VECTORES EN EL ESPACIO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "VECTORES EN EL ESPACIO"

Transcripción

1 Tem Vectes Ejecicis eselts Mtemátics II º Bchillet VECTORES EN EL ESPACIO DEPENDENCIA E INDEPENDENCIA LINEAL COMBINACIÓN LINEAL BASE EJERCICIO : Dds ls vectes ( ) b( ) c ( ) d ( ): ) Fmn n bse de R? Expes si es psible el vect d cm cmbinción linel de b c. ) N fmn n bse pes ct vectes en R siempe sn linelmente dependientes. Debems encnt tes númes x z tles qe: d x b zc (- ) x( ) ( ) z( ) (- ) (x z x x z) x z x Reslvems el sistem p Gss btenems : x - z d b c x z EJERCICIO : ) Se sbe qe v cmbinción linel de w v Hll ls cdends del vect sn linelmente dependientes. Pdems seg qe es w? Jstific t espest. 4 7 espect de l B {( ) (-)( )}. ( ) bse ) N. P ejempl si tmms ( ) v ( ) w ( ): Sn linelment e dependient es pes w v. Sin embg n es cmbinció n linel de v w. Llmms b ( ) c ( ) d ( ) ls vectes de l bse B. Tenems qe encnt tes númes x z tles qe: x b c z d (4 7) x( ) ( -) z( ) (4 7) (x x - z) x 4 x x 4 x z 7 7 z 7 z Ls cdends de espect de l bse B sn es deci ( ) : b c d EJERCICIO : Dds ls vectes ( ) v ( ): ) Sn linelmente independientes? Fmn n bse de R? c) Hll n vect w tl qe w v. ) Sí sn linelmente independientes pest qe si escibims: x(- ) ( -) ( ) es deci: x x Este sistem sl tiene l slción tivil: x N fmn n bse de R pes p btene n bse de R necesitms tes vectes (linelmente independientes). c) w v w v w v w ( ) ( )

2 Tem Vectes Ejecicis eselts Mtemátics II º Bchillet EJERCICIO 4 : ) Hll ls vles de x z tles qe x v z w siend (-) v (-) w (-) Sn linelmente independientes ls tes vectes nteies? Fmn n bse de R? ) x( -) ( - ) z( -) ( ) (x z - z -x - z) ( ) x z z Reslviend el sistem p Gss Slcine s: x λ λ z λ x z Según ls esltds btenids en el ptd ) dedcims qe ls vectes sn linelmente dependientes. P tnt n sn bse. EJERCICIO : Cnsidems l bse de R fmd p ls vectes : ) Hll ls cdends de Expes si es psible el vect ( 4 7 4) espect de l bse ntei. c cm cmbinción linel de b. ) Tenems qe encnt tes númes x z tles qe: x b zc es deci: (-) b (-) c () (4-7 4) x( - ) ( -) z( ) (4-7 4) (x z -x x - z) x z 4 x 7 Reslviend el sistem p Gss x z x z 4 P tnt ls cdends de espect de l bse dd sn ( ) es deci: b c De l igldd btenid en ) tenems qe: b c c b PRODUCTO ESCALAR Y APLICACIONES (Módl de n vect ángl qe fmn ds vectes pección tgnl ) c b EJERCICIO : Dds ls vetes ( ) v ( 4 ) w( x): ) Hll v el ángl qe fmn v. x p qe w fmen n ángl de. Obtén el vl de ) ( ) 4 74 v 4 ( ) Si llmms α l ángl qe fmn v tenems qe: v 8 cs α v sn pependicles es deci α 9. v v w H de cmplise qe: x cs es deci: w 4 x 7 4x x 7 4x x 7 x 7 x x x (n vle pes v x > ) x 7 4x

3 Tem Vectes Ejecicis eselts Mtemátics II º Bchillet EJERCICIO 7 : Dds ls vectes ( ) v ( ): ) Hll l pección de sbe v sí cm el ángl qe fmn v. Encent n vect ( x z) ( ) qe se cmbinció n linel de v qe se pependicl ( ). v v Pección de sbe v: v () ( ) Si llmms α l ángl qe fmn Un vect qe se cmbinción linel de bv b b b ( ) ( ) ( ) v v tenems qe: cs α α v v es de l fm bv es deci: P qe se pependicl ( ) s pdct escl h de se ce: ( b b ) ( ) b b - P tnt clqie vect de l fm: ( b ) cn b cmple ls cndicines exigids. EJERCICIO 8 : Sen v ds vectes qe fmn n ángl de 4 qe tienen el mism módl v. ) Cál es el módl de v? Y el de v? Demest qe v v sn pependic les. ) v ( v) ( v) v v v v v v 4 v cs ( v) v v ( v) ( v) v v 4 v cs v 8 4 ( v) ( v) v v v v v 4 4 ( v) ( v) EJERCICIO 9 : Dds ls vectes ( ) b ( ) c m b: ) Hll el vl de m p qe c sen pependic les. P m hll el ángl qe fmn b c. ) c m b m m m ( ) ( ) ( ) c c ( ) ( m m ) m m m m P m qed c(. ) Si llmms α l ángl qe fmn b c b c 4 4 tenems qe: cs α 7 9 α 7' ' ' b c 4 8 4

