TEMA 5: CÁLCULO VECTORIAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 5: CÁLCULO VECTORIAL"

Transcripción

1 IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones con vectoes: Sum, poducto po un númeo. Módulo de un vecto. 5.4 Vectoes unitios. 5.5 Poducto escl. Ángulo que fomn dos vectoes. 5.6 Descomposición de vectoes en sus componentes. L Físic ( culquie disciplin científic en genel), se encg de estudi quells ccteístics o popieddes de los cuepos que pueden se medids. Es deci, estudi mgnitudes físics. Eisten dos tipos de mgnitudes físics: Mgnitudes escles: P indic su vlo bst con indic un númeo l unidd coespondiente. Ejemplos de ests mgnitudes: Ms, Tiempo, Volumen, Tempetu, Densidd... Mgnitudes vectoiles: P indic su vlo no bst con indic un númeo un unidd (módulo), hbá que d infomción sobe en qué diección v, en qué sentido. Ejemplos de mgnitudes vectoiles: Velocidd, Fuez, Aceleción... Sobe ests mgnitudes vectoiles centemos nuesto estudio en este tem. VECTORES: un vecto es l epesentción mtemátic de un mgnitud vectoil. Consiste en un segmento oientdo, que contiene tod l infomción sobe l mgnitud que estmos midiendo. Se epesent po. Ptes del vecto: - Módulo: ( o ) : Longitud del segmento - Diección: L de l ect en l que se encuent el vecto (ect sopote). - Sentido: Viene ddo po l flech. Dento de l diección, seá ó -, dependiendo del citeio que hmos escogido en un pincipio. OPERACIONES ELEMENTALES CON VECTORES: Sum: L sum de dos o más vectoes es oto vecto s = b

2 IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - - Opuesto de un vecto: El opuesto del vecto es el vecto, un vecto con el mismo módulo diección que, peo en sentido contio. Poducto de un vecto po un númeo el: Al multiplic un vecto po un númeo el k, el esultdo es oto vecto c con ls siguientes ccteístics: Módulo: c = c = k Diección: l de Sentido: Igul que si k > 0 Contio que si k < 0 Vecto unitio: Se dice que un vecto es unitio cundo su módulo es 1. Se us p indic diección sentido. Supongmos un vecto culquie. Podemos obtene un vecto unitio en su mism diección sentido, dividiendo el vecto po su módulo. = u 5. SISTEMAS DE REFERENCIA. COORDENADAS DE UN PUNTO. COMPONENTES DE UN VECTOR. Siempe que quemos locliz un objeto, debemos indic su posición especto lgo que consideemos fijo. En un dimensión, bst con indic l distnci un punto que elijmos (punto de efeenci). En el ejemplo de l figu, podemos indic l posición del coche especto l ábol. En dos dimensiones, en el plno, que es l pte que estudiemos en el pesente cuso, necesitmos indic dos distncis dos ects que hbemos fijdo. Este conjunto de dos ects se denomin sistem de efeenci. Sistem de efeenci: Está fomdo, como hemos dicho, po dos diecciones (dos ects) que hemos fijdo en el plno. P mo fcilidd en los cálculos, ests dos ects siempe seán pependicules. Reciben el nombe de ejes coodendos ( eje, eje ). Llevn incopodo un sentido, indicndo con -. Cd diección de los ejes coodendos viene indicd po un vecto unitio: En diección : i En diección : j Estos vectoes unitios indicn demás el sentido positivo de los ejes. El punto de cote de los ejes coodendos se denomin Oigen de coodends ( O ). L posición de culquie punto del plno se efeiá especto ese punto. COORDENADAS DE UN PUNTO P: P locliz un punto del plno, bst con indic ls coodends, ls distncis los ejes coodendos. Coodend : distnci medid sobe el eje. Coodend : distnci medid sobe el eje Ls coodends se colocn ente péntesis, sepds po coms: P: ( P, P ) Not: L tece dimensión. En este cuso sólo ttemos poblems en el plno, en dos dimensiones. En el espcio eiste un tece dimensión, l que coesponde el eje z, pependicul l l. El vecto unitio coespondiente l eje z es el k.

