Tema 1. Teoría de Campos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 1. Teoría de Campos"

Transcripción

1 Tem 1. Teoí de Cmpos 1.1 Mgnitudes escles vectoiles. 1. Vectoes unitios descomposición de vectoes. 1.3 Tipos de vectoes. 1.4 Opeciones con vectoes um difeenci nlític de vectoes Poducto de un vecto po un escl Poductos escl Poducto vectoil Poducto mito. 1.5 Momento de un vecto Respecto un punto. Teoem de Vignon Respecto de un eje. 1.6 Deivd de un vecto especto de un escl 1.7 Integl de un vecto lo lgo de un líne. Ciculción. 1.8 Integl de un vecto soe un supeficie. lujo. 1.9 Concepto de cmpo. Cmpos escles vectoiles Gdiente de un cmpo escl Divegenci de un cmpo vectoil. 1.1 Rotcionl de un cmpo vectoil Lplcino de un función escl Teoem de tokes Teoem de Guss. Not: El contenido de estos puntes petende se un esumen de l mtei desolld en el cuso. Po ello, el lumno dee de completlo con ls eplicciones discusiones llevds co en clse con l iliogfí ecomendd. 1.1 Mgnitudes escles vectoiles Mgnitud escl (o escl), es tod mgnitud que está definid medinte un númeo su unidd de medid. Los escles dependen únicmente de l unidd de medid no del sistem de efeenci. on ejemplos de mgnitudes escles: l ms, l cg, l tempetu, l enegí, etc. 1

2 Mgnitud vectoil es quell que está epesentd medinte un vecto, el cul es un segmento oientdo en el espcio. P que un mgnitud vectoil pued est pefectmente definid es necesio d demás de su vlo numéico (módulo) unidd de medid coespondiente, su punto de plicción (coincide con el oigen del vecto), su diección sentido. Depende po tnto del sistem de efeenci, tiene tnts componentes (o coodends) como dimensiones teng el espcio o sistem de efeenci en el que se epesent. L diección es un líne oientd en el espcio que se detemin en función de los ángulos que fom con los ejes del sistem de efeenci. El sentido del vecto viene definido po l posición eltiv del etemo especto del oigen. on ejemplos de mgnitudes vectoiles: l velocidd, l celeción, l fue, el cmpo gvittoio, etc. 1. Vectoes unitios descomposición de vectoes. Un vecto se epesent en un sistem de ejes ctesinos,, como: (,, ) î + ĵ + donde (,, ) son ls componentes escles del vecto (o poecciones del vecto soe los ejes,, ), ( î, ĵ, kˆ ) son los vectoes unitios en ls diecciones de los ejes,, espectivmente se denominn vesoes, ( î, ĵ, kˆ ) son ls componentes vectoiles. kˆ Los vectoes (î, ĵ, kˆ ) fomn un se otonoml en el espcio vectoil R 3.

3 Módulo de un vecto es el vlo soluto de dich mgnitud se coesponde con l longitud del vecto. i AB, el módulo del vecto se epes como: d(a, B) + + Ddo un vecto culquie, se puede otene un vecto unitio de l mism diección sentido dividiendo dicho vecto po su módulo: u Los ángulos diectoes de un vecto son cd uno de los ángulos α, β γ que fom el vecto con los ejes coodendos,,. cosα cosβ cosγ Los cosenos diectoes (cosα, cosβ, cosγ) se otienen en función de ls componentes,, de el módulo del vecto: Los cosenos diectoes veificn que: cosα, cosβ, cosγ cos α + cos β + cos γ Tipos de vectoes. Vecto nulo: Vecto cuo módulo es ceo. Es un vecto especil, pues cece de diección sentido. 0 (0,0,0) Vecto unitio: Vecto cuo módulo es uno. Vecto unitio â de oto ddo es el que tiene l mism diección sentido que peo con módulo igul 1: ˆ Vectoes igules: Aquellos cuos módulo, diección sentido son igules. Vectoes opuestos: Aquellos cuos módulo diección son igules sus sentidos son opuestos. El vecto opuesto de un vecto tiene ls misms componentes cmids de signo l sum de un vecto su opuesto es siempe el vecto nulo. 3