4 Tem Vectes Ejecicis eselts Mtemátics II º Bchillet 4 EJERCICIO : Dds ls vectes i - j ; b i j k ; hll x e de fm qe c x i j se pependicl b teng el mism módl qe. ( ) b ( ) c ( x ) c b c b x c x x H ds slcines: x qe cespnde c ( ). x qe cespnde c ( ). s x 4 x x PRODUCTO VECTORIAL Hll n vect w de módl qe se pependicl Cál es el áe del plelgm detemind p v? EJERCICIO : Dds ls vectes ( ) v ( ): ) v. ) Un vect pependic l v es: v ( ) ( ) ( ) v Dividims p s módl p cnsegi qe teng módl : w v H ds slcines: Áe v 9 EJERCICIO : ) Demest qe si v sn ds vectes clesqie se tiene qe: ( v) ( v) ( v) Hll n vect pependicl v ) ( ) ( ). (*) qe v v. ( v) ( v) v v v v v v ( v) ( * ) Tenems en cent qe ( ) ( ) ( ) v EJERCICIO : Hll el vl de m p qe el áe del plelgm detemind p v (m) se. () El áe del plelgm detemind p v es igl v. Clclms v hllms s módl: v m ( ) ( ) ( m m) v ( ) ( ) ( ) m m m 4 4m m 4 Iglms : Áe m 4 m 4 4 m m

5 Tem Vectes Ejecicis eselts Mtemátics II º Bchillet EJERCICIO 4 : ) Hll n vect niti qe se pependicl ( - ) (-) Es ciet qe v w v w? Pn n ( ) ( ) ejempl. ) Un vect pependicl ls ds dds es: (- ) x ( - ) ( -) Dividiend p s módl tendá módl : Tmbién cmple ls cndicines s pest: En genel n es ciet. P ejempl: ( ) v ( ) w ( ) ( v) w w P tnt v w v w v w ( ) ( ) ( ) ( ) ( ) ( ) ( ). EJERCICIO : Hll el áe de n plelgm detemind p ls vectes v w siend: ( ) ( ) ( ) Clclms v w: v ( ) b w ( ) El áe del plelgm detemind p b es igl l módl del pdct vectil: b 4 Áe ( ) ( ) ( ) 4 PRODUCTO MIXTO EJERCICIO : ( ) ) Clcl el vlmen del plelepíped detemind p ls vectes x v x w (-) v (.-) w (-) v w ; v v Cánt vlen cd n de ls sigientes pdcts mixts?:[ ] [ ] ) El vlmen del plelepí ped detemind p v w es igl l vl bslt v w 7 Vlmen 7 de s pdct mixt: [ ] Utiliznd ls ppieddes de ls deteminntes tenems qe: [ v w] [ v w] ( 7) 4 [ v v ] (el tece vect depende linelment e de ls ds pimes). EJERCICIO 7 : ) Hll ls vles de m p qe ls vectes independientes. Estdi si el vect depende linelmente de v w p el cs m () v (-) w (mm-) sen linelmente ( ). ) P qe sen linelmente independientes s pdct mixt debe se distint de ce: v w 4 m m H de se m 4. [ ] 4 m m P m ls vectes v w sn linelmente independientes fmn n bse de R. P tnt clqie vect de R en pticl ( ) depende linelmente de ells.

6 Tem Vectes Ejecicis eselts Mtemátics II º Bchillet () v () w (λ) hll el vl de λ p qe: EJERCICIO 8 : Dds ls vectes ) deteminen n plelepíped de vlmen. sen linelmente dependientes. ) El vlmen del plelepí ped de s pdct mixt: [ v w] λ detemind p v w es igl l vl bslt λ λ λ 8 Vlmen λ λ λ 4 λ H ds slcines : λ 8 λ v w λ λ S pdct mixt h de se ce: [ ] λ EJERCICIO 9 : Dds ls vectes ( ) v ( ) w ( ) se pide: ) El vlmen del plelepíped detemind p ells. Hll si existe el vl de α p qe el vect α α cmbinció n linel de v. ( ) se ped expes cm v w 4 Vlmen 4 ) Es igl l vl bslt de s pdct mixt: [ ] Ls vectes v hn de se linelmente dependientes ( v sn linelmente independientes); p tnt s pdct mixt h de se ce: [ v ] α α 4 EJERCICIO : ) Demest qe ls vectes k v k w sn linelment clqie qe se el vl de k. Cál es el vlmen del plelepí ped detemind p v w? α α ( ) ( ) ( ) e ) Tenems qe pb qe s pdct mixt es distint de ce se cl se el vl de k. k v w k p td k [ ]. El vlmen es igl l vl bslt de s pdct mixt. P tnt: Vlmen independientes REPASO EJERCICIO : Dds ls vectes ( ) v ( ) w ( m m): ) Hll el vl de Clcl el ángl qe m p qe w sen pependic les. fmn v. c) Hll el áe del tiángl qe deteminn v. ) P qe w sen pependic les s pdct escl h de se ce : w ( ) ( m m) m m m m Si llmms α l ángl qe fmn v tenems qe: v 7 7 cs α 94 α ' ' ' v

