FLUJO ELÉCTRICO. representa una integral sobre una superficie cerrada,

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FLUJO ELÉCTRICO. representa una integral sobre una superficie cerrada,"

Transcripción

1 FLUJO ELÉCTRICO La definición de fluj de camp eléctic E a tavés de una supeficie ceada (Fig. 1) es Φ = E d s, dnde, E (Fig. 1) a) el símbl epesenta una integal sbe una supeficie ceada, b) d s es un vect que tiene magnitud ds igual a una difeencial de áea sbe la supeficie, y que apunta en la diección del vect nmal nˆ diigid al extei de la supeficie, y c) E d s es un pduct escala ( E d s = E ds csθ), que depende de la supeficie, y del camp E.

2 LEY DE GAUSS La ley de Gauss es una heamienta pdesa paa detemina camps eléctics en situacines de simetía, y elacina el fluj eléctic ttal, Φ E, a tavés de una supeficie ceada, cn la caga neta enceada p la supeficie. Esta ley establece: dnde, E d s q, = : epesenta la integal sbe una supeficie ceada, en cuy intei hay una caga neta q, y d s : es un element difeencial de supeficie; en cada punt ds es un vect, y, p cnvención, siempe apunta hacia fuea de la supeficie ( Fig. 8). Fig. 8 Si deseams halla el camp eléctic E en una cieta egión del espaci, cnstuims en ese espaci, una supeficie ceada, llamada supeficie gaussiana. La elección de la fma y el tamañ de la supeficie gaussiana es abitaia. Suele escgese de tal fma que sbe ella el val del camp eléctic sea cnstante, y pueda entnces factizase fuea de la integal. Cm ya sabems, Φ E = E d s, es el fluj a tavés de una supeficie ceada y q es la caga neta cntenida dent de la supeficie, es deci, que si se tienen muchas cagas puntuales q i dent de la supeficie, la ley de gauss puede escibise : E d s = q = q i i neta

3 LA LEY DE GAUSS Y LA LEY DE COULOMB. (Camp Eléctic debid a una caga punt) La ley de Culmb puede deducise de la Ley de Gauss. Paa ell aplicams la ley de Gauss a una caga puntual psitiva q, y elegims una supeficie esféica cm supeficie gaussiana. Se supne que el camp eléctic E de la caga es descncid, pe debid a la simetía, tendá la misma magnitud en cualquie punt de una supeficie gaussiana esféica (Fig. 9). Cm E Fig. 9 es cnstante en tdas pates de la supeficie, y hace un ángul de ce gads cn d s, pdems extae E cn la ley de Gauss: 0 E ds = q de la integal que expesa el fluj y escibi de acued Si una caga de pueba seá, + q se sitúa en este camp, la fueza eléctica sbe esta caga F = qe = 1 4π qq Y btenems de esta manea, la ley de Culmb a pati de la ley de Gauss.

4 CORTEZA ESFÉRICA Una cteza esféica delgada de adi R tiene una caga ttal Q distibuida unifmemente sbe su supeficie. Detemine el camp eléctic paa punts 1. R, es deci, fuea del cascaón. < R, es deci, dent del cascaón SOLUCION Fig En la figua 10 se muestan las líneas de camp y ls elements de supeficie supuesta la cteza cagada psitivamente. Si cnstuims una supeficie gaussiana esféica de adi R, cm se muesta en la figua, la ley de Gauss E d s Q pemite escibi = E(4π ) = Q Y despejand E tenems Q E =, > R 4π

5 Que es igual al camp debid a una caga puntual de magnitud Q clcada en el cent de la cteza.. < R En este cas, la caga enceada p la supeficie gaussiana es ce, y la ley de Gauss dice que E d s = 0, E(4π ) = 0, de dnde E = 0 Es deci que el camp E es ce en tds ls punts inteies. En la figua (11) se muesta una gáfica de E vesus Fig.(11)