4 ( Vectoes lies: Aquellos que pueden tsldse plelos sí mismos sin que víe su efecto. Vienen definidos po sus componentes cecen de punto de plicción de líne de cción. Vectoes equipolentes: Aquellos que vienen definidos po sus componentes líne de cción peo cecen de punto de plicción. Vectoes fijos: Aquellos que vienen definidos po sus componentes, líne de cción punto de plicción. No se pueden tsld sin que víe su efecto, p.e. el peso de un cuepo. Vectoes igules: Aquellos cus coodends son igules.,, v,, ) 1.4 Opeciones con vectoes um difeenci nlític de vectoes. L sum de vios vectoes es tmién oto vecto cus componentes es l sum de ls componentes de dichos vectoes. i: î + ĵ + L sum de los vectoes es: + ( kˆ î + ĵ + + )i ˆ + ( + )j ˆ + ( + )k ˆ L sum es un le de composición inten dot l conjunto de los vectoes de estuctu de Gupo Conmuttivo. i dos vectoes fomn un ángulo α, cos α kˆ L est de dos vectoes se eli sumándole l vecto el inveso de : ( )î + ( )ĵ + ( i se estn dos vectoes igules su esultdo es el vecto nulo o ceo: 0 )kˆ 4

5 um gáfic de vectoes: Regl del plelogmo Regl del polígono 1.4. Poducto de un vecto po un escl. El poducto de un vecto po un escl n d como esultdo un nuevo vecto A de l mism diección cuo módulo es n veces el vecto oiginl. A n El sentido de A coincide con el sentido de + si n R. Anlíticmente: A s ~ t n n ( î + ĵ + k) A i + A j + A kˆ i el escl n es dimensionl, los vectoes A tienen ls misms dimensiones, en cso contio sus ecuciones de dimensiones son difeentes po tnto sus uniddes. Popieddes: α β R R 3 (α + β) α + β α ( + ) α + α (α β) α (β ) i α1, α Poducto escl. El poducto escl de dos vectoes lies es un escl que es igul l poducto de los módulos de cd uno de los vectoes po el coseno del ángulo θ que fomn: cosθ L epesión nlític del poducto escl de dos vectoes, en función de sus componentes es: 5

6 + + Popieddes del poducto escl: Es conmuttivo:.. Es nulo si lguno de los dos vectoes es el vecto nulo o si los dos vectoes son pependicules. Distiutiv:. ( + c ) + c P culquie escl n: (n ) n ( ) L intepetción geométic del poducto escl es que el vlo soluto de ( ) es igul l módulo de uno de ellos po l poección del oto vecto soe él. L poección de un vecto soe oto vecto se clcul: po cosα De l mism fom: po cosα El ángulo que fomn los dos vectoes se puede detemin pti de l epesión: cos ( α ) Poducto vectoil. El poducto vectoil de dos vectoes se epes de l fom. Es oto vecto pependicul tnto como, cuo módulo es ( senα ), siendo α el ángulo ente ellos, senα 6

7 su sentido está ddo po l egl del tonillo (del sccochos o de l mno deech), entendiendo como el sentido de vnce de un tonillo que gise desde el pime vecto l segundo. El módulo del poducto vectoil de dos vectoes equivle l áe del plelogmo definido po mos. L epesión nlític del poducto vectoil componentes de dicho vecto, po lo que si: î + ĵ + kˆ î + ĵ es lo mismo que hll ls + kˆ entonces, se puede epes como un deteminnte de tece oden: î ĵ kˆ ( )î + ( )ĵ + ( )kˆ Popieddes: s No es conmuttivo α () α α i es pependicul, entonces i es plelo, entonces Poducto mito de tes vectoes. El Poducto mito de tes vectoes es un escl que se epesent de l fom (,, c) se otiene pti de:.(c) (,, c) Gáficmente, el poducto mito de los tes vectoes epesent el volumen del plelepípedo de ists dichos vectoes. c c c 1.5 Momento de un vecto Momento de un vecto especto un punto. Teoem de Vignon. El momento de un vecto AB especto de un punto O es un vecto M 0 que cumple: M O OA 7

8 e tt del poducto vectoil de dos vectoes, po lo que si ls coodends de los puntos son O( o, o, o ) A( A, A, A ), el vecto momento tiene l epesión: M O A ˆi 0 A ˆj 0 A kˆ 0 si ls coodends de O son O(0,0,0). M O ˆi A ˆj A ˆk A Teoem de Vignon. El momento especto un punto de un vecto que es sum de vios vectoes concuentes es igul l sum de los momentos de cd vecto componente especto l mismo punto. M p n n s i i i i i A i 1 i 1 i el punto p petenece l líne de cción de l esultnte de vios vectoes concuentes, el momento del sistem de vectoes especto de dicho punto es ceo Momento de un vecto especto de un eje. El momento de un vecto v AB especto un eje E es l poección soe el eje del momento del vecto especto un punto culquie del eje. M E M0. u M0u cosα siendo u un vecto culquie contenido en el eje. i los vectoes de l fómul nteio se epesn en función de sus componentes ctesins, podemos escii: M M u + M u + M u E Deivd de un vecto especto un escl. i es un función vectoil que depende de un escl t, siendo: 8