3 IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil COMPONENTES DE UN VECTOR: Tmbién un vecto puede ponese en función del sistem de efeenci. Se puede epes el vecto como ls coodends de su etemo. se denominn componentes del vecto. =, ) ( (Ess componentes nos vienen indic cuánto h que vnz o etocede desde el oigen p lleg hst el etemo) (P un vecto que no empiece en el oigen, nos indicí qué cntidd tendemos que sum cd coodend del oigen del vecto, p obtene ls coodends del etemo.) Eiste ot fom de epes el vlo de un vecto, es en función de los vectoes unitios i, j Como puede vese en l figu, el vecto es igul l sum de los vectoes = Aho bien, = i = j Po lo tnto = i j Es deci, sbiendo ls componentes, tenemos dos foms de epes el vlo del vecto: - Pone ls componentes ente péntesis (, ) - Pone l sum de ls componentes, cd un compñd de su vecto unitio. = i j 5.3 OPERACIONES CON VECTORES. Un vez conocido el concepto de componente de un vecto, tenemos un hemient p pode eliz numéicmente opeciones con vectoes. Supondemos dos vectoes: = i j ; b = b i b j Sum de vectoes: s = b = ( i j ) (b i b j ) = ( b ) i ( b ) j Se sumn ls componentes po un ldo ls componentes po el oto. P est, l opeción es idéntic. Poducto de un vecto po un númeo el: c = k k R c = k i k j De ot fom c = ( k, k ) L división es un cso pticul de poducto. Dividi po k es lo mismo que multiplic po 1/ k. Módulo de un vecto: Recodemos que indicb el vlo numéico de l mgnitud se coespondí con l longitud del vecto. En el plno, se clcul fácilmente pti del teoem de Pitágos. = = L íz que se tom siempe es l positiv, que el módulo de un vecto debe se positivo siempe. Vecto que une dos puntos: PQ = ( Q - P ) i (Q - P ) j

4 IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil VECTORES UNITARIOS Y vimos que un vecto unitio es un vecto de módulo 1. Nos indic un diección un sentido detemindos. El vecto unitio coespondiente un vecto ddo seá un vecto que mntendá l mism diección sentido que, peo que tendá módulo 1. Recodmos que se clculb con i j u = = = A pti de lo nteio, podemos dej el vecto de est mne: De est fom tendemos sepdos el módulo del vecto po un ldo, l diección sentido po oto, lo cul puede se mu inteesnte en lguns situciones. u 5.5 PRODUCTO ESCALAR DE DOS VECTORES. ÁNGULO ENTRE DOS VECTORES. El poducto ente dos vectoes es mu difeente del poducto que conocemos p númeos. P comenz, eisten dos tipos de poducto ente vectoes: - Escl: El esultdo de l opeción es un númeo (un escl) - Vectoil: El esultdo de l opeción es un vecto. En este cuso estudiemos el poducto escl. Est opeción se epesent medinte un punto b = k, k R El poducto escl se clcul como b = b cos α donde α es el ángulo que fomn los vectoes b (se coge el meno ángulo) El poducto escl de dos vectoes puede se: Positivo ( > 0 ): Si α < 90º Nulo (= 0 ) : Si α = 90º (condición de pependiculidd) Negtivo ( < 0 ): Si α > 90º Tmbién puede clculse el poducto escl usndo ls componentes de los vectoes. Sbiendo que: = i j ; b = b i b j b = ( i j ) (b i b j ) = b i i b i j b j i b j j = = b b puesto que i i = 1 ; j j = 1 ; i j = 0 ; j i = 0 b = b cosα b = b b Ángulo ente dos vectoes: Con lo visto nteiomente, podemos clcul fácilmente el ángulo que fomn dos vectoes b, medinte su poducto escl, que en l epesión pece el coseno de dicho ángulo. b = b cosα b = b b cosα = b b b Condición de pependiculidd: dos vectoes b son pependicules si sólo si b = 0 Condición de plelismo: dos vectoes b son plelos si sólo si sus componentes e son popocionles = b b