7 Tem Vectes Ejecicis eselts Mtemátics II º Bchillet 7 c) Áe v ( ) 9 EJERCICIO : Cnsidem s ls vectes ( ) b( ) c ( ). Clcl: ) El áe del tiángl qe deteminn b. El vlmendel plelepíped detemind p b c. ) Áe b ( ) ( ) ( ) 4 74 El vlmen es igl l vl bslt del pdct mixt de ls tes vectes: b c Vlmen [ ] EJERCICIO : Dds ls vectes ( ) v ( ) w ( k k): ) Hll el vl de k p qe el vlmen del plelepíped detemind p v w vlg. Clcl el ángl qe fmn v. ) El vlmen del plelepíped es igl l vl bslt del pdct mixt de ls tes vectes: k k [ v w] k Vlmen k k k k k Si llmms α l ángl qe fmn v tenems qe: v cs α 8 α 48' '' v 9 EJERCICIO 4 : Dds ls pnts A(-) B (-) C (- 4 ) D ( -) clcl: ) El áe del tiángl de vétices A B C. El vlmen del teted de vétices A B C D. ( ); ( 4 4) ) AB AC Áe AB AC ( ); AC ( 4 4) ; AD ( ) AB ( ) ( ) ( ) [ AB AC AD] 4 4 Vlmen 7 EJERCICIO : Sen ls pnts A ( - ) B(-m) C (m -) D ( -). Clcl el vl de m sbiend qe el plelepí ped detemind p ls vectes AB AC AD vlmen de 4. tiene n AB ( m ) ; AC ( m ) ; AD ( ) m [ AC AD] m AB [4 (m -)(m -) ] [- (m -) - (m -)] m m

8 Tem Vectes Ejecicis eselts Mtemátics II º Bchillet 8 Vlmen: V m m 4. Ds psibiliddes: m m 4 m m - 4 m m - 7 ± 8 ± 4 ± 8 m m m 7 m m -4 m m 4 m m ± 9 ± 4 ± 4 m 8 ± H ct slcines: m 7 ; m ; m 8 4; m4 8 4 REPRESENTAR PUNTOS EN EL ESPACIO EJERCICIO : Repesent ls pnts sigientes: ) A( -4) B( ) C( 4) A( ) B( ) C( - ) c) A( ) B( 4) C(4 - ) d) A( ) B( ) C( - 4) 4 APLICACIONES DE LOS VECTORES EJERCICIO 7 : Ls pnts A( ) B( - ) C(- ) sn vétices cnsectivs de n plelgm. Obtén el ct vétice el cent del plelgm. Cm se tt de n plelgm se tiene qe AB DC. Si D ( x z): (--)(--x--z) de dnde: x -4 4 z D(-4 4 ) El cent del plelgm es el pnt medi de n de ls ds dignles sí: M EJERCICIO 8 : Hll ls cdends de ls pnts P Q qe dividen l segment de extems A(- ) B(- 4) en tes ptes igles. AB AP (-) (x- z-) P(xz) Q Pt_medi PB

9 Tem Vectes Ejecicis eselts Mtemátics II º Bchillet 9 EJERCICIO 9 : Ds de ls vétices de n plelgm sn ls pnts A( -) B(- ). El cent del plelgm está en el pnt M( -). Hll ls ts ds vétices. Llmems C (x z ) D (x z ). C es el simétic de A espect de M p tnt: ( ) 4 C z z 4 x x D es el simétic de B espect de M. Así: ( ) D z z x x EJERCICIO : Clcl el vl de p el cl ls sigientes pnts están lineds: A( ) B( ) C(8 7 ) tengn están lineds siempe qe ls vectes pnts Ls BC AB C B A l mism diección. Est ce cnd ss cdends sn ppcinles: EJERCICIO : Hll el simétic P ' del pnt P( -) espect de Q( ). Llmms P '(αβγ)de mne qe: ( ) 9 4 P' 9 4 γ γ β β α α

( ) ( ) ( ) El producto escalar de dos vectores puede ser negativo. La información que se obtiene del signo del producto escalar es:

( ) ( ) ( ) El producto escalar de dos vectores puede ser negativo. La información que se obtiene del signo del producto escalar es: . Hll el pdct escl de ls ectes ( ) y ( ). Slción. P est definids en l se cnónic ( ) ( ) ( ) El pdct escl de ds ectes pede se negti. L infmción qe se tiene del sign del pdct escl es > 0 El ángl ente ls

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

VECTORES PRODUCTO ESCALAR. Ejercicio nº 1.- Ejercicio nº 2.- b) Son linealmente independientes los tres vectores anteriores? Forman una base de 3?

VECTORES PRODUCTO ESCALAR. Ejercicio nº 1.- Ejercicio nº 2.- b) Son linealmente independientes los tres vectores anteriores? Forman una base de 3? VECTORES Ejercici nº.- Cnsiderams la base de frmada pr ls ectres a( ) b( ) c( ). a) Halla las crdenadas de ( 4 7 4) respect de la base anterir. b) Expresa si es psibleel ectr c cm cmbinación lineal de

Más detalles

TEMAS DE MATEMATICAS (Oposiciones de Secundaria)

TEMAS DE MATEMATICAS (Oposiciones de Secundaria) TEMAS DE MATEMATICAS (Opsicines de Secndi) TEMA 5 SISTEMAS DE REFERENCIA EN EL PLANO Y EN EL ESPACIO. ECUACIONES DE LA RECTA Y DEL PLANO. RELACIONES AFINES.. Espci Afín... Pln Afín... Espci Afín... Sespcis

Más detalles

PRODUCTO ESCALAR. r r r

PRODUCTO ESCALAR. r r r PRODUCTO ESCALAR Defncón de pdct escl de ectes. Se denmn pdct escl de ds ectes (, ) y (, ), l núme: cs α y l epesentms p En el pdct escl se mltplcn ds ectes, pe el esltd es n núme (escl). S ls ectes petenecen

Más detalles

2, 3 1, 3 1, 3 , 3 , 3

2, 3 1, 3 1, 3 , 3 , 3 . Dd el et ( ) hll t en s mism dieión qe se niti. Cll tmién t et de módl de igl dieión qe sentid pest. Slión. En l pime pte del plem se pide ll el et niti de. n ± ± ± dieión sentid pest Igl ' dieión sentid

Más detalles

PRODUCTO ESCALAR. r r r

PRODUCTO ESCALAR. r r r PRODUCTO ESCALAR Defnón de pdt esl de vetes. Se denmn pdt esl de ds vetes ( ) y ( ) p l núme: s y l epesentms En el pdt esl se mltpln ds vetes pe el esltd es n núme (esl). S ls vetes peteneen l esp vetl

Más detalles

Tema 0 Cálculo vectorial

Tema 0 Cálculo vectorial Tem 0 Cálcul vectil IES Pe Mnjón Pf: Edud Eismn 1 1 Tem 0. Cálcul vectil Mgnitudes físics escles vectiles. Vectes Vect uniti ves Descmpsición de un vect en el pln Descmpsición de un vect en el espci Sum

Más detalles

6 Propiedades métricas

6 Propiedades métricas Solcionaio Popiedades méticas ACTIVIDADES INICIALES.I Dados los pntos P( ) Q( ) la ecta : calcla: a) d(p Q) b) d(p ) c) d(q ) a) b) c).ii Se tienen las ectas : s : t :. Halla: a) d( s) b) d( t) c) ( s)

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

PROYECTO DE TEORIA DE MECANISMOS.

PROYECTO DE TEORIA DE MECANISMOS. Nmbe: Mecnism: PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemátic y dinámic de un mecnism pln ticuld cn un gd de libetd. 7. Cálcul de ls celecines cn el métd de ls celecines eltivs gáfic y nlític 7.1.

Más detalles

ÁREAS Y VOLÚMENES I. Ejercicio nº 1.- Ejercicio nº 2.- a) determinen un paralelepípedo de volumen 10. b) sean linealmente dependientes.

ÁREAS Y VOLÚMENES I. Ejercicio nº 1.- Ejercicio nº 2.- a) determinen un paralelepípedo de volumen 10. b) sean linealmente dependientes. Ejecicio nº.- Halla elvalo de m y v, m, sea. ÁREAS Y VOLÚMENES I paa qe el áea del paalelogamo deteminado po,, Ejecicio nº.- Dados los vectoes,,, v,, y w,, 5 ; halla elvalo de paa qe: a) deteminen n paalelepípedo

Más detalles

teniendo en cuenta que la relación de equipolencia es una relación de igualdad: ( ) ( )

teniendo en cuenta que la relación de equipolencia es una relación de igualdad: ( ) ( ) Jni. Ejeii B. (Pntión máim pnts Ls pnts A( B( C( sn tes éties nsetis de n plelgm. Se pide (pnt Hll ls dends del t étie D ll el áe de dih plelgm. ( pnt Clsifi el plelgm p ss lds p ss ángls. Slión Si t pnts

Más detalles

55 EJERCICIOS DE VECTORES

55 EJERCICIOS DE VECTORES 55 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) d = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coordends de los vectores fijos

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

Forman base cuando p 0 y 1.

Forman base cuando p 0 y 1. 1 VECTORES: cuestiones y problemas Preguntas de tipo test 1. (E11). Los vectores u = (p, 0, p), v = (p, p, 1) y w = (0, p, ) forman una base de R : a) Sólo si p = 1 b) Si p 1 c) Ninguna de las anteriores,

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).

Más detalles

Matrices. 2 0 1 1 1 1 3 0 y 2 1 5 1 3 0 3. siendo. Ejercicio nº 1.- Dadas las matrices: b) Halla una matriz, X, tal que AX B. Ejercicio nº 2.

Matrices. 2 0 1 1 1 1 3 0 y 2 1 5 1 3 0 3. siendo. Ejercicio nº 1.- Dadas las matrices: b) Halla una matriz, X, tal que AX B. Ejercicio nº 2. Mtrices Ejercicio nº - Dds ls mtrices: b) Hll n mtriz tl qe Ejercicio nº - Reselve el sigiente sistem mtricil: Ejercicio nº - Clcl los vlores de pr qe l mtriz: verifiqe l ección l donde l O son respectivmente

Más detalles

1.- El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo

1.- El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo UNIDAD.- Geometrí eclíde. Prodcto esclr (tem 6 del libro). PRODUCTO ESCALAR DE DOS VECTORES LIBRES Definición: Se llm prodcto esclr de los ectores se not por sigiente form: del ánglo qe formn dichos ectores.

Más detalles

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores

Más detalles

POSICIONES RELATIVAS

POSICIONES RELATIVAS POSIIONES RELTIVS i. Picine Relti e pln ii. Picine elti e te pln iii. Picine elti e ect i. Picine elti e n ect n pln Picine elti e pln. Sen l pln picine elti peen e - Secnte. - Plel. - inciente Secnte.

Más detalles

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA Colegio L Pesentción Gnd OPCIÓN A 1- () [1 punto] Sen u y v dos vectoes otogonles y de módulo 1 Hll los vloes del pámeto p que lo vectoes u + v y u v fomen un ángulo 60º (b) [1 punto] Hll un vecto z de

Más detalles

- La energía potencial electrostática de una carga puntual es nula.

- La energía potencial electrostática de una carga puntual es nula. 1 e EXAMEN PACIAL. FÍSICA II. TEMAS 1 Y (6/04/016) ESOLUCIÓN Cuestión 1.- Cnsidéense ls siguientes distibucines de cg: () puntul; (b) supeficil unifme, sbe un esfe de di ; (c) vlúmic unifme en un esfe

Más detalles

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA CURSO CERO DE FÍSIC PLICCIÓN DE VECTORES L FÍSIC Vness de Csto Susn i Deptmento de Físic CURSO CERO DE FÍSIC.UC3M PLICCIÓN DE VECTORES L FÍSIC CONTENIDO Mgnitudes escles vectoiles. Repesentción gáfic de

Más detalles

2º BACHILLERATO A TEMA 2. DETERMINANTES. 1.Calcula los determinantes de estas matrices: 2. Determina el valor de x 3 2 3

2º BACHILLERATO A TEMA 2. DETERMINANTES. 1.Calcula los determinantes de estas matrices: 2. Determina el valor de x 3 2 3 º BACHILLERATO A TEMA. DETERMINANTES..Clcul los determinntes de ests mtrices:. Determin el vlor de x 4 x 3 3 = b x 5 = 3. Clcul los siguientes determinntes: A = ( 3 5 5 4 B = ( 3 4 b 3 9 3 c 4 3 d 3 3

Más detalles

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a

lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a Resuelve ls siguientes ecuciones: 4 5 = 0 0 + 6 = 0 0 + 0 = 0 = 0 Hll el vlor de los siguientes determinntes de orden 4: 0 0 0 0 0 0 4 0 0 5 4 0 0 6 0 5 Clcul el vlor de los siguientes determinntes: 0

Más detalles

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA PRIMER EJERCICIO GRUPO 1PV 27 de Febrero de 2002

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA PRIMER EJERCICIO GRUPO 1PV 27 de Febrero de 2002 FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA PRIMER EJERCICIO GRUPO 1PV 7 de Fee de Cuestines 1. Otén ls dimensines del fluj del cmp eléctic e indic sus uniddes en el sistem intencinl. F Q MLT IT 1 [ Φ] [ ES

Más detalles

4 Vectores en el espacio

4 Vectores en el espacio 4 Vectores en el espacio ACTIVIDADES INICIALES 4.I. Efectúa las siguientes operaciones en R³ a) + 5,, 4, 7, b),, c) 6(,, ) + 4(, 5, ) 4 6 5 a),, 6 9 b) 6,, c) (6,, ) 4 4.II. Calcula los valores de a, b

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B

Más detalles

I.E.S. Mediterráneo de Málaga Septiembre 2015 Juan Carlos Alonso Gianonatti OPCIÓN DE EXAMEN Nº 1

I.E.S. Mediterráneo de Málaga Septiembre 2015 Juan Carlos Alonso Gianonatti OPCIÓN DE EXAMEN Nº 1 I.E.S. editeáneo de álg Septiembe Jn Clos lonso Ginontti OCIÓN DE EXEN Nº Considee el sigiente sistem de ecciones dependiendo del pámeto [7 UNTOS] Clcle los loes de p qe el sistem teng solción. b [ UNTOS]

Más detalles

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES IES Jun Gcí Vldemo Deptmento de Mtemátics º Bchilleto de CCSS. SUMA Y RESTA DE FUNCIONES Dds g unciones eles de vile el se deine l unción sum g como: g g con Dom g Dom Dom g Es deci, l unción g hce coesponde

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

ESPACIO EUCLÍDEO ESPACIO EUCLÍDEO

ESPACIO EUCLÍDEO ESPACIO EUCLÍDEO ESPACIO EUCLÍDEO.- PRODUCTO ESCALAR....- MODULO Y ÁNGULO....- PRODUCTO VECTORIAL...4 4.- PRODUCTO MIXTO DE TRES VECTORES...5 5.- ANGULO DE RECTA Y PLANO...6 6.- ÁNGULO DE DOS PLANOS....7 SI α : AX BY CZ

Más detalles

IES Mediterráneo de Málaga Solución Junio 2013 Juan Carlos Alonso Gianonatti. x - z = 1, y - z = 1,

IES Mediterráneo de Málaga Solución Junio 2013 Juan Carlos Alonso Gianonatti. x - z = 1, y - z = 1, ES Medieáneo de Málg Solción Jnio Jn Clos lonso Ginoni OPCÓN Ejecicio - -. Cliicción máim: pnos. Ddos el pno P(- ls ecs: s se pide: ( pno Deemin l posiion eli de s. b ( pno Deemin l ección de l ec qe ps

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

V 2 : vectores libres en el plano

V 2 : vectores libres en el plano V 2 : vectores libres en el plano Egor Maximenko ESFM del IPN 8 de agosto de 2009 Egor Maximenko (ESFM del IPN) V 2 : Vectores libres en el plano 8 de agosto de 2009 1 / 13 Contenido 1 Conjunto V 2 2 Operaciones

Más detalles

GEOMETRÍA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

GEOMETRÍA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 GEOMETRÍA (Selectividad 014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 014 1 Aragón, junio 014 Dados el punto P (1, 1, 0), y la recta: x+ z 1= 0 s : 3x y 3= 0 Ax + By

Más detalles

VECTORES. A cada clase de vectores equipolentes se denomina vector libre.!

VECTORES. A cada clase de vectores equipolentes se denomina vector libre.! VECTORES Vectres libres tridimensinales Definicines Sean A y B ds punts del espaci de la gemetría elemental. Se llama vectr AB al par A, B. El punt A se denmina rigen y al punt B extrem. rdenad ( ) Se

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Mgnitudes vectoiles 1 de 8 MAGNITUDES VECTORIALES: Índice 1 Mgnitudes escles vectoiles Sum de vectoes lies Poducto de un escl po un vecto 3 Sistem de coodends vectoiles. Vectoes unitios 3 Módulo de un

Más detalles

Para indicar que 2 es menor que 3, podemos escribir, para indicar que es mayor o igual que 4, escribimos.

Para indicar que 2 es menor que 3, podemos escribir, para indicar que es mayor o igual que 4, escribimos. DESIGUALDADES LINEALES Las desigualdades sn enunciads que indican que ds cantidades ns n iguales, y las pdems identificar pr el us de un más de ls siguientes símbls de desigualdad: Para indicar que 2 es

Más detalles

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar.

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar. +34 9 76 056 - Fa: +34 9 78 477 Vectores: Vamos a distingir dos tipos de magnitdes: Magnitdes escalares, son aqellas qe qedan definidas por na sola cantidad qe denominaremos valor del escalar. Ej: Si decimos

Más detalles

ALGEBRA Y GEOMETRÍA I

ALGEBRA Y GEOMETRÍA I FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE MATEMÁTICA ALGEBRA Y GEOMETRÍA I Rect en el plno Inecciones lineles en dos vibles Ricdo Sgistá Ptici Có

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

FLUJO ELÉCTRICO. representa una integral sobre una superficie cerrada,

FLUJO ELÉCTRICO. representa una integral sobre una superficie cerrada, FLUJO ELÉCTRICO La definición de fluj de camp eléctic E a tavés de una supeficie ceada (Fig. 1) es Φ = E d s, dnde, E (Fig. 1) a) el símbl epesenta una integal sbe una supeficie ceada, b) d s es un vect

Más detalles

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2)

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2) IES ÁFRIC º BCHILLERTO CCNN EJERCICIOS DE REPSO TOD L MTERI (Fich ) Ejecicio nº.- Un estdo comp biles de petóleo tes suministdoes dieentes que lo venden 7,8 y dóles el bil, espectivmente. L ctu totl sciende

Más detalles

Matemáticas II Unidad 4 Geometría

Matemáticas II Unidad 4 Geometría Mtemátic II Unidd Geometí UNIDAD EL ESPACIO AFÍN.- Demot que i do punto etán ddo epecto del item de efeenci fín cteino, entonce el vecto que lo une tiene po coodend l difeenci de l coodend de mbo punto

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

= y s 6x 4y 1 =

= y s 6x 4y 1 = . Determina el ángl frmad pr las rectas: r (x y) = ( ) +λλ ( ) y s (x y) = ( 5 7) +µ ( ) x y y r = y s x = c. r x y = y s x + y + = d. r x + y + = y s x y =. Las rectas r x + y = y s x + k y = frman n

Más detalles

CURVAS PLANAS DEFINIDAS PARAMÉTRICAMENTE.

CURVAS PLANAS DEFINIDAS PARAMÉTRICAMENTE. Intdcción Definición de las fncines ectiales cntinas: Si llamams M al plan métic asciad al espaci ectial eclidian de dimensines, E, R, cnsideams el sistema de efeencia tnmal en M, {, {,}}, se pede establece

Más detalles

Boletín de Geometría Analítica

Boletín de Geometría Analítica Boletín de Geometría Analítica 1) Si las coordenadas de los vectores a y b son (3,5) y (-2,1) respectivamente, obtén las coordenadas de: a) -2 a + 1/2 b b) 1/2 ( a +b ) - 2/3 ( a -b ) 2) Halla el vector

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tem 8 Geometrí Anlític Mtemátics º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Hll el punto medio del segmento de extremos P, y Q,. Ls coordends del punto medio, M, son l

Más detalles

TEMA 4. Vectores en el espacio Problemas Resueltos

TEMA 4. Vectores en el espacio Problemas Resueltos Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 4 5 Vectores TEMA 4 Vectores en el espacio Problemas Resueltos Para a = (,, ) y b = (,, 4), halla: a) a b b) a b c)

Más detalles

TEMA 5. VECTORES EN EL ESPACIO

TEMA 5. VECTORES EN EL ESPACIO TEMA 5. VECTORES EN EL ESPACIO ÍNDICE 1. INTRODUCCIÓN... 2 2. VECTORES EN EL ESPACIO.... 3 2.1. CONDICIONES INICIALES.... 3 2.2. PRODUCTO DE UN VECTOR POR UN NÚMERO.... 3 2.3. VECTORES UNITARIOS.... 3

Más detalles

Modelo 4 de sobrantes de 2005 - Opción A

Modelo 4 de sobrantes de 2005 - Opción A Modelo de onte de - Opción A Ejecicio. 8 Se f : R R l función definid po f () () [ punto] Clcul lo punto de cote de l gáfic de f con lo eje coodendo. () [ punto] Hll l íntot de l gáfic de f. (c) [ punto]

Más detalles

Tema 5B. Geometría analítica del plano

Tema 5B. Geometría analítica del plano Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles

GEOMETRÍA ANALÍTICA AB CD CD AB CD

GEOMETRÍA ANALÍTICA AB CD CD AB CD GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;

Más detalles

TEMA 11: PROBLEMAS MÉTRICOS

TEMA 11: PROBLEMAS MÉTRICOS Alonso Fernánde Glián TEMA PROBLEMAS MÉTRICOS Finlmente vmos ocprnos de clclr ánglos distncis entre rects plnos de resolver problems relciondos con estos conceptos.. ÁNGULOS ENTRE RECTAS Y PLANOS Vemos

Más detalles

MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos

MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos Geometría del espacio: Vectores; producto escalar, vectorial y mixto Aplicaciones MATEMÁTICAS II TEMA 4 Vectores en el espacio Problemas resueltos Vectores Para a = (,, ) y b = (,, 4), halla: a) a + b

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

TEMA 4. Vectores en el espacio Problemas Resueltos

TEMA 4. Vectores en el espacio Problemas Resueltos Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 4 5 Vectores TEMA 4 Vectores en el espacio Problemas Resueltos Para a = (,, ) y b = (,, 4), halla: a) a + b b) a b

Más detalles

ÁLGEBRA Y GEOMETRÍA MATRICES Y DETERMINANTES TIPOS DE MATRICES

ÁLGEBRA Y GEOMETRÍA MATRICES Y DETERMINANTES TIPOS DE MATRICES MTRIES Y ETERMINNTES TIPOS E MTRIES ÁLGER Y GEOMETRÍ Mti nl: O Todos los elementos son nlos. Mti tingl speio: Los elementos sitdos po debjo de l digonl pincipl son 0. Mti tingl infeio: Los elementos sitdos

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v.

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v. Estdios J.Concha ( fndado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Jaier Concha y Ramiro Froilán TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS

Más detalles

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación:

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación: Repesent ls dos poyecciones y l tece poyección de los puntos ddos continución: pto. lej. cot A + 0 B + = + C + < + D 0 + E - > + F - = + G - > + H - 0 I - > - J - = - K L - 0 < - - M + < - N + = - + >

Más detalles

1: El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo

1: El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo UNIDAD : Geometrí eclíde. Prodcto esclr. PRODUCTO ESCALAR DE DOS VECTORES LIBRES Definición: Se llm prodcto esclr de los ectores y y se not por l nº rel qe se obtiene de l sigiente form: = es decir el

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

Unidad 3 Sistemas de Ecuaciones Lineales

Unidad 3 Sistemas de Ecuaciones Lineales Unidd 3 Sistems de Ecuciones Lineles Popedéutico 8 D. Ruth M. Aguil Ponce Fcultd de Ciencis Deptmento de Electónic Popedéutico 8 Fcultd de Ciencis Popedéutico 8 Fcultd de Ciencis Sistem de Ecuciones Lineles

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 3 1. NÚMEROS RACIONALES UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS RACIONALES Los números rcionles son todos quellos números de l form b con y b números

Más detalles

EJERCICIOS DE INECUACIONES

EJERCICIOS DE INECUACIONES EJERCICIOS DE INECUACIONES REPASO DE DESIGUALDADES: 1. Dadas las siguientes desigualdades, indicar si son V o F utilizando la recta real. Caso de ser inecuaciones, indicar además la solución mediante la

Más detalles

Cinemática 1D 2D 3D (un enfoque para estudiar el movimiento)

Cinemática 1D 2D 3D (un enfoque para estudiar el movimiento) L cnemác es un m de l mecánc clásc que esud el mmen de ls cueps sn ene en cuen ls cuss (uezs) que l pducen. Se pecup p ls ecs en uncón del emp, p l cul ulz un ssem de cdends (ssem de eeenc). Además, esud

Más detalles

8.- GEOMETRÍA ANÁLITICA

8.- GEOMETRÍA ANÁLITICA 8.- GEOMETRÍA ANÁLITICA 1.- PROBLEMAS EN EL PLANO 1. Dados los puntos A = (1, 2), B = (-1, 3), C = (3, 4) y D = (1, 0) halla las coordenadas de los vectores AB, BC, CD, DA y AC. Solución: AB = (-2, 1),

Más detalles

LECCIÓN 2 - MOMENTOS Y SISTEMAS DE VECTORES

LECCIÓN 2 - MOMENTOS Y SISTEMAS DE VECTORES LCCIÓN 2 - NTS Y SISTAS D VCTRS 2.. Clsfccó de vectes. 2.2. met cetl de u vect. Cmb del cet de mmets. 2.3. met áxc de u vect. 2.4. Sstems de vectes deslztes. 2.4.. Sstems de vectes ccuetes. 2.4.2. P de

Más detalles

AB se representa por. CD y

AB se representa por. CD y 1.- VECTORES. OPERACIONES Vector fijo Un ector fijo AB es n segmento orientado con origen en el pnto A y extremo en B Todo ector fijo AB tiene tres elementos: Módlo: Es la longitd del segmento AB. El módlo

Más detalles

4. Espacios Vectoriales

4. Espacios Vectoriales 4. Espacios Vectoriales 4.. Definición de espacio, sbespacio ectorial y ss propiedades n ector es na magnitd qe consta de módlo, dirección y sentido. Algnos sin embargo; más teóricos, explicarían qe n

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

GUÍA N 1 CUARTO AÑO MEDIO

GUÍA N 1 CUARTO AÑO MEDIO Colegio Antil Mawida Departamento de Matemática Profesor: Nathalie Sepúlveda Delgado GUÍA N 1 CUARTO AÑO MEDIO Nombre del alumno/a: Fecha: Unidades de aprendizaje: Objetivo Contenidos: Nivel: Vectores

Más detalles

Números complejos ACTIVIDADES. a) a = = 3 b = 0 b) a = 0 4a 2b = 2 b = 1. a) y = 0 b) x = 0 c) x 0, y 0

Números complejos ACTIVIDADES. a) a = = 3 b = 0 b) a = 0 4a 2b = 2 b = 1. a) y = 0 b) x = 0 c) x 0, y 0 Númers cmplejs ACTIVIDADES a) a = + = b = 0 b) a = 0 a b = b = a) y = 0 b) x = 0 c) x 0, y 0 a) Opuest: + i Cnjugad: + i e) Opuest: i Cnjugad: i b) Opuest: + i Cnjugad: + i f) Opuest: 7 Cnjugad: 7 c) Opuest:

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES

UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES 6 Unidd. Podcto ecl ectoil mito. Apliccione en el epcio. UNIDAD.PRODUCTO ESCALAR VECTORIAL Y MIXTO. APLICACIONES. Podcto ecl de do ectoe libe.. Definición.. Intepetción geométic.. Epeión nlític. Podcto

Más detalles

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior.

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior. MATEMÁTICAS II ACTIVIDADES REFUERZO ª EVALUACIÓN Ejercicio 1. Sen f : y g : ls funciones definids por f() = -( + 1) + + b y g() = ce Se sbe que ls gráfics de f y g se cortn en el punto ( 1, ) y tienen

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

Ángulos en la Circunferencia y Teoremas

Ángulos en la Circunferencia y Teoremas Ángulos en la Circunferencia y Teoremas Nombre Alumno o Alumna: Curso: Definiciones Circunferencia: Dado un punto O y una distancia r, se llama circunferencia de centro O y radio r al conjunto de todos

Más detalles

EJERCICIOS DE VECTORES EN EL PLANO (TEMA 3) 4.- Dados los vectores de la figura, indica cuáles de las siguientes igualdades es cierta:

EJERCICIOS DE VECTORES EN EL PLANO (TEMA 3) 4.- Dados los vectores de la figura, indica cuáles de las siguientes igualdades es cierta: EJERCICIOS DE VECTORES EN EL PLANO (TEMA ) 1- Diuja los siguientes elementos en un diagrama de coordenadas: A = (5,), B = (, ) v = (4,), u i 4 j el vector w mide unidades, tiene dirección horizontal, sentido

Más detalles

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es:

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es: CAMPO ELÉCTRICO Camp eléctic Es la egión del espaci que se ve petubada p la pesencia de caga cagas elécticas. Las caacteísticas más imptantes de la caga eléctica sn: - La caga eléctica se cnseva. - Está

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3 8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Temas 6 y 7 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

CAPÍTULO 3: CAMPO MAGNÉTICO. BIBLIOGRAFÍA Tipler. "Física". Cap. 27. Reverté Campo magnético creado por cargas puntuales en movimiento. (27.

CAPÍTULO 3: CAMPO MAGNÉTICO. BIBLIOGRAFÍA Tipler. Física. Cap. 27. Reverté Campo magnético creado por cargas puntuales en movimiento. (27. CAPÍTULO 3: 3.. Camp magnétic cead p cagas pntales en mvimient. (7.) CAMPO MAGNÉTCO 3.3. Camp magnétic cead p cientes elécticas: Le de it Savat. (7.) 3.. Le de Gass paa el magnetism. (7.3) 3.5. Le de Ampee.

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

Tema 4: Los vectores en el espacio

Tema 4: Los vectores en el espacio Tema 4: Los vectores en el espacio 1. El conjunto R 3 Este conjunto está formado por todas las ternas de números reales (x, y, z) 2. Vectores fijos Un vector es un segmento orientado que parte de A (origen)

Más detalles

1'00. t'::l (a+;+c )x. + e) x , en virtud del teorema de DirÍchlet que CUESTIONES ELEMENTALES RESUELTAS. ax co, cos cx;,- ~~~[:n + b e) x

1'00. t'::l (a+;+c )x. + e) x , en virtud del teorema de DirÍchlet que CUESTIONES ELEMENTALES RESUELTAS. ax co, cos cx;,- ~~~[:n + b e) x 20. CUESTIONES ELEMENTALES RESUELTAS ) SOLUCIÓN. I) axsen x sen estas x 2 x3 2 sen + b - e) x sen - b + e) x + sen (a - b - e) x] -;;. f se y cm cuand x=o, es +b+c)x=o y para x---., tamb + e) x ---. 00,

Más detalles

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR 8 REPSO POO OJETIVO IDENTIFICR LOS ELEMENTOS DE UN VECTOR Nombre: Crso: Fecha: Vector: segmento orientado determinado por dos pntos: (a, a ), origen del ector, y (b, b ), extremo del ector. Coordenadas

Más detalles