9 (t) (t) î + (t) ĵ + (t) kˆ l deivd del vecto especto del tiempo t es, po definición: v d(t) d (t) d (t) î + ĵ dt dt dt + d (t) kˆ dt que l deivd de los vectoes unitios es ceo po se estos constntes (en módulo, diección sentido). Deivd pcil de un vecto especto de un escl upongmos que l función vectoil depende de más de un escl (,, ). L deivd pcil de especto cd escl lo epesentmos po,, espectivmente se detemin pti de: s ˆ i + ˆj + k s î + ĵ + k î + s ĵ + k L difeencil totl de l función vectoil se epesent po d epes l vición totl de vecto especto los escles,, : d d + d + d 1.7 Integl de un vecto especto un escl. Ciculción. L integl de un vecto especto un pámeto t se eli integndo componente componente el vecto: dt dt ˆi dt ˆ j dt kˆ + + e denomin ciculción C del vecto (,, ) lo lgo de un cuv culquie ente los puntos A B : 9

10 C B A (,,). d como d d î + d ĵ + d kˆ, l ciculción del vecto lo lgo de l cuv C ente los puntos A B se puede epes de l fom: B C ( d + d + A d) 1.8 Integl de un vecto soe un supeficie. lujo. El flujo de un vecto tvés de un supeficie viene ddo po: Φ ( ds + ds ds ).ds + donde d, d d son ls poecciones del vecto supeficie en los plnos pependicul (el plno ), pependicul ( el plno ) pependicul ( el plno ) espectivmente. ds ddˆ i + ddˆj + dd ˆk Φ ( dd + dd dd) ds Concepto de cmpo. Cmpos escles vectoiles. Un cmpo, en sentido físico, es un mgnitud definid en un cieto espcio que se puede epes nlíticmente como un función de ls coodends espciles del tiempo. i l mgnitud es escl, tendemos un cmpo escl, si l mgnitud es vectoil, tendemos un cmpo vectoil. Los cmpos pueden se: 10

11 Cmpos estcionios, cundo únicmente dependen de ls coodends espciles no dependen del tiempo. Cmpos no estcionios, cundo dependen del tiempo. Además, los cmpos pueden se unifomes, si no dependen de ls coodends espciles, es deci, si su vlo (módulo, diección sentido) es el mismo en todos los puntos no unifomes. Ls línes que en cd punto son tngentes l vecto cmpo se denominn línes de cmpo cumplen l ecución: d d d 1.10 Gdiente de un cmpo escl. e un cmpo escl estcionio U(,,), queemos se con qué pide ví dicho cmpo cundo nos desplmos en l diección de l ect definid po los puntos A B. El cmpo U, l i de punto A B epeiment un vición U en un desplmiento. L pide medi en dicho tecto es: U/, l pide puntul en A es evidentemente el límite de U/, cundo tiende ceo. Deivd de U en el punto A en l diección AB, du, es el límite de U cundo tiende ceo. En un sistem de coodends ctesins: du d + d + d 11

12 que puede epesse como: du ˆ i + ˆj + ˆk d luego du d ˆ i + ˆj + ˆk u AB siendo u AB un vecto unitio en l diección de l ect AB. El vecto ˆ i + ˆj + kˆ se denomin gdiente de l función escl U(,,). gd U ˆ i + ˆj + kˆ U donde el opedo viene definido po: ˆ i ˆ + j+ kˆ L deivd de U en l diección AB es igul l poección del gdiente de U soe es diección. i α es el ángulo que fomn gd U l ect AB, l diección en l que U ví más ápidmente (mo deivd dieccionl) es pecismente l diección del gdiente su vlo es pecismente el módulo de gd U. du d AB [ gd U] u gd U cosα upeficies equipotenciles son quells cuos puntos tienen un mismo vlo del cmpo U. Popieddes: L mgnitud del gdiente de U es igul l máim vición del incemento de U po unidd de longitud. L diección del gdiente de U en un punto es l diección de máim vición del incemento de U po unidd de longitud. L componente del gdiente de un función U en culquie diección d l du ón del cmio en dich diección. d AB 1