5 IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil DESCOMPOSICIÓN DE VECTORES EN SUS COMPONENTES. Ls cuestiones que nos plntemos continución son ls siguientes: - Conociendo ls componentes de un vecto: Podemos conoce su módulo oientción? - Conociendo el módulo de un vecto el ángulo que fom con lguno de los ejes coodendos Podemos conoce sus componentes? Ptiendo de ls componentes: = = cosα = senα = tgα = Descomposición (A pti del módulo el ángulo, obtene ls componentes) = cosα = senα = senα = cosα Además, h que tene en cuent los signos de cd componente (eso nos lo d el dibujo el citeio de signos) EJERCICIOS: 1. Ddos los vectoes = 4 i - 3 j, b = ( 0, ). Clcul: 1) b ) - 3) - b 4) 5) -7 b 6) - b 7) - 3 b 8) 9) b 10) b - 11) 3 b 1) u 13) u b 14) b 15) b 16) (-b ) 17) Ángulo ente b. Ddos los siguientes puntos del espcio: P: (, -1 ) Q: ( -1, 3 ), clcul: 1) = OP ) b = OQ 3) c = PQ 4) d = QP 5) b 6) c - d 7) 3 8) c 9) b 10) c 3 b 11) u c 1) u 13) (b c ) 14) ( b ) c 15) (b c ) 16) Ángulo ente c d 3. De ls siguientes pejs de vectoes: cuáles son pependicules ente sí cuáles no? 1) = (-1, 3) ; b = (, /3) ) c = i j ; d = - i - j 4. Clcul m p que los vectoes sen pependicules: 1) = m i 4 j ; b = - i m j ) c = (m, 3) ; d = (-1, ) 5. Clcul m p que los vectoes sen plelos: 1) = (m, -) ; b = (3, 6) ) c = - i m j ; d = - m i 4 j

6 IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil Descompone estos vectoes en sus componentes: º º 30º 30º 45º 0 7. Clcul el módulo los ángulos que fomn estos vectoes con los ejes coodendos: = i 3 j b = - i j c = 3 i - 4 j d = - j 8. ) Ddo el vecto = i - j, clcul un vecto b que se pependicul, que demás se unitio. b) Lo mismo del ptdo nteio con el vecto = ( 0, -1 ). 9. Clcul numéicmente el vecto sum en ls siguientes situciones: ) Qué conclusión podemos ete del hecho de que b < 0? b) "Dos vectoes plelos en el mismo sentido tendán el mismo vecto unitio" Veddeo o flso? c) "El poducto escl de dos vectoes d como esultdo oto vecto". Veddeo o flso? d) "Al multiplic un vecto po un escl, d como esultdo un vecto". Veddeo o flso? e) Coesponden ests dos epesiones l mismo vecto? = ( 1, ) ; = j i? f) "Sbiendo únicmente el módulo, podemos sbe sus componentes" Veddeo o flso? SOLUCIONES A LOS EJERCICIOS: 1. 1) ( 4, -1 ) ) ( -4, 3 ) 3) ( 0, - ) 4) ( 8, -6 ) 5) ( 0, -14 ) 6) ( 4, -5 ) 7) ( 8, -1 ) 8) 5 9) 10) 41 11) 6 1) (4/5, -3/5) 13) j 14) ) ) 1 17) 16,87º. 1) (, -1) ) ( -1, 3 ) 3) ( -3, 4 ) 4) ( 3, -4 ) 5) ( 1, ) 6) ( ) 7) (6, -3) 8) 5 9) ) 45 11) (-3/5, 4/5) 1) 13) (30, -15) 14) (15, -0) 15) ) 180º 3. L pime sí, l segund no. 4. 1) m = 0 ; ) m = ) m = -1 ; ) m = 6. 1) 17,3 i 10 j ) 7,07 i 7,07 j 3) 5 i 8,66 j 4) -17,3 i 10 j 5) -14,14 i - 14,14 j 7. 1) = 13 α = 56,3º con eje ) b = 5 α = 116,56º con eje 3) c = 5 α = - 53,13º con eje 4) d = 1 α = 70º con eje 8. ) b 1 1 = tmbién ; b) b = i (tmbién el - i, ) 5 5, (L solución depende del sistem de efeenci el citeio de signos escogido) 1, 5 5

