1. Sucesiones y series numéricas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Sucesiones y series numéricas"

Transcripción

1 ITINFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN CON SOLUCIONES DE LOS EJERCICIOS CURSO Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3, 3 4, 3 4 5,,, 6, 4, 0,, 3, 3 5, 3 5 7, e), 4, 6, 8, 0, f),,,,,,, Determiar la covergecia o divergecia de la sucesió cuyo térmio -ésimo se da E caso de covergecia, determiar el límite a = 3/ a = a = a = log( ) e) a = cos π f) a =! g) a = p, (p > 0) e h) a = + i) a = j) a = E el estudio de la procreació de coejos, Fiboacci (hacia 75-50) ecotró la hoy famosa sucesió que lleva su ombre, defiida por recurrecia como Escribir sus primeros térmios a + = a + a +, a =, a = Escribir los 0 primeros térmios de la sucesió defiida por b = a + a, para

2 CI Igeiero Técico e Iformática Curso Usado la defiició del apartado aterior, probar que b = + b Si lim b = α usar los apartados ateriores para verificar que α = + α Resolver esta ecuació e α (α se cooce como la secció áure 4 Verificar que la serie dada es divergete e) =0 + ( ) (, 055) =0 + +! 5 Verificar que la serie dada coverge: (0, 9) =0 (Usar fraccioes simples) ( + ) ( + ) 6 Calcular la suma de las series covergetes dadas ( ) 4 ( + ) ( + )( + 3) ( ) 3 7 Expresar cada decimal periódico como ua serie geométrica y escribir su suma e forma de cociete de dos úmeros eteros 0, , 55

3 CI Igeiero Técico e Iformática Curso Sea a ua serie covergete y sea R = a + + a + + el resto de la serie tras los primeros térmios Demostrar que lim R = 0 9 Hallar dos series divergete a y b tales que (a + b ) sea covergete Si a coverge y b diverge, demostrar que (a + b ) diverge 0 Usar el criterio de comparació directa para saber si la serie coverge o o e) f) =0 = = log +! e =0 4 3 Usar el criterio de comparació e el límite para determiar si la serie es covergete o divergete e) = ( + ) k k +, k > ( ) tg Usar el criterio de comparació e el límite co la serie armóica para demostrar que la serie a (co a 0) diverge si lim a 0 3 Probar que la serie si( ) diverge Ayuda: Usa el apartado aterior 4 Probar que si P () y Q() so poliomios de grados respectivos j y k, la serie

4 CI Igeiero Técico e Iformática Curso coverge si j < k y diverge si j k P () Q() 5 Aalizar si la serie dada es covergete o divergete, usado el criterio de series alteradas e) f) ( ) + si ( ) + ( ) + log( + ) + ( + )π ( ) ()! ( ) + e e 6 Determiar si la serie dada es codicioal o absolutamete covergete e) f) = ( ) + ( + ) ( ) + + ( ) log ( ) 3 cos si[( )π/] 7 Demostrar que la serie armóica alterada geeralizada ( ) ( ) p coverge si p > 0 8 Probar que si a coverge, etoces a coverge 9 Determiar si la serie dada es covergete o divergete

5 CI Igeiero Técico e Iformática Curso e) f) g) h) i) j) k) l) m) ) 3 ( ) + ( ) + ( + ) ( + ) ( ) =0! 3! 3 ( + ) ( ) +! 3 5 ( + ) e =0 ( ) 3! =0 cos ( 3) ( + ) a(a + )(a + ) (a + + ), a, b > 0 b(b + )(b + ) (b + + ) 0 Aproximar la suma de la serie covergete co u error meor que ɛ e) =0 ( ) + 3 co ɛ = 000 ( ) co ɛ = 000! co ɛ = 0 co ɛ = ! co ɛ = 00

6 CI Igeiero Técico e Iformática Curso Sucesioes y series de fucioes Se defie, para cada IN, la fució f : [0, ) IR dada por: f (x) = + x k, k IR+ Ecotrar la fució límite putual de la sucesió fucioal {f } Justificar que la covergecia o es uiforme Sea {f } co f : [0, ] IR la sucesió de fucioes dada por: f (x) = xe x Comparar lim f co lim 0 0 Qué se deduce de este resultado? f 3 Exame Se defie, para cada IN, la fució f : [ π, π] IR dada por f (x) = x + x Se pide ecotrar la fució límite putual de {f } y justifica que la covergecia o es uiforme 4 Exame Demostrar que la serie si(x) 3 coverge uiformemete e R y además π 0 si(x) 3 dx = ( ) 4