13 1.11 Divegenci de un cmpo vectoil. e un espcio en el que eiste un cmpo vectoil se P un punto dento de un pequeño volumen v limitdo su ve po un supeficie s. En coodends ctesins, el volumen v de un pism ecto de ists,,, (plels los ejes,,, espectivmente) es: v El flujo del cmpo tvés de l supeficie s que delimit el volumen es: Φ d s El flujo po unidd de volumen es: ds v Divegenci de es el límite, cundo v tiende ceo, del flujo po unidd de volumen: div lim v 0 ds L epesión de l divegenci de en coodends ctesins es: v ˆ i + ˆj + ˆk ( ˆi + ˆj + ˆk ) + + L divegenci de un cmpo vectoil elcion dicho cmpo con l función escl oigen del cmpo. Un ejemplo es l elción ente l densidd de cg ρ el cmpo eléctico cedo po ell (le de Guss): div E ρ ε 0 13

14 1.1 Rotcionl. e un espcio en el que está definido un cmpo vectoil, se un punto P lededo del cul suponemos un cuv ced pln C, que limit un supeficie pequeñ que inclue l punto P, l ciculción de lededo de l cuv C dependeá de l oientción de est escogemos l oientción en l que el vlo de dich ciculción es máimo. Rotcionl de en el punto P es el vlo de un vecto pependicul l supeficie, 1 cundo s tiende ceo, cuo módulo es lim d cuo sentido viene s 0 s detemindo po l egl del sccochos o de l mno deech. 1 ot lim un d s 0 s c c m donde u n es un vecto unitio en l diección pependicul l supeficie s. El otcionl de un cmpo vectoil indic l vición en el gio del vecto po unidd de longitud. u epesión en coodends ctesins es: ot i j k - ˆ i + - ˆ j + - kˆ i el otcionl de un cmpo vectoil es nulo, implic l eistenci de un cmpo escl U, potencil de, tl que U. Po ello, l condición necesi suficiente p que un cmpo vectoil se gdiente de un cmpo escl es que su otcionl se 0. 14

15 El otcionl de un cmpo vectoil elcion dicho cmpo con l función vectoil oigen del cmpo. Un ejemplo es l elción ente l densidd de coiente J el cmpo mgnético B cedo po ell (le de Ampee): B µ J Opedo Lplcino. El Lplcino de un función escl U(,,) se define como l divegenci del gdiente de dich función: U(,,) U U U U + U + P un función vectoil, el Lplcino de dich función se define como: gd (div ) - ot (ot ) El opedo Lplcino seá de gn impotnci en cusos supeioes Teoem de tokes. Consideemos un líne ced C que limit un supeficie. El flujo del otcionl de un vecto soe un c de un csquete de supeficie es igul l ciculción de lo lgo del contono de dicho csquete. ds C d 1.15 Teoem de Guss e un supeficie que delimit un volumen V. El flujo de un vecto tvés de l supeficie ced es igul l divegenci del vecto tvés del volumen que delimit dich supeficie. ds V dv 15

16 BIBLIOGRAÍA BÁICA [1]. Buno de Ecill. IICA GENERAL. Editoil Lieí Genel, Zgo. [] M.R. Oteg. LECCIONE DE ÍICA, MECÁNICA 1. Univesidd Autónom de Bcelon, Bellte. 16

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Mgnitudes vectoiles 1 de 8 MAGNITUDES VECTORIALES: Índice 1 Mgnitudes escles vectoiles Sum de vectoes lies Poducto de un escl po un vecto 3 Sistem de coodends vectoiles. Vectoes unitios 3 Módulo de un

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA CURSO CERO DE FÍSIC PLICCIÓN DE VECTORES L FÍSIC Vness de Csto Susn i Deptmento de Físic CURSO CERO DE FÍSIC.UC3M PLICCIÓN DE VECTORES L FÍSIC CONTENIDO Mgnitudes escles vectoiles. Repesentción gáfic de

Más detalles

DAD Y MAGNETISMO OPERADOR NABLA.