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

ELEMENTOS DE CÁLCULO VECTORIAL

ELEMENTOS DE CÁLCULO VECTORIAL ELEMENTOS DE CÁLCULO VECTORIAL SUMARIO: 1.1.- Mgnitudes vectoiles 1.2.- Vectoes: definiciones 1.3.- Clses de vectoes 1.4.- Adición de vectoes 1.5.- Multiplicción po un númeo el 1.6.- Popieddes 1.7.- Consecuencis

Más detalles

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA CURSO CERO DE FÍSIC PLICCIÓN DE VECTORES L FÍSIC Vness de Csto Susn i Deptmento de Físic CURSO CERO DE FÍSIC.UC3M PLICCIÓN DE VECTORES L FÍSIC CONTENIDO Mgnitudes escles vectoiles. Repesentción gáfic de

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Mgnitudes vectoiles 1 de 8 MAGNITUDES VECTORIALES: Índice 1 Mgnitudes escles vectoiles Sum de vectoes lies Poducto de un escl po un vecto 3 Sistem de coodends vectoiles. Vectoes unitios 3 Módulo de un

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Deptmento de Físic, UTFSM Físic Genel II / of: A. Bunel. FIS10: FÍSICA GENERAL II GUÍA #3: otencil Eléctico. Objetivos de pendizje Est guí es un hemient que usted debe us p log los siguientes objetivos:

Más detalles

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v Escles cmpos escles nálisis Vectoil Teoí Electomgnétic 1 Dipl.-Ing. noldo Rojs oto Escl: ntidd cuo lo puede se epesentdo po un simple númeo el positio o negtio mpos escles: Función mtemátic del ecto que

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

Tema 5B. Geometría analítica del plano

Tema 5B. Geometría analítica del plano Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem

Más detalles

Tema 4: Potencial eléctrico

Tema 4: Potencial eléctrico 1/38 Tem 4: Potencil Eléctico Fátim Msot Conde Ing. Industil 2007/08 Tem 4: Potencil Eléctico 2/38 Índice: 1. Intoducción 2. Enegí potencil eléctic 1. de dos cgs puntules 2. de un sistem de cgs 3. Intepetción

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL 8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).

Más detalles

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB Cuso: FISICA II CB 3U Ley de Coulomb (1736-186). Si ls cgs se ten o epelen signific que hy un fuez ente ells. LEY DE COULOMB L fuez ejecid po un cg puntul sobe ot Está diigid lo lgo de l líne que los une.

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

TEMA 6. Radiación electromagnética. Miguel Ángel Solano Vérez

TEMA 6. Radiación electromagnética. Miguel Ángel Solano Vérez TM 6 Rdición electomgnétic Miguel Ángel Solno Vée lectodinámic Tem 6: Rdición electomgnétic Índice 6. Intoducción 6. Potenciles en el dominio de l fecuenci 6.. l potencil vecto 6.. l potencil vecto 6.3.3

Más detalles

Unidad 3 Sistemas de Ecuaciones Lineales

Unidad 3 Sistemas de Ecuaciones Lineales Unidd 3 Sistems de Ecuciones Lineles Popedéutico 8 D. Ruth M. Aguil Ponce Fcultd de Ciencis Deptmento de Electónic Popedéutico 8 Fcultd de Ciencis Popedéutico 8 Fcultd de Ciencis Sistem de Ecuciones Lineles

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin

CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin CAMPO MAGNÉTCO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRENTE dl - P X d φ φ sin sin φ φ 3/ sin d d φ Cundo l longitud del conducto es mu gnde en compción con, l ecución se conviete en: >> 8. Un lmbe ecto

Más detalles

ANTECEDENTES DE ELECTRICIDAD Y. dfghjklzxcvbnmqwertyuiopasdfghjklzx MAGNETISMO VECTORES.

ANTECEDENTES DE ELECTRICIDAD Y. dfghjklzxcvbnmqwertyuiopasdfghjklzx MAGNETISMO VECTORES. qwetuiopsdfghjklcvbnmqwetui opsdfghjklcvbnmqwetuiopsdfgh jklcvbnmqwetuiopsdfghjklcvb nmqwetuiopsdfghjklcvbnmqwe tuiopsdfghjklcvbnmqwetuiops NTEEDENTES DE ELETIIDD Y dfghjklcvbnmqwetuiopsdfghjkl MGNETISMO

Más detalles

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( )