6 DISTRIBUCIÓN ESFÉRICA (Esfea maciza) Una caga Q se encuenta unifmemente distibuida en td el vlumen de una esfea n cnducta de adi R. Detemina el camp eléctic en punts: 1. fuea de la esfea, > R. dent de la esfea, R SOLUCIÓN Fig En la figua 1 se muestan las líneas de camp eléctic E v, supniend la esfea cagada psitivamente, y se muestan también las supeficies gaussianas paa > R y < R, las cuales cnsisten de esfeas centadas en la esfea cagada. De la ley de Gauss, E d s Q = cuand > R la caga que enciea la supeficie gaussiana es exactamente Q. Debid a la simetía esféica, E ds = Q Y despejand E tenems E(4π ) = Q Q E = > R 4π 0

7 L mism que btendíams si la caga Q fuese una caga punt clcada en el cent de la esfea.. < R Paa esta situación, la caga Q ' enceada p la supeficie gaussiana es men que Q, y seá 4 Q' = ρ V ' = ρ( π ) Dnde ρ es la densidad de caga y V ' es el vlumen encead p la caga Q ' Cm Q caga ttal Q ρ = = = V vlumen esfea 4 π R esulta Q ρ =, y, 4π R 4 Q 4 Q ' = ρ ( π ) = ( π ) = Q 4 πr R De la ley de Gauss E d s = Q' E(4π Q E = 4π ) = Q R R, < R Obseve que el camp es ce paa = 0, y aumenta linealmente cn hasta = R, y después decece invesamente a, es deci, Q E = 4π R, E α, paa < R, y, 1 Q 1 E =, E α 4π, paa > R Ls camps cinciden en muestan en la figua 1. 1 Q = R y tienen el val E = ; y sus cuvas se 4π R

8 Fig. 1

9 LÍNEA INFINITA DE CARGA Fig. 14 La figua 14 muesta una sección de una línea infinita de caga de densidad cnstante. Deseams calcula el camp eléctic a una distancia R de la línea. Slución: Si supnems la caga del alambe psitiva, el sentid del camp seá adialmente hacia fuea, y su magnitud dependeá de la distancia adial R. Cm supeficie gaussiana elegims un cilind cicula de adi R y lngitud h. Al utiliza la Ley de Gauss, E d s q = se descmpne la integal en tes integales, ds cn espect a las bases del cilind y una cn espect a la supeficie lateal. Cm n hay fluj a tavés de las bases sin slamente a tavés del áea lateal, y cm p simetía E tiene el mism val en tds ls punts de esta última, se tendá que q = E ds = = E = Es Eds cs0 ds = E(πRh) = λh Pues el áea lateal del cilind es πrh y la caga ttal enceada es la densidad lineal de caga multiplicada p la lngitud, y esulta E = 1 π En la unidad sbe Inteacción Eléctica (Pblema esuelt #8, alambe infinit) se btuv este mism esultad utilizand una técnica de integación a pati de la expesión dq λ R E = K û

10 la cual utilizaba un métd más labis. El esultad btenid también es válid paa alambes cagads cn lngitud finita, siempe que la distancia adial, R, sea much men que la distancia L a un extem del mism, es deci R << L Fig. 15

11 LÁMINA INFINITA CARGADA Calculems el camp debid a una lámina infinita, delgada cagada, de una densidad supeficial de caga σ Fig. 16. (Ve pblema esuelt #10 de la Unidad Inteacción Eléctica) Fig. 16 Slución: Una supeficie gaussiana cnveniente es un cilind pequeñ, cuy eje sea pependicula al plan cn extem equidistante del plan, y áeas de las bases A. Cm el camp es pependicula, n existe fluj a tavés del áea lateal del cilind. Empleand la ley de Gauss, E d s = q pdems escibi paa las tes supeficies del cilind (ds de las bases y una lateal), E d s = E d s + E d s E d s = q a y cm el fluj a tavés de la supeficie lateal (supeficie b) es ce, pues E es pependicula a d s, y el fluj a tavés de cada una de las bases es EA (áeas a y c), esulta que, EA EA = q EA = q b c Cm la caga enceada p la supeficie gaussiana es tansfma en EA = σa, σ E = q = σa, la ecuación antei se

12 Al mism esultad, aunque cn may dificultad puede llegase p integación a pati de la expesión (ve pblema esuelt #10 de la unidad Inteacción Eléctica) dq E = K û En este ejecici hems supuest una lámina infinita l que es una idealización. Pe el esultad es una buena apximación en el cas de un plan finit, siempe y cuand la distancia de la lámina al punt dnde se evalúa el camp sea pequeña, en cmpaación cn las dimensines del plan. Si la caga de la hja infinita es psitiva, el camp está diigid pependiculamente desde la hja (cm se ilustó), pe si tiene una caga negativa, la diección del camp es hacia la hja, cm se indica en la figua 17. Fig. 17

Ley de Gauss. Frecuentemente estamos interesados en conocer el flujo del campo eléctrico a través de una superficie cerrada, que viene dado por.

Ley de Gauss. Frecuentemente estamos interesados en conocer el flujo del campo eléctrico a través de una superficie cerrada, que viene dado por. Ley de Gauss La ley de Gauss elacina el fluj del camp eléctic a tavés de una supeficie ceada cn la caga neta incluida dent de la supeficie. sta ley pemite calcula fácilmente ls camps eléctics que esultan

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es:

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es: CAMPO ELÉCTRICO Camp eléctic Es la egión del espaci que se ve petubada p la pesencia de caga cagas elécticas. Las caacteísticas más imptantes de la caga eléctica sn: - La caga eléctica se cnseva. - Está

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FÍSICA GENERAL II GUÍA - Campo eléctico: Ley de Gauss Objetivos de apendizaje Esta guía es una heamienta que usted debe usa paa loga los siguientes objetivos: Defini el concepto de Flujo de Campo Eléctico.

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo Cuso: FISICA II CB 3U 1I Halla el CE de una esfea hueca con caga Q adio a. ad a d asen P de a Las componentes en el eje Y se anulan El CE esultante de la esfea hueca se encontaa sobe el eje X. El áea de

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Leyes de la electostática Leyes de la electostática:

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

1. Sistemas Coordenados 2. Operador Nabla. 4. Función Delta de Dirac 5. Ecuaciones de Maxwell

1. Sistemas Coordenados 2. Operador Nabla. 4. Función Delta de Dirac 5. Ecuaciones de Maxwell TEM. NÁLII VECTORIL. istemas Cdenads. Opead Nabla 3. Teemas 4. Función Delta de Diac 5. Ecuacines de Mawell Objetiv del tema Peta las heamientas analíticas básicas paa eslve pblemas de camps eléctics magnétics

Más detalles

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss

3.3.- Cálculo del campo eléctrico mediante la Ley de Gauss Lección 1. Campo Electostático en el vacío: Conceptos y esultados fundamentales 17..- Cálculo del campo eléctico mediante la Ley de Gauss La Ley de Gauss pemite calcula de foma sencilla el campo eléctico

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Electrostática. Campo electrostático y potencial

Electrostática. Campo electrostático y potencial Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes

Más detalles

Tema 2 : Interacción Eléctrica

Tema 2 : Interacción Eléctrica Tema : Interacción Eléctrica Esquema de trabaj: 1.- Carga eléctrica.- Ley de Clulmb 3.- Camp eléctric. Intensidad de camp eléctric. 4.- Energía ptencial eléctrica. 5.- Ptencial eléctric. Superficies equiptenciales.

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

ELECTRICIDAD Y MAGNETISMO

ELECTRICIDAD Y MAGNETISMO Pf. Mauizi Mattesini LCTRICIDAD Y MAGNTISMO Capítul Camp léctic II: Distibucines cntinuas de cagas Cpight 004 b W. H. Feeman & Cmpan 3 Capítul. Cálcul del camp eléctic mediante la Le de Culmb. Le de Gauss

Más detalles

Tema 1- CAMPOS ELÉCTRICOS

Tema 1- CAMPOS ELÉCTRICOS 1 Intoducción. Caga eléctica.(1.1) Tema 1- CAMPOS LÉCTRICOS 3 Conductoes y aislantes (1.) 4 Ley de Coulomb.(1.3) 5 Campo eléctico y pincipio de supeposición.(1.4) 6 Dipolo eléctico(1.4) 7 Líneas de campo

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

CAMPO MAGNÉTICO. r r r

CAMPO MAGNÉTICO. r r r CAMPO MAGNÉTICO Camp magnétic Se dice que existe un camp magnétic en un punt, si una caga de pueba que se muee cn una elcidad p ese punt es desiada p la acción de una fueza que se denmina magnética. La

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Las leyes de Biot-Savart y de Ampere

Las leyes de Biot-Savart y de Ampere Las leyes de it-savat y de Ampee P θ R θ dx I x 1 R θ z R x d θ z d Camp Magnétic Causad p Cientes Cm usted puede sabe, es psible fabica un magnet (imán) enlland un alambe sbe un clav y hace pasa ciente

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS Fundamentos Físicos de la Infomática Escuela Supeio de Infomática Cuso 09/0 Depatamento de Física Aplicada TEMA 4. ELECTOSTATICA EN CONDUCTOES Y DIELECTICOS 4..- Se tiene un conducto esféico de adio 0.5

Más detalles

LA LEY DE COULOMB COMO CASO PARTICULAR DE LA LEY DE GAUSS

LA LEY DE COULOMB COMO CASO PARTICULAR DE LA LEY DE GAUSS LA LY D COULOMB COMO CASO PATICULA D LA LY D GAUSS Una caga eléctica genea un campo eléctico cuyas líneas de fueza son adiales ue pemiten conclui ue el vecto de intensidad de campo eléctico ti hay desde

Más detalles

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico. Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale

Más detalles

Interacción magnética

Interacción magnética Inteacción magnética Áea Física Resultados de apendizaje Utiliza las leyes de Gauss, Biot-Savat y Ampee paa calcula campos magnéticos en difeentes poblemas. Estudia el movimiento de una patícula cagada

Más detalles

FÍSICA II: 1º Curso Grado de QUÍMICA

FÍSICA II: 1º Curso Grado de QUÍMICA FÍSICA II: 1º Cuso Gado de QUÍMICA 5.- DIPOLOS Y DIELÉCTRICOS 5.1 Se tiene una distibución de cagas puntuales según la figua. P Calcula cuánto vale a) el momento monopola y b) el momento dipola 5.2 Calcula

Más detalles

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva Tópicos de Electicidad y Magnetismo J.Pozo y.m. Chobadjian. CPÍTULO III EL POTENCIL ELÉCTICO.. Definición de difeencia de potencial El tabajo ue se ealiza al lleva la caga pueba positiva del punto al punto

Más detalles

Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS

Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS Física Geneal III Ley de Gauss Optaciano Vásquez Gacía CAPITULO III LY D GAUSS 9 Física Geneal III Ley de Gauss Optaciano Vásquez Gacía 3.1 INTRODUCCIÓN n el capitulo anteio apendimos el significado del

Más detalles

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza:

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza: 1. Caga eléctica 2. Fueza electostática 3. Campo eléctico 4. Potencial electostático 5. Enegía potencial electostática 6. Repesentación de campos elécticos 7. Movimiento de cagas elécticas en el seno de

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Oersted en 1820 descubre que corrientes circulando en conductores generan campos magnéticos. Ese mismo año Jean Biot y Felix Savart descubren la

Oersted en 1820 descubre que corrientes circulando en conductores generan campos magnéticos. Ese mismo año Jean Biot y Felix Savart descubren la Fuentes de Camp Magnétic Oested en 180 descube que cientes ciculand en cnductes genean camps magnétics. Ese mism añ Jean it y Felix Savat descuben la fueza que actúa sbe imán póxim a un cnduct p el que

Más detalles

Teoremas Integrales. V(x j ) ds

Teoremas Integrales. V(x j ) ds Semana 2 - Clase 5 24/03/09 Tema : Algeba ectoial Teoemas Integales. Teoema de la Divegencia o de Gauss Sea = x j ) un campo vectoial definido sobe un volumen cuya fontea es la supeficie y ˆn el vecto

Más detalles

Facultad de Ingeniería Instituto de Ciencias Básicas

Facultad de Ingeniería Instituto de Ciencias Básicas Facultad de Ingenieía Instituto de Ciencias Básicas TÓPICOS DE ELECTRICIDAD Y MAGNETISMO (Pimea Vesión) (Incluye poblemas esueltos) Julio Pozo Péez y Rosa Maía Chobadjian 6 Tópicos de Electicidad y Magnetismo

Más detalles

3. Campo eléctrico de distribuciones continuas de carga. M.A.Monge / B. Savoini Dpto. Física UC3M

3. Campo eléctrico de distribuciones continuas de carga. M.A.Monge / B. Savoini Dpto. Física UC3M Campo eléctico II: Ley de Gau 1. Intoducción 2. Ditibucione continua de caga. 3. Campo eléctico de ditibucione continua de caga. 4. Flujo del campo eléctico. 5. Ley de Gau. 6. Aplicacione de la ley de

Más detalles

CAMPO ELÉCTRICO Y POTENCIAL

CAMPO ELÉCTRICO Y POTENCIAL CMPO ELÉCTRICO Y POTENCIL INTERCCIONES ELECTROSTÁTICS (CRGS EN REPOSO) Caga eléctica: popiedad intínseca de la mateia ue se manifiesta a tavés de fuezas de atacción o epulsión Ley de Coulomb: expesa la

Más detalles

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial.

CAMPO MAGNÉTICO. El campo magnético B, al igual que el campo eléctrico, es un campo vectorial. CAMPO MAGNÉTICO Inteacciones elécticas Inteacciones magnéticas Una distibución de caga eléctica en eposo genea un campo eléctico E en el espacio cicundante. El campo eléctico ejece una fueza qe sobe cualquie

Más detalles

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo

Más detalles

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.:

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.: Campo eléctico 1. Calcula el valo de la fueza de epulsión ente dos cagas Q 1 = 200 µc y Q 2 = 300 µc cuando se hallan sepaadas po una distancia de a) 1 m. b) 2 m. c) 3 m. Resp.: a) 540 N, b) 135 N, c )

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades.

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades. Continuación: Tansfeencia de calo a tavés de placas compuestas: Consideemos dos placas paalelas en contacto, con sus coespondientes espesoes y conductividades. En la supeficie de contacto la tempeatua

Más detalles

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA III CIV 221 DOCENTE: ING. JOEL PACO S.

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA III CIV 221 DOCENTE: ING. JOEL PACO S. 30/03/016 UNIVRSIDAD AUTONOMA JUAN MISAL SARACHO ACULTAD D CINCIAS Y TCNOLOGIA CARRRA D INGNIRIA CIVIL ISICA III CIV 1 DOCNT: ING. JOL PACO S. Capitulo II L CAMPO LCTRICO 1 30/03/016 CONTNIDO.1. Campos

Más detalles

Profesor BRUNO MAGALHAES

Profesor BRUNO MAGALHAES POTENCIL ELÉCTRICO Pofeso RUNO MGLHES II.3 POTENCIL ELÉCTRICO Utilizando los conceptos de enegía impatidos en Física I, pudimos evalua divesos poblemas mecánicos no solo a tavés de las fuezas (vectoes),

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

CAMPOS ELECTROMAGÉTICOS (Ondas EM)

CAMPOS ELECTROMAGÉTICOS (Ondas EM) CAMPOS ELECTROMAGÉTICOS (Ondas EM) Intducción. Camps Electmagnétics. Leyes de Maxwell del electmagnetism Ondas electmagnéticas BIBLIOGRAFÍA:. -Tiple-Msca. "Física". Cap. 28, vl 2, 5ª ed. -Seway-Jewett.

Más detalles

Electromagnetismo II

Electromagnetismo II Electomagnetismo II emeste: 15-1 EXAMEN FINAL D. A. Reyes-oonado Ayud. J. astejón-figueoa Ayud. P. E. Roman-Taboada Elaboó: Pedo Eduado Roman Taboada 1.- Poblema: (pts) (a) Escibe las cuato ecuaciones

Más detalles

CONDUCTOR EN EQULIBRIO ELECTROSTÁTICO

CONDUCTOR EN EQULIBRIO ELECTROSTÁTICO CONDUCTOR EN EQULIBRIO ELECTROSTÁTICO Un cnductr en euilibri electrstátic tiene las siguientes prpiedades: El camp eléctric es cer en punts situads dentr del cnductr. Cualuier carga en exces ue se clue

Más detalles

Interacción Electromagnética

Interacción Electromagnética Inteacción lectomagnética Campo léctico Campo Magnético Inducción lectomagnética Coulomb mpèe Faaday Lenz Maxwell La Fueza con que se ataen o epelen dos cagas es: Campo eléctico c. eléctico q 3 F 1 Una

Más detalles

CAPÍTULO 3: CAMPO MAGNÉTICO. BIBLIOGRAFÍA Tipler. "Física". Cap. 27. Reverté Campo magnético creado por cargas puntuales en movimiento. (27.

CAPÍTULO 3: CAMPO MAGNÉTICO. BIBLIOGRAFÍA Tipler. Física. Cap. 27. Reverté Campo magnético creado por cargas puntuales en movimiento. (27. CAPÍTULO 3: 3.. Camp magnétic cead p cagas pntales en mvimient. (7.) CAMPO MAGNÉTCO 3.3. Camp magnétic cead p cientes elécticas: Le de it Savat. (7.) 3.. Le de Gass paa el magnetism. (7.3) 3.5. Le de Ampee.

Más detalles

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2 CONTENIDO Capítulo II. Campo y Potencial Eléctico... II.. Definición de campo eléctico... II.. Campo poducido po vaias cagas discetas...4 II..3 Campo eléctico poducido po una distibución de caga continua...4

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla Situaciones 1: Dada una caga eléctica puntual, detemine el campo eléctico en algún punto dado. E = k q 2 u 1.- Una caga puntual positiva, situada en el punto P, cea un campo eléctico E v en el punto, epesentado

Más detalles

En ese primer apartado estudiaremos la electrostática que trata de las cargas eléctricas en

En ese primer apartado estudiaremos la electrostática que trata de las cargas eléctricas en Fundamentos y Teoías Físicas ET quitectua 4. ELETRIIDD Y MGNETIMO Desde muy antiguo se conoce que algunos mateiales, al se fotados con lana, adquieen la popiedad de atae cuepos ligeos. Tanscuió mucho tiempo

Más detalles

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático,

E r = 0). Un campo irrotacional proviene de un campo escalar; es el gradiente de un campo escalar. En el caso del campo electrostático, L OTNIAL LÉTRIO l campo electostático es iotacional ( = ). Un campo iotacional poiene de un campo escala; es el gadiente de un campo escala. n el caso del campo electostático, esta función se denomina

Más detalles

Electricidad y calor. Concepto de campo eléctrico. Temas. 7. Campo eléctrico y Ley de Gauss. Webpage:

Electricidad y calor. Concepto de campo eléctrico. Temas. 7. Campo eléctrico y Ley de Gauss. Webpage: lecticidad y calo Webpage: http://paginas.fisica.uson.m/qb 7 Depatamento de Física Univesidad de Sonoa 1 Temas 7. ampo eléctico y Ley de Gauss. i. oncepto de campo eléctico. ii. alculo de la intensidad

Más detalles

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1 .6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8

Más detalles

Unidad didáctica 10 Campo eléctrico

Unidad didáctica 10 Campo eléctrico Unidad didáctica 0 Campo eléctico .- Caga eléctica. La mateia está fomada po átomos. Los átomos, a su vez, contienen potones (p + ), en el núcleo, y electones (e - ), en la coteza. Tanto los electones

Más detalles

ELECTRICIDAD Y MAGNETISMO

ELECTRICIDAD Y MAGNETISMO f. Mauizi Mattesini ELECTICIDAD Y MAGNETISMO Capítul 3 tencial eléctic Cpyight 004 by W. H. Feeman & Cmpany Genead de an de Gaaff 3- Difeencia de ptencial 3 Al igual que la fueza gavitatia, la fueza eléctica

Más detalles

CUESTIONES (CB) Son circunferencias perpendiculares a la trayectoria que describe la carga y cuyo centro está situado sobre la misma trayectoria.

CUESTIONES (CB) Son circunferencias perpendiculares a la trayectoria que describe la carga y cuyo centro está situado sobre la misma trayectoria. CUESTONES (CB) C1 C Las cagas cuand se ueven. El Tesla es el val del cap agnétic que al actua sbe una caga de un culbi que se ueve a 1 /s pduce una fueza sbe la isa de 1 N. C3 Sn cicunfeencias pependiculaes

Más detalles

Tema 6: Campo Eléctrico

Tema 6: Campo Eléctrico Física º Bachilleato Tema 6: Campo Eléctico 6.1.- Intoducción En el capítulo anteio vimos que cuando intoducimos una patícula en el espacio vacío, ésta lo modifica, haciendo cambia su geometía, de modo

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

El campo electrostático

El campo electrostático 1 Fenómenos de electización. Caga eléctica Cuando un cuepo adquiee po fotamiento la popiedad de atae pequeños objetos, se dice que el cuepo se ha electizado También pueden electizase po contacto con otos

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA ESTÁTICA

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA ESTÁTICA UNIVESIDD NCINL DEL CLL CULTD DE INGENIEÍ ELÉCTIC Y ELECTÓNIC ESCUEL PESINL DE INGENIEÍ ELÉCTIC ESTÁTIC * Equilibio de cuepos ígidos ING. JGE MNTÑ PISIL CLL, 2010 EQUILIBI DE CUEPS ÍGIDS CNCEPTS PEVIS

Más detalles

Solución al examen de Física

Solución al examen de Física Solución al examen de Física Campos gavitatoio y eléctico 14 de diciembe de 010 1. Si se mantuviea constante la densidad de la Tiea: a) Cómo vaiaía el peso de los cuepos en su supeficie si su adio se duplicaa?

Más detalles

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un punto. Poblemas OPCIÓN A.- Un satélite descibe una óbita

Más detalles

2.1 PATRON DE RADIACIÓN. CARACTERÍSTICAS PRINCIPALES DEL PATRÓN DE RADIACIÓN EN LOS PLANOS E Y H.

2.1 PATRON DE RADIACIÓN. CARACTERÍSTICAS PRINCIPALES DEL PATRÓN DE RADIACIÓN EN LOS PLANOS E Y H. Capitulo PARAMETROS DE ANTENAS.1 PATRON DE RADIACIÓN. CARACTERÍSTICAS PRINCIPALES DEL PATRÓN DE RADIACIÓN EN LOS PLANOS E Y H. El patón de Radiación de una Antena se define como: Una epesentación gáfica

Más detalles

Ecuaciones generales Modelo de Maxwell

Ecuaciones generales Modelo de Maxwell Electomagnetismo 212/213 Ecuaciones geneales Modelo de Maxwell Intoducción Fuentes de campo: aga eléctica. oiente eléctica. Ecuación de continuidad. Definición del campo electomagnético. Ecuaciones de

Más detalles

a = G m T r T + h 2 a = G r T

a = G m T r T + h 2 a = G r T www.clasesalacata.com Ley de la Gavitación Univesal 0.- Gavitación Univesal y Campo Gavitatoio Esta ley fomulada po Newton, afima que la fueza de atacción que expeimentan dos cuepos dotados de masa es

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA: Campo Eléctrico

INTERACCIÓN ELECTROMAGNÉTICA: Campo Eléctrico INTERACCIÓN ELECTROMAGNÉTICA: Campo Eléctico 1.- Inteacción eléctica: Ley de Coulomb.- Campo eléctico: Intensidad del campo y potencial 3.- Campo eléctico: Ley de Gauss 4.- Conducto en euilibio electostático

Más detalles

CP; q v B m ; R R qb

CP; q v B m ; R R qb Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

Campo Estacionario. Campos Estacionarios

Campo Estacionario. Campos Estacionarios Electicidad y Magnetismo Campo Estacionaio Campo Estacionaio EyM 4- Campos Estacionaios Se denomina situación estacionaia a aquella en la que no hay vaiación con el tiempo. Existen sin embago movimientos

Más detalles

Capítulo 5. LEY DE GAUSS

Capítulo 5. LEY DE GAUSS Apunte de fíica II Cap. 5: Ley de Gau 14 Capítulo 5. LY D GAUSS 5.1 INTRODUCCION. l campo eléctico poducido po objeto cagado etático puede obtenee po do pocedimiento equivalente: mediante la ley de Coulomb

Más detalles

4.5 Ley de Biot-Savart.

4.5 Ley de Biot-Savart. 4.5 Ley de Biot-Savat. Oto expeimento que puede ealizase paa conoce más sobe el oigen y compotamiento de las fuezas de oigen magnético es el mostado en la siguiente figua. Consiste de un tubo de ayos catódicos,

Más detalles

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO

Física General III Potencial Eléctrico Optaciano Vásquez García CAPITULO IV POTENCIAL ELÉCTRICO Física Geneal III Potencial Eléctico Optaciano ásuez Gacía CPITULO I POTENCIL ELÉCTICO 136 Física Geneal III Potencial Eléctico Optaciano ásuez Gacía 4.1 INTODUCCIÓN. Es sabido ue todos los objetos poseen

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB 7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,

Más detalles

Potencial Escalar - Integrales de superposición. 2010/2011

Potencial Escalar - Integrales de superposición. 2010/2011 Potencial Escala - Integales de supeposición. / Electostática Definición os conductoes en electostática. Campo de una caga puntual. Aplicaciones de la ey de Gauss Integales de supeposición. Potencial electostático

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 1 Leyes de Keple y Ley de gavitación univesal Ejecicio 1 Dos planetas de masas iguales obitan alededo de una estella de masa mucho mayo. El planeta 1 descibe una óbita cicula

Más detalles

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice Cáteda de Física Índice Figua - Enunciado Solución Ecuación - Momento de inecia definición Figua - Sistema de estudio 3 Ecuación - Descomposición del momento de inecia3 Figua 3 - Cálculo del momento de

Más detalles

Potencial gravitomagnético producido por una esfera en rotación

Potencial gravitomagnético producido por una esfera en rotación 5 Potencial gavitomagnético poducido po una esfea en otación 1.5 Cálculo del potencial gavitomagnético poducido en el exteio de un cuepo esféico en otación Obtenidos los fundamentos de la teoía gavitoelectomagnética,

Más detalles

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO Los campos magnéticos pueden genease po imanes pemanentes, imanes inducidos y po coientes elécticas. Ahoa inteesaá enconta la fueza sobe una

Más detalles

Campos eléctricos y Magnéticos

Campos eléctricos y Magnéticos Campos elécticos y Magnéticos Fueza eléctica: es la fueza de atacción ejecida ente dos o más patículas cagadas. La fueza eléctica no sólo mantiene al electón ceca del núcleo, también mantiene a los átomos

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

Dieléctricos Campo electrostático

Dieléctricos Campo electrostático Dielécticos Campo electostático 1. Modelo atómico de un dieléctico. 2. Dielécticos en pesencia de campos elécticos:, D y. 4. negía en pesencia de dielécticos. 3. Ruptua dieléctica. BIBLIOGRAFÍA: Tiple.

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

Velocidad en el movimiento relativo

Velocidad en el movimiento relativo INTRDUCCIÓN AL MIMIENT RELATI elcidad en el mvimient elativ Fig.1 Sea un punt dnde se sitúa un S.R. cn uns ejes (x,y,z) que van a pemanece fijs (en la páctica n es psible disceni mediante un expeiment,

Más detalles