7 CI Igeiero Técico e Iformática Curso P-: + ( + )( + )! 3 5 ( ) e) ( ) + f) ( ) Solucioes a los ejercicios Sucesioes y series uméricas P-: e) Sucesió o covergete a = 0, a = ( ) f) E pricipio se tiee: lim a = Para resolver vamos a usar el Teorema del sadwich (o ecaje) Observemos que: 0! = Sea b = 0 y c = / como ambas tiee límite 0 y al estar a =! etoces se tiee: lim a = 0 ecajada etre ellas, g) Se tiee que: lim a = para resolver esta idetermiació, usamos la propiedad que relacioa el límite de ua fució co el de ua sucesió Para ello cosideremos la fució f(x) = xp e x que cumple que f() = a Por tato, se tiee que lim a = lim f(x) x Abordamos la idetermiació lim x f(x) = lim f(x) = lim p xp x x e x = mediate la Regla de L Hôpital, obteiédose: { 0 p 0 p > 0 E el caso e que p > 0, aplicamos de uevo L Hôpital: { xp 0 p 0 lim f(x) = lim p(p ) x x e x = p > 0 Por tato, aplicado L Hôpital exactamete p -veces llegamos a: lim f(x) = 0 x

8 CI Igeiero Técico e Iformática Curso h) 0 i) j) Para calcular el siguiete límite, lim a, recurrimos a la Regla de Stolz, dode a = c b co c = y b = Veamos que se satisface las codicioes de esta regla: Es claro que b es estrictamete creciete lim b = Por tato, pasamos a calcular el siguiete límite: lim c c b b = lim ( ) = lim al existir, coicide co el límite de a = c /b Por tato, teemos lim a = lim =, P-3:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 3/, 573, 8/5, 3/8, /3, 34/, 55/34, 89/55, 44/89 + = + = a + a = a + = b b a a a a Tomado límite e los dos extremos de la idetidad del apartado aterior, se tiee: lim b = + lim b usado que lim b = lim b, y deotado lim b por α llegamos a la ecuació: resolviédola se tiee: α = ± 5 α = + α, P-4: Diverge pues lim + = 0 Diverge por ser ua serie geométrica de razó 3/ > Diverge por ser ua serie geométrica de razó, 055 > Diverge pues lim + + = 0 e) Diverge pues lim! = lim 3 > lim = > 0, por tato, o verifica el teorema del límite del térmio geeral de ua serie covergete P-5: Covergete por ser serie geométrica de razó 0, 9 < Es ua serie telescópica: ( + ) = ( ) + Por el criterio de comparació por paso al límite: lim /(( + )) / = Como coverge, etoces ( + ) tambié

9 CI Igeiero Técico e Iformática Curso P-6: Serie geométrica de razó / La suma es: 4 ( + ) = 4 / ( /) = /3 ( + = + ) = 3 Para resolver este tipo de ejercicios, dode se os pide calcular la suma exacta de ua serie umérica, debemos caer e el hecho de que e teoría sólo hemos visto como se suma dos tipos de series: las geométricas y las telescópicas Por ello, lo primero que debemos hacer es ver a que modelo de las dos ateriores se ajusta mejor, la serie que pretedemos sumar E este caso es claro que o se parece a ua geométrica Ahora, vamos a descompoer el cociete e fraccioes simples, para ver si se ajusta al modelo de las telescópicas: ( + )( + 3) ( + )( + 3) = A + + B + 3 operado teemos A = / y B = / Además observamos que si b = / + etoces b + = / +3, por tato teemos: ( + )( + 3) = ( / + / ) = + 3 (b b + ) = b lim b + = b = /6 Teiedo e cueta que las series y 3 so geométricas de razó r = / y r = /3, respectivamete Por tato, ambas covergetes, se tiee que: Además, ( ) 3 = 3 = / / = y 3 = /3 = / Así pues: /3 ( ) 3 = / P-7: = = = 75 ( ) 0 0 = 75 /0 0 /0 = = = P-8: Llamado S = a i y S = i= ( ) 0 = a i, teemos que S + R = S Tomado límite e esta igualdad i= última y usado la propiedad de los límites, teemos: lim S + lim R = lim S usado que lim S = S (límite de ua sucesió costate) y que lim S = S (por defiició), deducimos que lim R = 0

10 CI Igeiero Técico e Iformática Curso P-9: Por ejemplo, y + es covergete so divergetes, pero ( + ) = + ( + ) Si a coverge y b diverge, demostrar que (a + b ) diverge: Por reducció al absurdo, supoer que (a + b ) coverge Etoces ((a + b ) a ) = b tambié covergería lo que cotradice la hipótesis P-0: Para cualquier atural se tiee: + > + < + como sabemos que coverge, etoces + tambié Coverge Comparar co ( ) 3 Para 3, se tiee: < l + < l + =3 + =3, l +, l como sabemos que diverge, etoces tambié (Obsérvese que la serie de + + =3 =3 este apartado comieza la suma e =, pero sabemos que el carácter de ua serie o depede del valor dode se comiece la sum Coverge Comparar co e) Coverge Comparar co f) Diverge Comparar co ( ) 4 3 P-: Divergete Comparar co Covergete Comparar co 3 Covergete Comparar co 3 Divergete Comparar co e) Divergete Comparar co P-: Supoiedo que lim a es distito de cero Comparado a co, teemos que: Como diverge, etoces a tambié lim a / = lim a 0

11 CI Igeiero Técico e Iformática Curso P-3: La serie diverge Podemos probarlo, al meos, de dos formas: Usar el apartado aterior Dode a = si( ), es claro que Etoces la serie diverge a > 0 y lim a = 0 Usar el criterio de comparició por paso al límite co la serie P-4: Los poliomios so de la forma: P () = a j j + a j j + + a + a 0 y Q() = a k k + a k k + + a + a 0, co a j 0 a k Por el criterio de comparació, lim P ()/Q() / j+k = a j a k que es fiito y distito de cero Por tato, como la serie si j + k, así ocurre co la del ejercicio j+k coverge si j + k > y diverge P-5: Obviamete se trata de ua serie alterada, pues se ajusta al modelo ( ) a (o ( ) + a ) co a 0 Vamos a ver que se satisface las codicioes del criterio de covergecia para series alteradas: a es ua sucesió decreciete Para ello cosideremos la fució f(x) = x que satisface que f() = a Estudiamos el crecimieto de f(x), del modo habitual, e el itervalo [, ) Para ello calculamos, f (x) = x, y estudiamos su sigo e [, ) que obviamete resulta ser egativo Por tato, teemos que f(x) es decreciete e [, ), cosecuetemete hemos probado que a es ua sucesió decreciete lim a = 0 Lo cual resulta obvio Teemos que la serie e cuestió es covergete No covergete pues o satisface la codició ecesaria de covergecia para ua serie (ie b coverge lim b = 0) Covergete No covergete pues o satisface la codició ecesaria de covergecia para ua serie e) Covergete f) Covergete P-6: Absolutamete covergete Codicioalmete covergete Codicioalmete covergete Absolutamete covergete e) Absolutamete covergete f) Codicioalmete covergete P-7: Usado el criterio para series alteradas: La sucesió {/ p } es decreciete Basta ver que la fució f(x) = /x p es decreciete para x y p > 0 pues f (x) = px p es egativa x [, )

12 CI Igeiero Técico e Iformática Curso lim /p = 0 cuado p > 0 P-8: Usado el criterio de comparació por paso al límite: P-9: lim a a = lim a = 0 (por ser a covergete) Por tato, como a coverge, tambié lo hace a Serie de térmios positivos Por el criterio de la raíz, lim = /3 <, luego la serie 3 coverge Serie de térmios positivos Por el criterio de la raíz la serie coverge Serie de térmios positivos Por el criterio de la raíz la serie coverge Serie covergete codicioalmete Usar el criterio de series alterada para ver que la serie coverge Comparar la serie e valor absoluto co la armóica para ver que diverge e) Coverge absolutamete Usar el criterio de la raíz f) Diverge Usar criterio del cociete g) Diverge Usar el criterio del cociete h) Coverge Usar el criterio de la raíz i) Coverge absolutamete Usar el criterio del cociete j) Coverge Usar el criterio de la raíz k) Coverge absolutamete Usar el criterio del cociete l) Coverge absolutamete Comparar la serie e valor absoluto co / m) Coverge absolutamete Usar el criterio del cociete ) Se trata de ua serie de térmios positivos Vamos abordar el estudio del carácter mediate el criterio del cociete Para ello estudiamos el siguiete límite: lim a + a = lim a + + b + + = a(a + )(a + ) (a + + ) dode a = Al ser el límite, el criterio del cociete o aporta b(b + )(b + ) (b + + ) iformació Ahora, aplicamos el criterio de Raabe, para ello estudiamos el límite: ( ) a (b lim = lim a + + a + = b a Si b a >, la serie coverge Si b a <, la serie diverge Si b = a +, etoces teemos la serie límite co ) a la cual diverge, (compárala por paso al a + + P-0: Lo primero que hay que hacer e este tipo de ejercicios es asegurarse que la serie e cuestió es covergete Pero el euciado ya os asegura que lo so Se trata de ua serie alterada covergete Por teoría el error cometido al tomar S e lugar de S es meor que el valor absoluto del primer térmio que se desprecia ( ) + ( + ) 3 < 0, 00 si y sólo si 3 + 0, 00 <, es decir 7 0, 00

13 CI Igeiero Técico e Iformática Curso Se trata tambié de ua serie alterada covergete ( ) + ( + )! < 0, 00 si y sólo si 000 < ( + )! Probado co =,, llegamos a que 6 Se trata de ua serie de térmios positivos Aplicamos el método de la mayorate Pues observamos que el térmio geeral de los sumados de la serie se puede mayorar muy fácilmete por los de ua serie fácilmete sumable (geométric, 0 <, esto os permite obteer la cota de R siguiete: R = k=+ k k k=+ k = R = + = El problema os pide que determiemos, para que el error sea meor que ɛ, lo cual se cosigue si R < ɛ, R ɛ, R < ɛ < 0 0 < lo cual se tiee, tomado = 4 Por tato S 4 = 4 error meor que 0 k=+ aproxima a S = co u Se trata de ua serie de térmios positivos Aplicamos el criterio itegral para obteer ua cota del error y obteemos: R = [ ] t 5 t 5 dx = 4t 4 = t= 4 4, Por tato, para coseguir que S = tega u error meor que ɛ, es suficiete que 5 4 < 000, o sea > 4 50 = 397, es decir, bastará co tomar los 4 primeros sumados, de los que se obtiee: S 4 = = e) Se trata de ua serie de térmios positivos Aplicamos el método del cociete, pues el criterio de la mayorate o es factible de ser aplicado al igual que el itegral (se deja al alumo que itete aplicarlos y observe las dificultades que aparece) El método del cociete cosiste e hallar u úmero atural N y u úmero real 0 < k < tal que a + a k <, N Ua vez hallados k y N, se tiee la siguiete cota del error: R = k=+ a a k, dode es cualquier atural mayor o igual que N k E uestro caso, a = 3 Itetamos determiar u valor para N y otro para k, para ello! b = a + a = 3 +,

14 CI Igeiero Técico e Iformática Curso se tiee que además b es decreciete, por tato b = 3 + < >, 0 < b b 3 <, si 3 Así pues podemos tomar N = 3 k = b 3 = 3 4, por cosiguiete, teemos la siguiete cota del error R 3! 3/4 3/4 = 3+! Por tato, para coseguir que S tega u error meor que ɛ, es suficiete que 3 +! < 0, o sea es decir, bastará co tomar los primeros sumados, S = 3! Sucesioes y series de fucioes P-: La fució límite putual es f(x) = { 0 si x > 0 si x > 0 Dado que las fucioes f so cotiuas, pero la fució límite o, se deduce que la covergecia e [0, +) o es uiforme P-: Por u lado, f(x) =lim f (x) = 0 para todo x [0, ] por tato 0 lim f =0 Por otro lado, lim 0 f = De este resultado se deduce que la covergecia o es uiforme P-3: El problema os pide que calculemos el siguiete límite: f(x) = lim f (x) que evidetemete va a depeder del valor cocreto de la x Es muy fácil ver que f(x) = lim f (x) = si < x π / si x = 0 si x < La fució límite f o es cotiua e [ π, π] (estudiar la cotiuidad e x = o ) Si embargo, las f si so cotiuas Por tato, podemos iferir que o existe covergecia uiforme de {f } e [ π, π] P-4: Usamos el criterio de la mayorate de Weierstrass Primero vemos que satisface las codicioes de este criterio: Para cualquier IN se tiee que si x 3, x IR,

15 CI Igeiero Técico e Iformática Curso La serie umérica Por tato, si x 3 es covergete coverge uiformemete e IR Gracias a la covergecia uiforme de la serie, podemos garatizar que se pueda itegrar térmio a térmio π π 0 si x 3 dx = 0 si x 3 dx = [ cos x ] π 4 = 0 cos π + 4 = ( ) 4

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

Análisis Matemático IV

Análisis Matemático IV Aálisis Matemático IV Relació 4. Ejercicios resueltos Ejercicio : Estudiar la covergecia putual y uiforme de las siguietes series fucioales e los cojutos que se idica (i) Σ x =! e x e [0, ] Primero, estudiamos

Más detalles

Propiedades de las series numéricas (18.03.2015)

Propiedades de las series numéricas (18.03.2015) Propiedades de las series uméricas 8.03.205) ) Si itercalamos e la sucesió {a } N u úmero fiito de térmios de suma b, el carácter de la serie a o varía y, si coverge, su suma aumeta e b. D: Sea b +b 2

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión Defiició y propiedades 5 5. Defiició y propiedades 6 5. Covergecia absoluta e icodicioal 65 5.3 Criterios de covergecia para series de térmios o egativos 66 5.4 Otros criterios 69 5.5 Suma de series 69

Más detalles

SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1)

SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1) Escuela de Igeieros de Bilbao Departameto Matemática Aplicada SERIES POTENCIALES.- Hallar el campo de covergecia de la serie potecial: ( + ) 3 y Realizado el cambio de variable, + 3 = y, teemos la serie:

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

Capítulo 2. Series de números reales. 2.1 Convergencia de una serie de números reales.

Capítulo 2. Series de números reales. 2.1 Convergencia de una serie de números reales. Capítulo 2 Series de úmeros reales Defiició 2.0. Dada ua sucesió a, a 2, a 3,,, de úmeros reales, la sucesió S, S 2, S 3,, S, dode: S = a S 2 = a + a 2 S 3 = a + a 2 + a 3 S = a + a 2 + a 3 + + se dice

Más detalles

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen Criterio de Comparació Si a 0 y b 0. Si existe ua costate C > 0 tal que a Cb etoces la covergecia de b implica la covergecia de a. Ejemplo.- Sabemos que la serie coverge a, pero como (+), etoces la serie

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. Autoevaluación No. 1 MA2115 Enero 2009

Universidad Simón Bolıvar. Departamento de Matemáticas puras y aplicadas. Autoevaluación No. 1 MA2115 Enero 2009 Uiversidad Simó Bolıvar. Departameto de Matemáticas puras y aplicadas. Autoevaluació No. MA25 Eero 2009 I. Evaluació Teórica.. Diga la defiició de ua sucesió covergete, la defiició de ua sucesió divergete

Más detalles

Cálculo I (Grado en Ingeniería Informática) Examen final, enero de 2014

Cálculo I (Grado en Ingeniería Informática) Examen final, enero de 2014 Cálculo I (Grado e Igeiería Iformática 03-4 Exame fial, eero de 04 PUNTUACIÓN DEL EXAMEN: P. P. P. 3 P. 4 P. 5 P. 6 TOTAL Iicial del primer apellido: NOMBRE: APELLIDOS: D.N.I. O PASAPORTE: FIRMA: Notas

Más detalles

CAPÍTULO XIII. SUCESIONES

CAPÍTULO XIII. SUCESIONES CAPÍTULO XIII SUCESIONES NUMÉRICAS SECCIONES A Sucesioes covergetes y límites de oscilació Sucesioes moótoas y acotadas B Sucesioes recurretes C Ejercicios propuestos 59 A SUCESIONES CONVERGENTES Y LÍMITES

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

S7: Series numéricas II

S7: Series numéricas II Dada la serie S = k= a k, si la suma es fiita diremos que es ua serie covergete y e caso cotrario ua serie divergete. A la siguiete sucesió de úmeros la llamaremos la sucesió de sus sumas parciales: S

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

Examen de Febrero de 2005 de Cálculo I. Soluciones.

Examen de Febrero de 2005 de Cálculo I. Soluciones. Eame de Febrero de 5 de Cálculo I Solucioes Sea la fució f() = e sh + co domiio R a) Hallar los tres primeros térmios o ulos de su desarrollo de Taylor e = b) Probar que eiste su fució iversa f y calcular

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

Convergencia absoluta y series alternantes

Convergencia absoluta y series alternantes Istituto Politécico Nacioal Escuela Superior de Cómputo Covergecia absoluta y series alterates Uidad de apredizaje: Cálculo aplicado Grupo: CM6 Autores: Morales López Laura Adrea Otiveros Salazar Ala Erique

Más detalles

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x

2x 8 x 2 1 = 4. = 2x 8 + 4x 2 4 x 2 1. Estamos calculando un límite cuando x está cerca de 3. Esto quiere decir que. x ALGUNOS PROBLEMAS PROCEDENTES DE EXÁMENES PRECEDENTES.. problemas de ites y series. Pruebe, usado la defiició, que: x 3/ x 8 x = 4. Solució. Dado ɛ > 0 queremos que x 8 ( 4 x, sea meor que ɛ cuado x esté

Más detalles

TEMA 4. Series de números reales. Series de Potencias.

TEMA 4. Series de números reales. Series de Potencias. TEMA 4 Series de úmeros reales. Series de Potecias.. Sucesió de úmeros reales Las sucesioes de úmeros reales so ua buea herramieta para describir la evolució de ua magitud discreta, y el ite surge al estudiar

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

Práctica 3 Sucesiones y series

Práctica 3 Sucesiones y series Práctica 3 Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y Sum que os permitirá, e la

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

Criterios de convergencia para series.

Criterios de convergencia para series. Criterios de covergecia para series. Para series e geeral, existe ua serie de criterios de covergecia:. Primer criterio de comparació.- Si ( ) y (b ) so dos sucesioes de úmeros reales tales que m N, tal

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA GESTIÓN BOLETÍN DE PROBLEMAS CÁLCULO INFINITESIMAL CURSO 00- Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3, 3 4, 3 4 5, c),,

Más detalles

Sucesiones y series numéricas

Sucesiones y series numéricas TEMA 6 Sucesioes y series uméricas Objetivos: Los objetivos so: () estudiar la covergecia de las sucesioes uméricas, (2) Coocer las series uméricas y sus propiedades; (3) saber aplicar los criterios y

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series Programa de Acceso Iclusivo, Equidad y Permaecia PAIEP Uiversidad de Satiago de Chile Series Sea {a } N ua sucesió de úmeros reales, etoces a la expresió a + a 2 + a 3 + + a + se le deomia serie ifiita

Más detalles

(a n a n+1 ) n(n + 1) = Comprobar que las siguientes series no son convergentes. ( 1) n. 2 n+2 3 n 2,

(a n a n+1 ) n(n + 1) = Comprobar que las siguientes series no son convergentes. ( 1) n. 2 n+2 3 n 2, FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 4. Probar que si la serie es covergete,

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n Uidad 5 Covergecia Uiforme 5.1 Series de potecias y radio de covergecia. Serie de Potecias Deició 1. A ua serie de la forma a () dode a 1, a 2,..., a,... so costates y c R es jo, se le llama serie de potecias

Más detalles

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II)

Semana 10 [1/24] Sucesiones (II) 2 de mayo de Sucesiones (II) Semaa 0 [/24] 2 de mayo de 2007 Sadwich de sucesioes Semaa 0 [2/24] Límites y Orde. Teorema Sea u ) y w ) sucesioes covergetes a u y w, respectivamete. Si 0 tal que para 0 se cumple que etoces u w. u w

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES

RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES RESUMEN DE RESULTADOS IMPORTANTES ACERCA DE SUCESIONES Y SERIES MATE 3032 - DR. UROYOÁN R. WALKER. Sucesioes Teorema.. Sucesioes mootóicas acotadas coverge. Ejemplo.2. Sea {a } la sucesió deida recursivamete

Más detalles

CÁLCULO INTEGRAL APUNTES SERIES

CÁLCULO INTEGRAL APUNTES SERIES UN I V E R S I D A D MA Y O R FA C U LT A D DE IN G E N I E R Í A SE G U N D O SE M E S T R E 0 CÁLCULO INTEGRAL AUNTES SERIES CRITERIOS. Criterio del -ésimo térmio para la divergecia Si la serie a coverge,

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 3: Series de térmios positivos. Criterios de covergecia. Series de térmios positivos Elaborado por los profesores Edgar Cabello y Marcos Gozález La característica fudametal de ua serie cuyos

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas I.T.INFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN DE PROBLEMAS CURSO 008-09. Sucesioes y series uméricas. Escribir ua expresió para el -ésimo térmio de la sucesió: a) +, +3 4, +7 8, +5 6, 3, 3 4, 3 4 5, c),,

Más detalles

1. SUCESIONES Y SERIES

1. SUCESIONES Y SERIES 1. SUCESIONES Y SERIES Objetivo: El alumo aalizará sucesioes y las series para represetar fucioes por medio de series de potecias 1.1 Defiició se sucesió. Límite y covergecia de ua sucesió qué es ua sucesió?

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

Series de números reales

Series de números reales Series de úmeros reales Covergecia de series uméricas Ejercicio. series: a) ) + b) 3 3 ) c) +) Aplicar el criterio de la raíz para estudiar la posible covergecia de las siguietes Solució. a) Aplicamos

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Sesión 8 Series numéricas III

Sesión 8 Series numéricas III Sesió 8 Series uméricas III Defiició Serie de Potecias Si a 0, a, a,, a so úmeros reales y x es ua variable, ua expresió de la forma a x, se llama Serie de Potecias. Lo abreviaremos co SP. Alguos ejemplos

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

S6: Series Numéricas (I)

S6: Series Numéricas (I) S6: Series Numéricas (I) Aprederemos como hacer sumas co u úmero ifiito de térmios. U ejemplo de suma ifiita es: 0 + + + + 4 + 5 + Para sumarla primero sumaremos térmios y después haremos +. Notació: S

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

1. (7 puntos)encuentre el área de la región acotada por la curva en el intervalo 0.

1. (7 puntos)encuentre el área de la región acotada por la curva en el intervalo 0. Uiversidad de Puerto Rico. Recito Uiversitario de Mayagüez Departameto de Ciecias Matemáticas Tercer Exame Departametal Mate 3032 4 de abril de 206 Nombre. Secció Número de Estudiate Profesor Número de

Más detalles

Series alternadas. n n. Es decir sus términos son alternadamente positivos y negativos. Se analiza su comportamiento utilizando el siguiente teorema:

Series alternadas. n n. Es decir sus términos son alternadamente positivos y negativos. Se analiza su comportamiento utilizando el siguiente teorema: So series de la forma Series alteradas + ( ) a o ( ) a co a > = =. Es decir sus térmios so alteradamete positivos y egativos. Se aaliza su comportamieto utilizado el siguiete teorema: Teorema de Leibiz

Más detalles

ACTIVIDADES NO PRESENCIALES

ACTIVIDADES NO PRESENCIALES E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Grado e Igeiería Mecáica Este documeto cotiee las actividades o preseciales propuestas al termiar la clase del día que se idica. Se sobreetiede

Más detalles

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos.

Tarea 1 y 2. Problema 1. Calcula el supremo y el ínfimo de los siguientes conjuntos. Cálculo Tarea y Problema. Calcula el supremo y el ífimo de los siguietes cojutos. a) A = {x : 0 x }. Es imediato que sup A = e íf A = 0. b) A = {x : 0 < x < }. Es imediato que sup A = e íf A = 0. c) A

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA APLICADA. Temas 5 y 6 Sucesiones y Series. Series de Potencias

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA APLICADA. Temas 5 y 6 Sucesiones y Series. Series de Potencias Temas 5 y 6 Sucesioes y Series. Series de Potecias SUCESIONES E los siguietes problemas determie si la sucesió { } ecuetre el límite e caso de ser covergete..- { }.- { } = 5 a.- { } a 5.- { a} = + 9 a

Más detalles

El interés fundamental que se persigue en este capítulo es la. representación de las funciones complejas por medio de series de potencias, lo

El interés fundamental que se persigue en este capítulo es la. representación de las funciones complejas por medio de series de potencias, lo Aálisis matemático para Igeiería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 3 Series complejas El iterés fudametal que se persigue e este capítulo es la represetació de las fucioes complejas

Más detalles

Series de funciones en C z n z. f n (z) converge puntualmente en D C, entonces

Series de funciones en C z n z. f n (z) converge puntualmente en D C, entonces Series de fucioes e C. Defiició. Sea f : D C;, ua sucesió de fucioes. Sea S : D C la sucesió defiida por S (z) = f (z). La serie f (z) se dice covergete e z D si la sucesió {S (z)} es k= covergete e z

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Pág. Grado Ig. Tec. Telecomuicació NOTA: E todos los ejercicios se deberá justificar la respuesta eplicado el procedimieto seguido e la resolució

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad Tema 4.4: Teorema de Riema de sigularidades evitables. Ceros de ua fució holomorfa. Pricipio de idetidad Facultad de Ciecias Experimetales, Curso 2008-09 E. de Amo Comeamos e este tema extrayedo las primeras

Más detalles

Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Series Infinitas

Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Series Infinitas Uiversidad Nacioal Autóoma de México Liceciatura e Ecoomía Cálculo Diferecial e Itegral Series Ifiitas El ifiito! Nigua cuestió ha comovido ta profudamete el espíritu del ser humao. David Hilbert Defiició

Más detalles

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7

Sucesiones. f : {1,2,...,r} S. Por ejemplo, la sucesión finita, (de longitud 4) de números primos menores que 10: 2,3,5,7 Sucesioes. Defiició Sucesió Matemática Ua sucesió fiita (a k ) (de logitud r) co elemetos perteecietes a u cojuto S, se defie como ua fució y e este caso el elemeto a k correspode a f(k). f : {,,...,r}

Más detalles

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada.

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada. (Aputes e revisió para orietar el apredizaje) CONVERGENCIA ABSOLUTA TEOREMA. Si e la serie alterada ( ) valor absoluto de sus térmios, se tiee la serie: a + a + + a + a se toma el = que si es covergete,

Más detalles

Criterios de Convergencia

Criterios de Convergencia Semaa - Clase 3 7/09/08 Tema : Series. Itroducció Criterios de Covergecia Sólo podremos calcular la suma de alguas series, e la mayoría os será imposible y os tedremos que coformar co saber si coverge

Más detalles

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA. Práctica nº 3: Sucesiones y series numéricas.

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA. Práctica nº 3: Sucesiones y series numéricas. INGENIERÍA TÉCNICA INDUSTRIAL - ESP. ELECTRÓNICA INDUSTRIAL CURSO 2003-2004 FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Práctica º 3: Sucesioes y series uméricas. Abordamos e esta práctica el tratamieto co

Más detalles

EXAMEN TEMA 1. Sucesiones, series, dos variables

EXAMEN TEMA 1. Sucesiones, series, dos variables GRUPO Ma 4-5) CÁLCULO Facultad de Iformática UPM) 5-Juio - 05 Tiempo: horas º º 3º 4º 5º suma EXAMEN TEMA. Sucesioes, series, dos variables. ptos.) Determiar el valor que ha de teer a R para que se cumpla

Más detalles

Números de Bernoulli y su Relación con la Función Zeta de Riemann

Números de Bernoulli y su Relación con la Función Zeta de Riemann Números de Beroulli y su Relació co la Fució Zeta de Riema Jua Camilo Torres Chaves Mayo 9 de 26 Resume Itroducimos los úmeros de Beroulli y demostramos alguas de sus propiedades más importates. Usamos

Más detalles

Práctica 4 Series de funciones y de potencias

Práctica 4 Series de funciones y de potencias MATEMATICA 4 - Aálisis Matemático III Primer Cuatrimestre de 208 Práctica 4 Series de fucioes y de potecias. (*) Aalizar la covergecia putual y uiforme de las siguietes sucesioes de fucioes e los cojutos

Más detalles

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene:

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene: Ejercicio. Obteer los cuatro primeros térmios o ulos de la solució e forma de serie de potecias de x del problema de valores iiciales < (x + )y y = y() = : y () = Solució Como os pide que resolvamos u

Más detalles

AN ALISIS MATEM ATICO B ASICO.

AN ALISIS MATEM ATICO B ASICO. AN ALISIS MATEM ATICO B ASICO. CRITERIOS DE CONVERGENCIA DE SERIES. E geeral, repetimos, o vamos a poder ecotrar la suma de ua serie covergete. Pero si su caracter, es decir si es covergete o o lo es.

Más detalles

Práctica 8: Series - Convergencia Uniforme - Espacios de Funciones

Práctica 8: Series - Convergencia Uniforme - Espacios de Funciones Cálculo Avazado Segudo Cuatrimestre de 2005 Práctica 8: Series - Covergecia Uiforme - Espacios de Fucioes Ejercicio. i) E cada uo de los casos siguietes, hallar el límite putual de la sucesió (f ) N deida

Más detalles

EXISTENCIA Y UNICIDAD DE LAS SOLUCIONES DE PROBLEMAS DIFERENCIALES. f se puede garantizar que el problema diferencial (1) tiene

EXISTENCIA Y UNICIDAD DE LAS SOLUCIONES DE PROBLEMAS DIFERENCIALES. f se puede garantizar que el problema diferencial (1) tiene Scietia et Techica Año XIII, No 35, Agosto de 7 Uiversidad Tecológica de Pereira ISSN -7 479 EXISTENCIA Y UNICIDAD DE LAS SOLUCIONES DE PROBLEMAS DIFERENCIALES Eistece ad uiqueess of the solutios of differetial

Más detalles

Sucesiones. Límite de una

Sucesiones. Límite de una Capítulo 3 Sucesioes. Límite de ua sucesió 3.. Itroducció La oció de sucesió es u istrumeto importate para el estudio de u gra úmero de problemas relativos a las fucioes. Ua sucesió es, simplemete, ua

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documeto es de distribució gratuita y llega gracias a Ciecia Matemática www.cieciamatematica.com El mayor portal de recursos educativos a tu servicio! Cálculo: Series Fucioales. Taylor y Fourier Atoio

Más detalles

Funciones Exponencial y Logaritmo

Funciones Exponencial y Logaritmo . 9th May 2007 La fució expoecial Itroducció. Recuerdo Sabemos lo siguiete para la sucesió a = + h ) Si lim h 2, 0) etoces lim a = 0. 2 Si lim h / [ 2, 0] etoces lim a o existe. 3 Si lim h = 0 y lim h

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43 TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a Págia. a) Es la sucesió de los úmeros impares:, 5, 7 b) Se suma al valor absoluto del úmero y se cambia de sigo: 7, 0, c) Se

Más detalles

Preguntas de examen. Apéndice A. A.1 Abril de 2008 (Examen parcial) Preguntas de test (30%) Teoría (10 %)

Preguntas de examen. Apéndice A. A.1 Abril de 2008 (Examen parcial) Preguntas de test (30%) Teoría (10 %) Apédice A Pregutas de exame A. Abril de 2008 (Exame parcial) Pregutas de test (30%) A. Se cosidera las sucesioes ( ) a b. Etoces: (a) Si b coverge, etoces a tambié coverge y sus límites coicide. (b) Si

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

( ) 1.8 CRITERIOS DE CONVERGENCIA PARA SERIES (1.8_CvR_T_061, Revisión: , C8, C9, C10) INTRODUCCIÓN. Forma general de una serie: + a 1

( ) 1.8 CRITERIOS DE CONVERGENCIA PARA SERIES (1.8_CvR_T_061, Revisión: , C8, C9, C10) INTRODUCCIÓN. Forma general de una serie: + a 1 .8 CRITERIOS DE COVERGECIA PARA SERIES (.8_CvR_T_6, Revisió: -9-6, C8, C9, C).8.. ITRODUCCIÓ. Forma geeral de ua serie: S = = a = a + a + a +...+ a Suma de térmios. Si es fiito, la suma (S ) tambié es

Más detalles

PRÁCTICA 1 Sucesiones y series de números reales

PRÁCTICA 1 Sucesiones y series de números reales practica.b PRÁCTICA Sucesioes y series de úmeros reales El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales. Utilizaremos las órdees: Limit,

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Más sobre límites de sucesiones Sucesiones parciales. Sucesiones monótonas.

Más sobre límites de sucesiones Sucesiones parciales. Sucesiones monótonas. Más sobre límites de sucesioes Sucesioes parciales. Sucesioes moótoas. E u artículo aterior habíamos hablado de las sucesioes de úmeros reales y del cocepto de límite de ua sucesió. Tambié, e otro artículo,

Más detalles

2.2. Una versión elemental de la ley fuerte de los números grandes

2.2. Una versión elemental de la ley fuerte de los números grandes 34 CAÍTULO 2. LEY DE LOS NÚMEROS GRANDES Demostració. or el Teorema 2.0, vemos que basta probar que ( ) 2 2E (X,k E(X,k )) = 0. La esperaza e esta expresió se puede escribir como V ar(x,k ) + or la hipótesis

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y Series

SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y Series SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y Series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez 3 Sucesioes

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

3.2. Teoremas de Dini

3.2. Teoremas de Dini 3.2. TEOREMAS DE DINI 63 3.2. Teoremas de Dii Defiició 3.11. Sea X u espacio métrico y {f } ua sucesió e C(X). Decimos que la sucesió {f } es moótoa e si para todo x X se cumple f (x) f +1 (x), 1, o bie

Más detalles