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( ) Te de Estdo Sólido 5/Septiembe/008 Min Eugeni Fís Anguino. Pob que, b b, b π π π Donde los vectoes b i cumplen l siguiente elción: b πδ i j ij Po constucción geométic, los dos conjuntos de vectoes y b

Más detalles

Velocidad en el movimiento relativo

Velocidad en el movimiento relativo INTRDUCCIÓN AL MIMIENT RELATI elocidd en el movimiento eltivo Fig.1 o Se un punto donde se sitú un S.R. con unos ejes (x,y,z) que vn pemnece fijos (en l páctic no es posible disceni medinte un expeimento,

Más detalles

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO DOCENTE EL SABINO DEPARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II PROFESORA CARMEN ADRIANA CONCEPCIÓN 1. Un potón (q potón

Más detalles

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota:

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota: Tz lines ects plels en posición hoizontl Tz lines ects plels en posición veticl Tz lines ects pependicules ls dds Tz lines ects plels l diección indicd Tz lines ects pependicules ls dds Tz lines ects pependicules

Más detalles

Fuerza de una masa de fluido en movimiento

Fuerza de una masa de fluido en movimiento Fuez de un ms de fluido en movimiento e un ms m de fluido en movimiento que choc cont un supeficie, pependicul l diección del movimiento del fluido. P obtene l fuez que est ms de fluido ejece sobe l supeficie,

Más detalles

Tema 1. Teoría de Campos

Tema 1. Teoría de Campos Tem 1. Teoí de Cmpos 1.1 Mgnitudes escles vectoiles. 1. Vectoes unitios descomposición de vectoes. 1.3 Tipos de vectoes. 1.4 Opeciones con vectoes 1.4.1 um difeenci nlític de vectoes. 1.4. Poducto de un

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

La energía eléctrica y el potencial eléctrico

La energía eléctrica y el potencial eléctrico L enegí eléctic y el potencil eléctico Leyes de l fuez eléctosttic y gvitcionl Q Q F 2 ˆ 2 2 2 4πε 0 2 Atctiv o epulsiv / 2 muy fuete m m F G 2 ˆ 2 2 2 Siempe tctiv / 2 muy déil 2 Tnto l fuez gvitcionl

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA 1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:

Más detalles

Cantidad de movimiento en la máquina de Atwood.

Cantidad de movimiento en la máquina de Atwood. Cntidd de movimiento en l máquin de Atwood. esumen Joge Sved y Pblo Adián Nuñez. jogesved@topmil.com. pblo_nuniez2000@yhoo.com. ed pticiptiv de Cienci UNSAM - 2005 En el pesente tbjo se puso pueb l pedicción

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos I.E.S. CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE EXTREMDUR JUNIO 9 (RESUELTOS po ntonio Menguino) MTEMÁTICS II Tiempo máimo: ho minutos El lumno elegiá un de ls dos opciones popuests. Cd un de

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

Universidad Nacional de La Plata

Universidad Nacional de La Plata Univesidd Ncionl de L Plt Fcultd de Ciencis Ntules y Museo Cáted de Mtemátic y Elementos de Mtemátic Asigntu: Mtemátic Contenidos de l Unidd Temátic nº VECTORES Sum y difeenci de vectoes. Poducto de un

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Electromagnetismo II

Electromagnetismo II Electomgnetismo II Semeste: 215-1 EXAMEN PARCIAL 2: Solución D. A. Reyes-Coondo Poblem 1 (2 pts.) Po: Jesús Cstejón Figueo ) Escibe ls cuto ecuciones de Mxwell en fom difeencil, escibiendo el nombe de

Más detalles

Capítulo. Cinemática del Sólido Rígido

Capítulo. Cinemática del Sólido Rígido Cpítulo 1 Cinemátic del Sólido Rígido Contenido Intoducción Tslción Rotción lededo de un Eje Fijo. elocidd Rotción lededo de un Eje Fijo: celeción Rotción lededo de un Eje Fijo: Sección epesentti Ecución

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

Tema II Potencial eléctrico - Capacidad

Tema II Potencial eléctrico - Capacidad UNN Fcultd de Ingenieí Tem II Potencil eléctico - Cpcidd Integl cuvilíne del cmpo eléctico. Ciculción. Difeenci de potencil, potencil y función potencil. Supeficies y Línes euipotenciles. Uniddes. Gdiente

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

3. SISTEMAS DE ECUACIONES LINEALES

3. SISTEMAS DE ECUACIONES LINEALES Sistems de Ecuciones Hemients infomátics p el ingenieo en el estudio del lgeb linel SISEMAS DE ECUACIONES LINEALES 1 DEFINICIONES PREVIAS 2 EOREMA DE ROUCHÉ-FROBENIUS MÉODO DE RESOLUCIÓN DE GAUSS 4 MÉODO

Más detalles

x y Si el vector está en tres dimensiones: x y coordenadas se les llama cosenos directores

x y Si el vector está en tres dimensiones: x y coordenadas se les llama cosenos directores Sum de ectoes Si tienen el mismo punto de plicción se tzn plels cd ecto po el extemo del oto. Si están uno continución de oto, se une el oigen del pimeo con el extemo del último. S c S - L est es un cso

Más detalles

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores

Regla del Triángulo. (a) (b) (c) 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0101) Repaso de Vectores 1 Físc Genel I Plelos 5. Pofeso RodgoVeg R 11) Repso de Vectoes 1) Repso de Opecones Vectoles Us l sum ectol, usndo l egl del tángulo l del plelogmo. Clcul l mgntud deccón de l sum usndo teoem del seno

Más detalles

Lección 1. Campo electrostático en el vacío: Conceptos y resultados fundamentales.

Lección 1. Campo electrostático en el vacío: Conceptos y resultados fundamentales. Lección 1 Cmpo electostático en el vcío: Conceptos y esultdos fundmentles. 1. Cg eléctic. Ley de Coulomb. 1.1. Intoducción. Cg eléctic y distibuciones de cg. 1.. Ley de Coulomb.. Cmpo eléctico. Línes de

Más detalles

LA RECTA EN EL PLANO

LA RECTA EN EL PLANO FACULTAD DE CIENCIAS EXACTAS INGENIERIA Y AGRIMENSURA U.N.R. LA RECTA EN EL PLANO E INECUACIONES LINEALES EN DOS VARIABLES CATEDRA ALGEBRA Y GEOMETRIA I 9 RICARDO SAGRISTA PATRICIA CO MONICA DEL SASTRE

Más detalles

. B. con regla y compás. 1.- Trazar, por el punto A, la recta perpendicular. 2.- Trazar, por el punto A, la recta perpendicular

. B. con regla y compás. 1.- Trazar, por el punto A, la recta perpendicular. 2.- Trazar, por el punto A, la recta perpendicular 1- Tz, po el punto, l ect pependicul l ect con egl y compás 2- Tz, po el punto, l ect pependicul l ect 3- Tz, po el punto, l ect plel l ect 4- Tz l meditiz del segmento 5- Tz, un ángulo igul l ángulo ddo

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES

MAGNITUDES ESCALARES Y VECTORIALES U R S O: FÍSI OMÚN MTERIL: F-01 Sistema intenacional de medidas MGNITUDES ESLRES VETORILES En 1960, un comité intenacional estableció un conjunto de patones paa estas magnitudes fundamentales. El sistema

Más detalles

Un cuadro. Un libro. Una WEb. Mirando a través. La perspectiva en las artes, de J. Navarro de Zuvillaga (2000). Ediciones del Serbal, Barcelona.

Un cuadro. Un libro. Una WEb. Mirando a través. La perspectiva en las artes, de J. Navarro de Zuvillaga (2000). Ediciones del Serbal, Barcelona. Un cudo Rfel Snio, L Escuel de tens, 1511. Óleo. En est pintu, Rfel muest sus etodinios conocimientos de pespectiv cónic fontl, l epesent sobe el lieno los divesos elementos quitectónicos que configun

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

Solución a los ejercicios de vectores:

Solución a los ejercicios de vectores: Tema 0: Solución ejecicios de intoducción vectoes Solución a los ejecicios de vectoes: Nota : Estas soluciones pueden tene eoes eatas (es un ollo escibios las soluciones bonitas con el odenado), así que

Más detalles

Dinámica de las rotaciones

Dinámica de las rotaciones Dinámic de ls otciones Octube 009 Ve clses en: http://video.google.com./videoply?docid48804863890 486&eiX87oSp4NnYpAoq3ucA&qmomento+ngul +clses+video&hles# Físic de ls Tslciones Tiempo t neci m s Posición

Más detalles

INDICE RES UMEN 3 INTRODUCCIÓN 4 MARCO TEÓRICO 5 MATERIALES Y MÉTODOS 6 RES ULTADOS 7

INDICE RES UMEN 3 INTRODUCCIÓN 4 MARCO TEÓRICO 5 MATERIALES Y MÉTODOS 6 RES ULTADOS 7 INDICE RES UMEN INTRODUCCIÓN 4 MARCO TEÓRICO 5 MATERIALES Y MÉTODOS 6 RES ULTADOS 7 CAPÍTULO I.. El s is tem de los Númeos Reles. 7.. Axioms de l Adición y Multiplicción de los nú eos eles 8.. Poposiciones

Más detalles

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES IES Jun Gcí Vldemo Deptmento de Mtemátics º Bchilleto de CCSS. SUMA Y RESTA DE FUNCIONES Dds g unciones eles de vile el se deine l unción sum g como: g g con Dom g Dom Dom g Es deci, l unción g hce coesponde

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA. Problema Teórico 1

REAL SOCIEDAD ESPAÑOLA DE FÍSICA. Problema Teórico 1 REAL SOCIEDAD ESPAÑOLA DE FÍSICA Poblem Teóico 1 Poblem 1. Un intoducción l te de nveg. Alicnte es un bell ciudd mediteáne que vive de c l m. Su mgnífico pueto es un hevideo de bcos de eceo, tes espectcules

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

A B. 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R. 2 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R

A B. 1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R. 2 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R Físic Genel I Plelos 5. Pofeso odigoveg 7 Moimiento Cicul Geneliddes Un cuepo efectú un moimiento cicul cundo se muee sobe un cicunfeenci, como se ilust en l figu. Todo moimiento cicul se cteiz po su peíodo

Más detalles

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALITICA DEL ESPACIO. 1. Determinar la posición relativa de las siguientes parejas de planos:

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALITICA DEL ESPACIO. 1. Determinar la posición relativa de las siguientes parejas de planos: EJERCICIOS RESUELTOS DE GEOMETRÍ NLITIC DEL ESPCIO. Detein l posición eltiv de ls siguientes pejs de plnos ) π 8 π' b) π π' c) π π' d) π π ) Discutos el siste 8 l ti de coeficientes l plid son espectivente

Más detalles

Tema 3: Juegos dinámicos con información completa. Conceptos de solución. Se dividen en. Las estrategias

Tema 3: Juegos dinámicos con información completa. Conceptos de solución. Se dividen en. Las estrategias Teoí de ls decisiones y de los juegos Tem : Juegos dinámicos con infomción complet Qué ccteiz los juegos dinámicos con infomción complet? Supuestos básicos: Elección secuencil. nfomción complet de pgos,

Más detalles

POSICIONES DEL PUNTO:

POSICIONES DEL PUNTO: OSCONES DEL UNTO: 1 elementos diédico A) UNTOS EN LOS CUADANTES (segundo cudnte) V (pime cudnte) A B C (tece cudnte) D V (cuto cudnte) - unto situdo en el pime cudnte (A): Cot +, lejmiento + - unto situdo

Más detalles

UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES

UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES 6 Unidd. Podcto ecl ectoil mito. Apliccione en el epcio. UNIDAD.PRODUCTO ESCALAR VECTORIAL Y MIXTO. APLICACIONES. Podcto ecl de do ectoe libe.. Definición.. Intepetción geométic.. Epeión nlític. Podcto

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

2πR π =

2πR π = PÁGIN 11 Pág. 1 oodends geogáfi cs 19 os ciuddes tienen l mism longitud, 15 E, y sus ltitudes son 7 5' N y 5' S. uál es l distnci ente ells? R b 7 5' b 5' Tenemos que ll l longitud del co coespondiente

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

1. ESCALARES Y VECTORES

1. ESCALARES Y VECTORES 1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas.

Tema I Conceptos y Principios fundamentales. Estática de partículas. Sistemas Equivalentes de fuerzas. Univesidad de Los Andes. acultad de Ingenieía. Escuela Básica de Ingenieía. Tema I Conceptos Pincipios fundamentales. Estática de patículas. Sistemas Equivalentes de fuezas. Pof. Naive Jaamillo S. Cáteda:

Más detalles

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que Tem 8: Integl de iemnn Monotonídelintegl Si f y g son funciones integbles en [, b] tles que f(x) g(x) x [, b] entonces b b f Como cso pticul p g =se obtiene que si f es un función integble en [, b] tl

Más detalles

VARIEDADES LINEALES. Por Javier de Montoliu Siscar, Dr. Ing. Ind. 2ª Edición. Enero 1997.

VARIEDADES LINEALES. Por Javier de Montoliu Siscar, Dr. Ing. Ind. 2ª Edición. Enero 1997. VARIEDADES LINEALES Po Jvie de Montoliu Sisc, D. Ing. Ind. ª Edición. Eneo 997. TABLA DE CONTENIDO TABLA DE CONTENIDO... I VARIEDADES LINEALES... A.- PREAMBULO.... B.- GENERALIDADES.... 3.- Definición

Más detalles

INTRODUCCIÓN AL CÁLCULO VECTORIAL

INTRODUCCIÓN AL CÁLCULO VECTORIAL INTRODUCCIÓN L CÁLCULO VECTORIL 1.- MGNITUDES ESCLRES Y VECTORILES. Mgnitudes esles: son ls que quedn pefetmente definids po el vlo de l medid. Mgnitudes vetoiles: son ls que p definils pefetmente es peiso

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin.

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin. RECTAS Y ÁNGULOS 5º de E. Pimaia RECTAS Y ÁNGULOS -TEMA 5 RECTA.- Es una sucesión infinita de puntos que tienen la misma diección. La ecta no tiene ni pincipio ni fin. Po dos puntos del plano pasa una

Más detalles

BLOQUE 2: MOVIMIENTO RELATIVO

BLOQUE 2: MOVIMIENTO RELATIVO LOQUE 2: MOVIMIENTO RELTIVO Sistems e efeenci en tslción Sistems e efeenci en otción LOQUE 2: Moimiento eltio El moimiento e un ptícul epene el S.R. elegio. sí, os obseoes (S.R. ifeentes) no tienen po

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

RODAMIENTOS DE RODILLOS CÓNICOS

RODAMIENTOS DE RODILLOS CÓNICOS B 106 RODAMIENTOS DE RODILLOS CÓNICOS RODAMIENTOS DE RODILLOS CÓNICOS DE DISEÑO MÉTRICO Diámeto Inteio 15~100mm...................... Págins B116~B123 Diámeto Inteio 105~240mm.................... Págins

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

FUNDAMENTOS DE FÍSICA GENERAL

FUNDAMENTOS DE FÍSICA GENERAL Agustín E. González Moles FUNDAMENTOS DE FÍSICA GENEAL (soluciones) Y X t y(x, t) A sen t T x Agustín E. González Moles TEMA I CÁLCULO VECTOIAL Mgnitudes escles y ectoiles Sum o composición de ectoes Sistems

Más detalles

TRANSFORMADOR REAL. Norberto A. Lemozy

TRANSFORMADOR REAL. Norberto A. Lemozy NTRODCCÓN TRANSFORMADOR RAL Nobeto A. Lemozy n los tnsfomdoes eles no cumplen ls pemiss que definín los ideles, peo se les poximn mucho, especilmente en ls uniddes de gn potenci, en efecto, se tiene que:

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO RETÍCULO RECÍPROCO A pti el etíulo efinio nteiomente, en el que omo nuo oespone un motivo o llmemos etíulo ieto, es posible efini oto etíulo (que llmemos eípoo) en el ul los tes vetoes funmentles son:

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Afín Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 005 El Espacio

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

ELECTRICIDAD Y MAGNETISMO. Electromagnetismo

ELECTRICIDAD Y MAGNETISMO. Electromagnetismo ELECTCDAD Y MAGNETSMO. Eectomgnetimo ) Ccu fue eectomoti inducid en un epi po un p de io peo de gn ongitud, po o que cicu un coiente igu peo con entido contio. b ) En un emiepcio > exite un cmpo mgnético,

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles