TEMA IV. 1. Series Numéricas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA IV. 1. Series Numéricas"

Transcripción

1 TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios propuestos.. Series Numéricas Defiició. A partir de ua sucesió dada {a } y sumado sus térmios sucesivamete, es posible costruir ua ueva sucesió {S } de la siguiete forma: S = a S 2 = a + a 2 S 3 = a + a 2 + a 3... S = a + a a = a m m= La sucesió {S } se cooce como la sucesió de sumas parciales de {a }. El térmio S se cooce como suma parcial -ésima. Llamaremos serie umérica asociada a la sucesió {a } (o de térmio geeral a ) a la expresió formal: a = a + a a +... mediate la cual represetamos, e caso de existir, el valor al que tiede los resultados obteidos sumado los térmios cosecutivos de la sucesió {a }, es decir, el límite de la ueva sucesió de sumas parciales {S }. Atediedo al comportamieto de la sucesió de sumas parciales, tedremos la siguiete clasificació de las series (carácter de la serie): Diremos que la serie umérica a es covergete y que su suma es S R si la sucesió {S } es de

2 covergete y tiede a S. Escribiremos e este caso a = lím S = S Diremos que la serie umérica es divergete e caso cotrario, es decir, cuado la sucesió {S } diverge. E este caso, la podremos clasificar de la siguiete forma: a + a Divergete { fiitamete oscilate oscilate ifiitamete oscilate Ejemplo ( ) es divergete a es divergete a + ( ) + es divergete fiitamete oscilate ( ) es divergete ifiitamete oscilate ( ) + es covergete a Ejemplo 2 (La serie geométrica) Llamaremos serie geométrica a la que tiee como expresió: ar = ar = a + ar + ar 2 + ar ar +... =0 dode r es u úmero real al que llamaremos razó de la serie y a R, a 0. Para este tipo de series es posible ecotrar ua expresió secilla para su sucesió de sumas parciales {S } e fució de a y de la razó r de la serie. Esto permitirá estudiar su carácter co facilidad: Si r =, es evidete que S = a. Tomado límites tedremos. lím S = lím a = ±, segú el sigo de a Si r, vamos a ecotrar, e este caso, ua expresió secilla de S : { S = a( + r + r r ) rs = a(r + r r ) restado ambas expresioes: de dode despejado S obteemos: S rs = S ( r) = a( r ) S = a( r ) ( r). 2 de

3 Tomado límites tedremos: a r si r < lím S = a r lím ( ± (segú el sigo de a) si r > r ) = o existe (fiitamete oscilate) si r = o existe (ifiitamete oscilate) si r < E cosecuecia, de acuerdo co los resultados ateriores, podemos asegurar que la serie geométrica es: covergete, si r < divergete a ±, si r divergete oscilate, si r E caso de que coverja, es decir cuado r <, la suma de la serie geométrica será: ar = ar = a r Ejemplo 3 (La serie armóica) Llamamos serie armóica a la asociada a la sucesió { }, es decir a: =0 = k +... Esta serie es divergete a + ya que su sucesió de sumas parciales: S = diverge a + (por ser moótoa creciete y o acotada superiormete). 2. Propiedades Geerales de las Series Proposició (Codició ecesaria de covergecia) Si la serie a es covergete etoces lím a = 0. Por tato, si la sucesió {a } o coverge a cero etoces la serie diverge ecesariamete. E cambio, si la sucesió coverge a 0, o podemos afirmar ada sobre la covergecia de la serie. Ejemplo 4 Por la codició ecesaria de covergecia, la serie Proposició 2 (Propiedades) es divergete pues lím = /2 0.. Sea dos series a y b covergetes co sumas S y S 2 respectivamete, etoces se cumple: 3 de

4 2. Si (a ± b ) = a + b = S ± S 2. λa = λ a = λs para todo λ R. a es covergete, su carácter y su suma o cambia al sustituir grupos de térmios cosecutivos por sus sumas (es decir, asociado). Lo mismo ocurre cuado la serie es divergete a ±. (Co ua serie oscilate o se verifica esto). 3. El carácter de ua serie o se altera si se suprime o se añade u úmero fiito de sumados. Por tato, si ua serie es covergete co suma S la serie obteida al suprimir los k primeros térmios, será covergete co suma S K, siedo K la suma de los térmios suprimidos. 4. Si 5. Si a diverge y λ 0 etoces (λa ) tambié diverge. a y b diverge simultáeamete a ± etoces tambié (a + b ) diverge a ±. 3. Series de térmios positivos. Covergecia Defiició 3. Diremos que la serie a es de térmios positivos si a 0 para todo N. Tambié se puede tratar como series de térmios positivos aquellas que cumple a 0 para todo 0 (es decir, a partir de u cierto ídice). Estas series cumple que la sucesió de sumas parciales es creciete, y por tato, toda serie de térmios positivos es siempre covergete o divergete a + segú sea acotada o o la sucesió {S }. Veamos ahora alguos criterios de covergecia para las series de térmios positivos. Proposició 3 (Criterio de comparació) Sea 0. Si Si a y b dos series de térmios positivos tales que a b para todo b es covergete = a es tambié covergete. a es divergete = b es divergete. Ejemplo de

5 Ejemplo Proposició 4 (Criterio de comparació co el límite) Sea a y b dos series de térmios positivos. Sea a L = lím. b Si L R y L 0 etoces ambas series tiee el mismo carácter. Es decir, Si L = 0 y a coverge b coverge a diverge b diverge b coverge = a coverge a diverge = b diverge Si L = + y b diverge = a diverge a coverge = b coverge Ejemplo Ejemplo 8 Usado el ejemplo aterior, estudia el carácter de la serie Proposició 5 (Criterio de la itegral) Sea ua serie a de térmios positivos y sea f(x) ua fució cotiua, o creciete e [, + [ tal que f() = a. Si + f(x)dx es covergete, etoces Si + f(x)dx es divergete, etoces a es covergete. a es divergete. 5 de

6 Ejemplo 9 (Serie armóica geeralizada) Prueba que la serie armóica geeralizada, dada por la expresió es covergete si p > y divergete si p. p, p R Proposició 6 (Criterio de d Alembert o del cociete) Sea a ua serie de térmios positivos y supogamos que existe Si λ < = a coverge. a + lím = λ. a Si λ > (icluido λ = + ) = a diverge. Si λ = o podemos cocluir ada. Ejemplo 0 3!. Proposició 7 (Criterio de Cauchy o de la raíz) Sea a ua serie de térmios positivos y sea Si λ < = a coverge. λ = lím a. Si λ > (icluido λ = + ) = a diverge. Si λ = o podemos cocluir ada. Ejemplo (( ) ) 6 de

7 Proposició 8 (Criterio de Raabe) Sea a ua serie de térmios positivos y sea Si λ > = a coverge. ( λ = lím a ) +. a Si λ < (icluido λ = + ) = a diverge. Si λ = o podemos cocluir ada. Ejemplo 2 ( ) (3 2) Proposició 9 (Criterio de Prigsheim o del producto) Sea a ua serie de térmios positivos. Si p R y lím a p = λ. { si p >, la serie coverge. Si λ R y λ 0 etoces si p, la serie diverge. Si λ = 0 y p >, la serie coverge. Si λ = + y p, la serie diverge. Nota El criterio aterior se deduce directamete de aplicar el criterio de comparació co el límite a la serie de térmios positivos a usado para comparar la serie armóica geeralizada, ya que p a λ = lím p = lím a p. Ejemplo 3 7 de

8 Proposició 0 (Criterio del logaritmo) Sea a ua serie de térmios positivos y supogamos que existe ( ) l a λ = lím l(). Si λ > (icluído λ = + ), la serie a coverge. Si λ <, la serie a diverge. Si λ =, etoces o podemos cocluir ada. Ejemplo 4 =2 (l()) l() 4. Series alteradas Defiició 4. Diremos que la serie a es alterada, si se cumple a a + < 0 para todo N, es decir, sus térmios so alterativamete positivos y egativos. La forma más comú de represetarla es ( ) a siedo a 0, o tambié ( ) + a. Tambié podemos cosiderar que ua serie es alterada si a a + 0 para todo 0, es decir, a partir de u cierto ídice. Proposició (Criterio de covergecia de Leibitz) Sea ( ) a ua serie alterada (a 0) tal que {a } es ua sucesió moótoa decreciete. Etoces lím a = 0 ( ) a es covergete. 8 de

9 Ejemplo 5 Comprueba que la siguiete serie alterada es covergete: ( ) Ejemplo 6 alterada ( ) Series de térmios arbitrarios Defiició 5. Decimos que ua serie alterada. Defiició 5.2 Se dice que la serie de térmios arbitrarios a es absolutamete covergete si la serie a es covergete. Ejemplo 7 Comprueba que la serie a es de térmios arbitrarios si o es ecesariamete i de térmios positivos i { a dode a = si par 2, es absolutamete covergete. si impar 3 Proposició 2 Toda serie absolutamete covergete es covergete. Nota 2 El recíproco del teorema aterior o es cierto. Basta cosiderar la serie ( ) (ver Ejemplo 5). Nota 3 El teorema aterior es de gra importacia para el estudio de la covergecia de series de térmios arbitrarios ya que al estudiar la serie de los módulos, podemos utilizar todos los criterios ateriormete vistos para series de térmios positivos. 6. Ejercicios propuestos Ejercicio Dada la serie todo N. a, se sabe que la sucesió de sumas parciales {S } viee dada por S = para 9 de

10 . Halla el térmio geeral a de la serie. 2.. Ejercicio 2 Sea a y tambié covergetes: a 2. a b a b a +b b dos series covergete de térmios positivos. Demostrar que las siguietes series so Ejercicio 3 Cosidérese u cuadrado de lado a. A dicho cuadrado se le pega e la parte iferior del lado derecho, u cuadrado de lado a/2. A este uevo cuadrado se le pega igualmete e la parte iferior del lado derecho de la a/2 2 = a 4. Supoiedo que el proceso se itera idefiidamete, calcular el área de la figura formada y el perímetro exterior. a a/ Ejercicio 4 Se suelta ua bola desde ua altura de 6 metros y empieza a botar si desplazarse respecto de la vertical. Si e cada bote alcaza 3/4 de la altura del bote aterior, halla la distacia total que recorre la bola. Ejercicio 5 Estudia el carácter de las siguietes series uméricas: (a) (e) (i) 3 2 (b) 2 3 (f) cos(π) (!) 2 (j) Ejercicio 6 (Exame Eero 2002) Cosidérese la serie que tiee por térmio geeral (c) (+) e 2 (g) a = Se trata de ua serie covergete? Razoa la respuesta (d) l() (h) cos(π) 2 cos() 0 de

11 Ejercicio 7 (Exame Eero 2002) Estudia el carácter de las siguietes series: (a) ( ) 2 2 (b) Ejercicio 8 (Exame Eero 2002) Ejercicio 9 (Exame Julio 2002) Estudia el carácter de las siguietes series: (a) ( ) (b) se 2 ( 3 ) 3 ( ) (+)! de

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA CÁLCULO INFINITESIMAL BOLETÍN CON SOLUCIONES DE LOS EJERCICIOS CURSO 005-06 Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3,

Más detalles

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión

En el siglo XVIII muchos matemáticos buscaban, sin demasiado éxito, el valor de la expresión Defiició y propiedades 5 5. Defiició y propiedades 6 5. Covergecia absoluta e icodicioal 65 5.3 Criterios de covergecia para series de térmios o egativos 66 5.4 Otros criterios 69 5.5 Suma de series 69

Más detalles

Propiedades de las series numéricas (18.03.2015)

Propiedades de las series numéricas (18.03.2015) Propiedades de las series uméricas 8.03.205) ) Si itercalamos e la sucesió {a } N u úmero fiito de térmios de suma b, el carácter de la serie a o varía y, si coverge, su suma aumeta e b. D: Sea b +b 2

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

CAPÍTULO XIII. SUCESIONES

CAPÍTULO XIII. SUCESIONES CAPÍTULO XIII SUCESIONES NUMÉRICAS SECCIONES A Sucesioes covergetes y límites de oscilació Sucesioes moótoas y acotadas B Sucesioes recurretes C Ejercicios propuestos 59 A SUCESIONES CONVERGENTES Y LÍMITES

Más detalles

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.

Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales. Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224

1. Sucesiones página 217. 2. Idea intuitiva de límite de una sucesión página 222. 3. Operaciones con sucesiones. página 224 Límite y cotiuidad E S Q U E M A D E L A U N I D A D.. Térmio geeral de ua sucesió págia 7.. Progresioes aritméticas y geométricas págia 7. Sucesioes págia 7. Idea ituitiva de límite de ua sucesió págia..

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

9 SUCESIONES. LÍMITES DE SUCESIONES

9 SUCESIONES. LÍMITES DE SUCESIONES 9 SUCESIONES. LÍMITES DE SUCESIONES EJERCICIOS PROPUESTOS 9. Co ua calculadora, forma térmios de las siguietes sucesioes y estudia a qué valores tiede. a) a b) b c) c 5 a) a a 8 5,6 a 0 00,98 a 0 00 0

Más detalles

Sucesiones y series numéricas

Sucesiones y series numéricas TEMA 6 Sucesioes y series uméricas Objetivos: Los objetivos so: () estudiar la covergecia de las sucesioes uméricas, (2) Coocer las series uméricas y sus propiedades; (3) saber aplicar los criterios y

Más detalles

El interés fundamental que se persigue en este capítulo es la. representación de las funciones complejas por medio de series de potencias, lo

El interés fundamental que se persigue en este capítulo es la. representación de las funciones complejas por medio de series de potencias, lo Aálisis matemático para Igeiería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 3 Series complejas El iterés fudametal que se persigue e este capítulo es la represetació de las fucioes complejas

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

SUCESIONES Y SERIES DE FUNCIONES

SUCESIONES Y SERIES DE FUNCIONES CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Cálculo de límites. 3.1. Sumas, productos y cocientes. Tema 3

Cálculo de límites. 3.1. Sumas, productos y cocientes. Tema 3 Tema 3 Cálculo de ites El presete tema tiee u iterés emietemete práctico, pues su pricipal fialidad es aportar los ejemplos que se echaba de meos e el tema aterior. Empezaremos estableciedo las reglas

Más detalles

Problemas de Sucesiones

Problemas de Sucesiones Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]

Más detalles

( ) ( )( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( ) Algebra uiversitaria UNIDAD III. POLINOMIOS 3.. Técicas elemetales para buscar raíces Recordado la defiició de raíz U poliomio P(x) tiee ua raíz r si y solo si P(r) = 0. Recordar el teorema de factorizació

Más detalles

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006 Estalmat. Real Academia de Ciecias. Curso 5/6 Diámica compleja Cojutos de Julia y Madelbrot. Método de Newto. Miguel Reyes Mayo 6 Los úmeros complejos Los úmeros complejos so los úmeros de la forma dode

Más detalles

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10 SUCESIONES I. Determiar el térmio que cotiúa e cada ua de las siguietes sucesioes: 1. ; 5; 11; 0; 4. - ; 5; - 9 ; 19; A) 8 B) - 7 C) 7 D) - 8 E) 14 A) 8 B) 0 C) D) 1 E) 5. 5 4 7 6 9 8 ; ; ; ; ; ;... 4

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad

Tema 4.4: Teorema de Riemann de singularidades evitables. Ceros de una función holomorfa. Principio de identidad Tema 4.4: Teorema de Riema de sigularidades evitables. Ceros de ua fució holomorfa. Pricipio de idetidad Facultad de Ciecias Experimetales, Curso 2008-09 E. de Amo Comeamos e este tema extrayedo las primeras

Más detalles

SERIES INFINITAS.SERIES DE POTENCIAS. S = lim S. ( 1)

SERIES INFINITAS.SERIES DE POTENCIAS. S = lim S. ( 1) SERIES INFINITAS.SERIES DE POTENCIAS. Defiicioes y otació. A la suma de ua sucesió de térmios se deomia SERIE y el valor de dicha suma, si es que tiee alguo, se defie como S lim S. U ejemplo de serie ifiita,

Más detalles

Convergencia absoluta y series alternadas

Convergencia absoluta y series alternadas Tema 11 Covergecia absoluta y series alteradas Ua vez que dispoemos de diversos criterios de covergecia para series de térmios o egativos, abordamos el estudio de la covergecia de series de úmeros reales

Más detalles

Sucesiones Numéricas. Tema 2

Sucesiones Numéricas. Tema 2 Tema 2 Sucesioes Numéricas Imagiemos la cola de etrada a u espectáculo formada por persoas que ha sido umeradas de la forma habitual; el primero de la cola lleva el úmero 1, el segudo el úmero 2 y así

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

4.1.1. Definición de límite de una función. Unicidad del límite. Límite por sucesiones

4.1.1. Definición de límite de una función. Unicidad del límite. Límite por sucesiones Capítulo 4 Cotiuidad 4.1. Límites de fucioes reales de ua variable real 4.1.1. Defiició de ite de ua fució. Uicidad del ite. Límite por sucesioes Defiició 4.1.1. Dado a R, u cojuto V R es u etoro de a

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

MATE1214 -Calculo Integral Parcial -3

MATE1214 -Calculo Integral Parcial -3 MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud

Más detalles

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor Tema 7 (IV) Aplicacioes de las derivadas () Represetació gráfica de curvas y fórmula de Taylor Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Práctica 1.- Sucesiones y series

Práctica 1.- Sucesiones y series Práctica.- Sucesioes y series El programa Mathematica os sirve de ayuda para estudiar el comportamieto de sucesioes y series de úmeros reales, mediate las istruccioes Limit y, que os permitirá, e la mayoría

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN EXPONENTES Y RADICALES POTENCIACIÓN Y RADICACIÓN (Tomado de: Stewart, James. "Precálculo". Quita Edició. Secció 1..) Si a; x R; ua expresió

Más detalles

3Soluciones a los ejercicios y problemas PÁGINA 79

3Soluciones a los ejercicios y problemas PÁGINA 79 Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.

Más detalles

Señales en Tiempo Discreto

Señales en Tiempo Discreto Señales e Tiempo Discreto Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció.. Señales e tiempo discreto.3. Clasificació de las señales

Más detalles

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.

El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números. Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,

Más detalles

Cap ³tulo 6. Series Num ericas. Problemas resueltos. 6.1 Series num ericas. De niciones. Salvador Vera Ballesteros

Cap ³tulo 6. Series Num ericas. Problemas resueltos. 6.1 Series num ericas. De niciones. Salvador Vera Ballesteros Cap ³tulo 6 Series Num ericas. Problemas resueltos Salvador Vera Ballesteros www.satd.uma.es/matap/svera 6. Series um ericas. De icioes De ici o 6. (Serie) Dada ua sucesi o um erica i ita: fa g fa ;a ;a

Más detalles

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z < Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos

Apuntes sobre series numéricas: preguntas frecuentes y ejemplos resueltos. 1) Preguntas frecuentes. Conceptos, teoremas y ejemplos básicos Cálculo I ( o de Grado e Iformática, 202-3) Aputes sobre series uméricas: pregutas frecuetes y ejemplos resueltos ) Pregutas frecuetes. Coceptos, teoremas y ejemplos básicos P-. Ua serie ifiita es ua suma

Más detalles

CAPÍTULO 3: SUCESIONES. 1. SUCESIONES DE NÚMEROS REALES

CAPÍTULO 3: SUCESIONES. 1. SUCESIONES DE NÚMEROS REALES 3 CAPÍTULO 3: SUCESIONES.. SUCESIONES DE NÚMEROS REALES.. Defiicioes Ua sucesió de úmeros reales es ua secuecia ordeada de úmeros. Las siguietes secuecias so sucesioes: a),, 3, 4, 5, 6, b), 4, 6, 8, 0,,

Más detalles

Tema 5 Series numéricas

Tema 5 Series numéricas Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Sucesiones y series de números reales 1. Sucesiones de números reales

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Sucesiones y series de números reales 1. Sucesiones de números reales - Ferado Sáchez - - 7 Sucesioes Cálculo I y series de úmeros reales Sucesioes de úmeros reales 20 205 De maera similar a como se hizo para sucesioes de úmeros racioales, se defie ua sucesió de úmeros reales

Más detalles

Números complejos Susana Puddu

Números complejos Susana Puddu Números complejos Susaa Puddu 1. El plao complejo. E el cojuto C = IR IR defiimos la suma y el producto de dos elemetos de C de la siguiete maera a, b + c, d = a + c, b + d a, b.c, d = ac bd, ad + bc Dejamos

Más detalles

Capítulo 1. Por tanto, como la sucesión 1 tiene límite cero, podríamos intuir que

Capítulo 1. Por tanto, como la sucesión 1 tiene límite cero, podríamos intuir que Capítulo SERIES DE NÚMEROS REALES ) Series covergetes. Comportamieto algebraico. Ejemplos otables. Codició ecesaria de covergecia 2) Criterio de comparació. Covergecia absoluta. 3) Criterios de covergecia

Más detalles

LAS INDETERMINACIONES EN EL CÁLCULO DE LÍMITES

LAS INDETERMINACIONES EN EL CÁLCULO DE LÍMITES Este trabajo, e el que se aaliza la idetermiació e el cálculo de límites, ha sido realizado por Jorge Sáchez Ruao y se publica bajo licecia libre, por lo que queda dispoible para que cualquier persoa lo

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Cálculo para la ingeniería Tomo II. Salvador Vera

Cálculo para la ingeniería Tomo II. Salvador Vera Cálculo para la igeiería Tomo II Salvador Vera 9 de eero de 5 ii Copyright c by Salvador Vera Ballesteros, 998-4. Ídice geeral 7. Series Numéricas 7.. El sigo del sumatorio: Sigma Σ... 7... Propiedades

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

4. Series, Taylor y límites indeterminados

4. Series, Taylor y límites indeterminados 4 Series, Taylor y ites idetermiados 4 Series de úmeros reales Queremos hacer sumas de ifiitos úmeros reales, llamadas series: a + a + a + = a = Por ejemplo, sumemos /5+/5 +/5 +/5 4 +/5 5 + Sumar u úmero

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se deomia valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la

Más detalles

Método de máxima verosimilitud. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Método de máxima verosimilitud. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Método de máxima verosimilitud Curso de Estadística TAE,2005 J.J. Gómez Cadeas Muestras Cosiderar ua variable aleatoria x descrita por la pdf f(x). El espacio de muestras está costituido por todos los

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora):

1. Calcula, aplicando mentalmente la definición de raíz (no uses calculadora): EJERCICIOS de RADICALES º ESO FICHA 1: Cocepto de raíz -ésima RECORDAR: Defiició de raíz -ésima: Caso particular de simplificació: a a (Añade estas fórmulas al formulario, juto co la lista de los 0 primeros

Más detalles

TEMA 4: POLINOMIOS EN UNA INDETERMINADA.

TEMA 4: POLINOMIOS EN UNA INDETERMINADA. I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES.

ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. ALGEBRA ELEMENTAL INDICE AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa... Ley distriutiva... 1.- EXPONENTES Y RADICALES...

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS (Oposicioes de Secudaria) TEMA 5 ECUACIONES DIOFANTICAS. Itroducció.. Ecuacioes Diofáticas Lieales... Ecuacioes co ua Icógita... Ecuacioes co dos Icógitas.... La ecuació ax by = c...

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

PROCESO DE POISSON Rosario Romera Febrero 2009

PROCESO DE POISSON Rosario Romera Febrero 2009 1 PROCESO DE POISSON Rosario Romera Febrero 2009 1. Proceso de Coteo U proceso estocástico fn t g t0 es u proceso de coteo si N t represeta el total de sucesos ocurridos asta el tiempo t. Sea u espacio

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles

MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA. Cálculo Diferencial Ejercicios y Problemas resueltos

MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA. Cálculo Diferencial Ejercicios y Problemas resueltos MATEMÁTICAS PARA LOS GRADOS EN ECONOMÍA Y EMPRESA Cálculo Diferecial Ejercicios y Problemas resueltos Juliá Rodríguez Ruiz (Catedrático de Ecoomía Aplicada. UNED) Mariao Matilla García (Profesor Titular

Más detalles

Unidad 1: Números Complejos

Unidad 1: Números Complejos Uidad 1: Números Complejos 11 Itroducció Además de los cojutos de úmeros aturales, eteros, racioales y reales existe el cojuto de úmeros complejos que juega u rol importate o solo e matemáticas sio e las

Más detalles

OPCIÓN A EJERCICIO 1_A x 1 0 1

OPCIÓN A EJERCICIO 1_A x 1 0 1 IES Fco Ayala de Graada Sobrates de 006 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x 1 0 1 Sea las matrices A = y B =. 1 x+1 (1 puto) Ecuetre el valor o valores de x de forma

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = -

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = - IES Fco Ayala de Graada Sobrates de 004 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A - 0 0 - - - Sea las matrices A=, B= y C= - 0 0 - ( puto) Calcule (A I ) B, siedo I la matriz idetidad

Más detalles

Licenciatura en Matemáticas Febrero 2011. x(1 x) θ 1 I [0,1] (x). (1)

Licenciatura en Matemáticas Febrero 2011. x(1 x) θ 1 I [0,1] (x). (1) Estadística I Exame Liceciatura e Matemáticas Febrero 2011 1. Sea X 1,..., X ua muestra aleatoria de ua variable X co distribució Beta de parámetros 2 y θ > 0. Esto último sigifica que la fució de desidad

Más detalles

PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE

PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE PRÁCTICAS DE ANÁLISIS DE UNA VARIABLE Departameto de Aálisis Matemático Curso 00/003 Profesores resposables Oscar Blasco Atoio Galbis Jesús García Josep Martíez Aíbal Moltó Carme de las Obras Sergio Segura

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 6 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (2 putos) Sea las matrices A= y B = (1 1). -5-4 Eplique qué dimesió debe teer la matriz X para

Más detalles

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas).

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas). ÁLGEBRA ELEMENTAL 1.- EXPRESIONES ALGEBRAICAS (GENERALIDADES) 1.1.- Alguas defiicioes Ua epresió algebraica es ua epresió matemática que cotiee úmeros, letras que represeta úmeros cualesquiera sigos matemáticos

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Sea cualquier número real. Designamos con la letra el mayor entero que no supere a. Si no es entero, se tiene = + ; 1 +

Sea cualquier número real. Designamos con la letra el mayor entero que no supere a. Si no es entero, se tiene = + ; 1 + 4. 4.. Fraccioes cotiuas: prelimiares. Demostrar el Algoritmo de Euclides. Sea cualquier úmero real. Desigamos co la letra el mayor etero que o supere a. Si o es etero, se tiee + ; >. Exactamete igual,

Más detalles

Uso de Excel en la enseñanza de las series 1

Uso de Excel en la enseñanza de las series 1 Uso de Excel e la eseñaza de las series Carlos E. Azofeifa Resume El presete trabajo tiee como objetivo mostrar el uso de la herramieta muy coocida y flexible como lo es la hoja electróica Excel, e el

Más detalles

4 Contrastes del Chi 2 de bondad del ajuste

4 Contrastes del Chi 2 de bondad del ajuste 4 Cotrastes del Chi de bodad del ajuste U cotraste de bodad del ajuste es de la forma o H 0 : P = P 0 frete a H 1 : P P 0 H 0 : P {P θ } θ Θ frete a H 1 : P / {P θ } θ Θ 4.1 Cotraste del χ para modelos

Más detalles

Ecuaciones diferenciales lineales de orden

Ecuaciones diferenciales lineales de orden 607 Aálisis matemático para Igeiería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 0. Ecuacioes difereciales lieales de orde superior E este capítulo se estudia las ecuacioes difereciales

Más detalles

UNIVERSIDAD ANTONIO NARIÑO GUIA 1

UNIVERSIDAD ANTONIO NARIÑO GUIA 1 UNIVERSIDAD ANTONIO NARIÑO GUIA ANTIDERIVADAS OBJETIVO: Apreder el cocepto de atiderivada e itegral idefiida y resolver itegrales usado las formulas básicas. ocepto: Dada ua fució, sabemos como hallar

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles

Tema 7: Estimación por intervalos de confianza.

Tema 7: Estimación por intervalos de confianza. Estadística 69 Tema 7: Estimació por itervalos de cofiaza. 7. Itroducció. Cuado tratamos la estimació putual, uo de los problemas que se platearo es que el valor de la estimació es sólo uo de los valores

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Fórmula de Taylor. 9.1. Derivadas sucesivas. Tema 9

Fórmula de Taylor. 9.1. Derivadas sucesivas. Tema 9 Tema 9 Fórmula de Taylor El proceso de derivació de ucioes reales de variable real puede obviamete iterarse, obteiedo la seguda y sucesivas derivadas de ua ució. Igual que la derivabilidad de ua ució e

Más detalles

R. Urbán Ruiz (notas de clase)

R. Urbán Ruiz (notas de clase) R. Urbá Ruiz (otas de clase) Fucioes E las ciecias Ecoómicas las fucioes so de mucho valor para resolver problemas dode haya que relacioar variables; como por ejemplo, la producció, la oferta, la demada,

Más detalles

Convergencia. 1.1 Introducción

Convergencia. 1.1 Introducción Capítulo 1 Covergecia 1.1 Itroducció E este capítulo estudiaremos el comportamieto asitótico de sucesioes de variables aleatorias, daremos distitas defiicioes de covergecia y demostraremos dos de los Teoremas

Más detalles

Figura 8.1: Ejemplos de conjuntos de índices.

Figura 8.1: Ejemplos de conjuntos de índices. Capítulo 8 Cojuto de ídices Defiició 8.1 (Cojuto de ídices) Sea I u cojuto, tal que para cada i I se tiee u cojuto A i U. El cojuto I se deomia cojuto de ídices y cada i I es u ídice. (a) Los ídices so

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles