5, el térmio

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Unidad 1: Números Complejos

Unidad 1: Números Complejos Uidad 1: Números Complejos 11 Itroducció Además de los cojutos de úmeros aturales, eteros, racioales y reales existe el cojuto de úmeros complejos que juega u rol importate o solo e matemáticas sio e las

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 005 (Modelo 1) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( 5 putos) Resuelva el siguiete sistema y clasifíquelo atediedo al úmero de solucioes: x + y + z = 0 x +

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

Progresiones aritméticas y geométricas

Progresiones aritméticas y geométricas Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto

Más detalles

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5 Aexo 4 Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

OPCIÓN A EJERCICIO 1 (A) -5 0

OPCIÓN A EJERCICIO 1 (A) -5 0 IES Fco Ayala de Graada Sobrates 014 (Modelo 1 ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 014 MODELO 1 OPCIÓN A EJERCICIO 1 (A) -5 0-1 -8-1 Sea las matrices B =

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

EJERCICIOS DE PORCENTAJES E INTERESES

EJERCICIOS DE PORCENTAJES E INTERESES EJERCICIOS DE PORCENTAJES E INTERESES Ejercicio º 1.- Por u artículo que estaba rebajado u 12% hemos pagado 26,4 euros. Cuáto costaba ates de la rebaja? Ejercicio º 2.- El precio de u litro de gasóleo

Más detalles

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora):

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora): EJERCICIOS de RADICALES º ESO FICHA 1: Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a a (Añade estas fórmulas al formulario, juto co la lista de los 0 primeros

Más detalles

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad Tema 4.4: Teorema de Riema de sigularidades evitables. Ceros de ua fució holomorfa. Pricipio de idetidad Facultad de Ciecias Experimetales, Curso 2008-09 E. de Amo Comeamos e este tema extrayedo las primeras

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Construcción del Triángulo de Sierpinski con latas de Refresco o Cerveza

Construcción del Triángulo de Sierpinski con latas de Refresco o Cerveza Costrucció del Triágulo de Sierpiski co latas de Refresco o Cerveza Mario Otero Novoa (IES Navarro Villoslada) La asigatura de matemáticas siempre arrastra la imerecida fama de dificultad y de y esto para

Más detalles

Ecuaciones de recurrencia

Ecuaciones de recurrencia Ecucioes de recurreci Itroducció Comecemos co u ejemplo: Sucesió de Fibocci: ( ) = (,,,3,5,8,3,... ) Cd térmio, prtir del tercero, se obtiee sumdo los dos teriores, o se: 3 = + ( ) U expresió de este tipo,

Más detalles

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS.

[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS. SEMAA 9 TEORÍA DE LOS ÚMEROS ÚMEROS PRIMOS. Sea A = 3...( 6) cifras Calcule si A tiee 444 divisores compuestos. A) 3 B) C) D) E) 6 A = 3 6 6 = 6 ( ) A = 3 + A = 3 CD( A) = 444 + 4 CD( A) = 448 ( A) ( )

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

CANTIDAD EN QUÍMICA QCA 07

CANTIDAD EN QUÍMICA QCA 07 .- Razoe: a) Qué volume es mayor el de u mol de itrógeo o el de u mol de oxígeo, ambos medidos e las mismas codicioes de presió y temperatura? b) Qué masa es mayor la de u mol de itrógeo o la de uo de

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

Intervalos de confianza para la media

Intervalos de confianza para la media Itervalos de cofiaza para la media Ejercicio º 1.- Las vetas diarias, e euros, e u determiado comercio sigue ua distribució N(950, 200). Calcula la probabilidad de que las vetas diarias e ese comercio:

Más detalles

TEMA 10 - COMBINATORIA NOCIONES GENERALES DE COMBINATORIA FACTORIAL DE UN NÚMERO NÚMEROS COMBINATORIOS. C n m = =

TEMA 10 - COMBINATORIA NOCIONES GENERALES DE COMBINATORIA FACTORIAL DE UN NÚMERO NÚMEROS COMBINATORIOS. C n m = = Tema 10 Combiatoria -Matemáticas B 4º E.S.O. 1 TEMA 10 - COMBINATORIA NOCIONES GENERALES DE COMBINATORIA m º de elemetos que dispoemos. ORDEN º de elemetos que cogemos. SI NO m VARIACIONES NO Vm m.(m 1).(m

Más detalles

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo.

MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. MEDIDAS RESUMEN: Numéricas y Gráficas. Ejemplo. Admítelo ua salchicha o es ua zaahoria. Así decía la revista El Cosumidor e u cometario sobre la baja calidad utricioal de las salchichas. Hay tres tipos

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

LECCIÓN Nº 13 y 14 DEPRECIACION.

LECCIÓN Nº 13 y 14 DEPRECIACION. LECCIÓN Nº 13 y 14 DEPRECIACION. OBJETIVO: Coocer la termiología básica de la recuperació del capital que utiliza la depreciació. Utilizar el modelo de depreciació e líea recta. Utilizar el modelo de depreciació

Más detalles