DAD Y MAGNETISMO OPERADOR NABLA. qwetuiopsdfghjklcvbnmqwetui opsdfghjklcvbnmqwetuiopsdfgh jklcvbnmqwetuiopsdfghjklcvb nmqwetuiopsdfghjklcvbnmqwe tuiopsdfghjklcvbnmqwetuiops NTECEDENTE DE ELECTRICIDD Y MGNETIMO OERDOR NBL. dfghjklcvbnmqwetuiopsdfghjkl

Más detalles

Gráficamente se representan mediante un punto en una escala (de ahí el nombre).

Gráficamente se representan mediante un punto en una escala (de ahí el nombre). 1.- Intoducción. L Cinemátic es l pte de l ísic que descibe los movimientos de los cuepos sin bod ls cuss que los poducen, ls cules son objeto de ot pte de l ísic: l Dinámic. L Cinemátic esponde l necesidd

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos I.E.S. CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE EXTREMDUR JUNIO 9 (RESUELTOS po ntonio Menguino) MTEMÁTICS II Tiempo máimo: ho minutos El lumno elegiá un de ls dos opciones popuests. Cd un de

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

ELEMENTOS DE CÁLCULO VECTORIAL

ELEMENTOS DE CÁLCULO VECTORIAL ELEMENTOS DE CÁLCULO VECTORIAL SUMARIO: 1.1.- Mgnitudes vectoiles 1.2.- Vectoes: definiciones 1.3.- Clses de vectoes 1.4.- Adición de vectoes 1.5.- Multiplicción po un númeo el 1.6.- Popieddes 1.7.- Consecuencis

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

Unidad Didáctica 7. Cinemática 1 Descripción del movimiento

Unidad Didáctica 7. Cinemática 1 Descripción del movimiento Unidd Didáctic 7 Cinemátic 1 Descipción del movimiento 1.- Intoducción. L Cinemátic es l pte de l Físic que descibe los movimientos de los cuepos sin bod ls cuss que los poducen, ls cules son objeto de

Más detalles

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v Escles cmpos escles nálisis Vectoil Teoí Electomgnétic 1 Dipl.-Ing. noldo Rojs oto Escl: ntidd cuo lo puede se epesentdo po un simple númeo el positio o negtio mpos escles: Función mtemátic del ecto que

Más detalles

Tema 4: Potencial eléctrico

Tema 4: Potencial eléctrico 1/38 Tem 4: Potencil Eléctico Fátim Msot Conde Ing. Industil 2007/08 Tem 4: Potencil Eléctico 2/38 Índice: 1. Intoducción 2. Enegí potencil eléctic 1. de dos cgs puntules 2. de un sistem de cgs 3. Intepetción

Más detalles

ANTECEDENTES DE ELECTRICIDAD Y. dfghjklzxcvbnmqwertyuiopasdfghjklzx MAGNETISMO VECTORES.

ANTECEDENTES DE ELECTRICIDAD Y. dfghjklzxcvbnmqwertyuiopasdfghjklzx MAGNETISMO VECTORES. qwetuiopsdfghjklcvbnmqwetui opsdfghjklcvbnmqwetuiopsdfgh jklcvbnmqwetuiopsdfghjklcvb nmqwetuiopsdfghjklcvbnmqwe tuiopsdfghjklcvbnmqwetuiops NTEEDENTES DE ELETIIDD Y dfghjklcvbnmqwetuiopsdfghjkl MGNETISMO

Más detalles

Capítulo. Cinemática del Sólido Rígido

Capítulo. Cinemática del Sólido Rígido Cpítulo 1 Cinemátic del Sólido Rígido Contenido Intoducción Tslción Rotción lededo de un Eje Fijo. elocidd Rotción lededo de un Eje Fijo: celeción Rotción lededo de un Eje Fijo: Sección epesentti Ecución

Más detalles

4πε. r 1. r 2. E rˆ La carga puntual q 1

4πε. r 1. r 2. E rˆ La carga puntual q 1 .3 L cg puntul q -5. nc está en el oigen l cg puntul q 3 nc está sobe el eje de ls en 3 cm. l punto P está en 4 cm. ) Clcule los cmpos elécticos debidos ls dos cgs en P. b) Obteng el cmpo eléctico esultnte

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).

Más detalles

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB Cuso: FISICA II CB 3U Ley de Coulomb (1736-186). Si ls cgs se ten o epelen signific que hy un fuez ente ells. LEY DE COULOMB L fuez ejecid po un cg puntul sobe ot Está diigid lo lgo de l líne que los une.

Más detalles

PROBLEMAS RESUELTOS DE CORRIENTE ELÉCTRICA

PROBLEMAS RESUELTOS DE CORRIENTE ELÉCTRICA UNVERSDD NCONL DEL CLLO FCULTD DE NGENERÍ ELÉCTRC Y ELECTRÓNC ESCUEL PROFESONL DE NGENERÍ ELÉCTRC CURSO: TEORÍ DE CMPOS ELECTROMGNÉTCOS PROFESOR: ng. JORGE MONTÑO PSFL PROBLEMS RESUELTOS DE CORRENTE ELÉCTRC

Más detalles

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden.

TEMA IV PLANO VECTORIAL. PRODUCTO ESCALAR. APLICACIONES. Un vector fijo es un segmento cuyos extremos vienen dados en un cierto orden. VECTOR FIJO TEM IV PLNO VECTORIL. PRODUCTO ESCLR. PLICCIONES. Un vecto fijo es un segento cuyos exteos vienen ddos en un cieto oden. Ejeplo: El segento de exteos y (en este oden). Se not con (, ) ó con.

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

Tema 5B. Geometría analítica del plano

Tema 5B. Geometría analítica del plano Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem

Más detalles

Modelo 4 de sobrantes de 2005 - Opción A

Modelo 4 de sobrantes de 2005 - Opción A Modelo de onte de - Opción A Ejecicio. 8 Se f : R R l función definid po f () () [ punto] Clcul lo punto de cote de l gáfic de f con lo eje coodendo. () [ punto] Hll l íntot de l gáfic de f. (c) [ punto]

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Deptmento de Físic, UTFSM Físic Genel II / of: A. Bunel. FIS10: FÍSICA GENERAL II GUÍA #3: otencil Eléctico. Objetivos de pendizje Est guí es un hemient que usted debe us p log los siguientes objetivos:

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

Ejemplo de Parcial Física 3 abril 1, EcyT UNSAM. Nombre: Carrera:

Ejemplo de Parcial Física 3 abril 1, EcyT UNSAM. Nombre: Carrera: Ejemplo de cil Físic 3 il 1, 11 - EcyT UNSAM Nome: Ce: e-mil: 1. Un cg Q se encuent en el cento de un cscón metálico que tiene un cg -Q/ de dio inteio y eteio (>). i) indique l diección y sentido del cmpo

Más detalles

Curso MATERIA: MATEMÁTICAS II (Fase general)

Curso MATERIA: MATEMÁTICAS II (Fase general) Cuso 9- MTERI MTEMÁTICS II (Fse genel) INSTRUCCIONES GENERLES Y VLORCIÓN El lumno contest los cuto ejecicios de un de l dos opciones ( o B) que se le oecen. Nunc deeá contest unos ejecicios de un opción

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

1 Inductancia interna de conductores

1 Inductancia interna de conductores Cmpos y Onds nductnci inten de conductoes Pág. nductnci inten de conductoes En est sección se efectún ls deducciones de l inductnci inten de distints geometís de conductoes, que conducen un coiente estcioni

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 50 "# Si α, qué elción tienen con los númeos α80º y 60º-α?! α80º [ cos( α 80º) i sen ( α 80º) ] (-cosα isenα ) -[(cosα isenα)] -( α ) -, luego son opuestos.! 60º-α [ cos( 60º- α) i sen (60º- α ) ] (cosα

Más detalles

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que Tem 8: Integl de iemnn Monotonídelintegl Si f y g son funciones integbles en [, b] tles que f(x) g(x) x [, b] entonces b b f Como cso pticul p g =se obtiene que si f es un función integble en [, b] tl

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

Cálculo con vectores

Cálculo con vectores Uidd didáctic 1 Cálculo co vectoes 1.- Mgitudes escles vectoiles. So mgitudes escles quells, como l ms, l tempetu, l eegí, etc., cuo vlo qued fijdo po u úmeo (co su uidd coespodiete). Gáficmete se epeset

Más detalles

La energía eléctrica y el potencial eléctrico

La energía eléctrica y el potencial eléctrico L enegí eléctic y el potencil eléctico Leyes de l fuez eléctosttic y gvitcionl Q Q F 2 ˆ 2 2 2 4πε 0 2 Atctiv o epulsiv / 2 muy fuete m m F G 2 ˆ 2 2 2 Siempe tctiv / 2 muy déil 2 Tnto l fuez gvitcionl

Más detalles

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES

OPERACIONES CON FUNCIONES OPERACIONES CON FUNCIONES IES Jun Gcí Vldemo Deptmento de Mtemátics º Bchilleto de CCSS. SUMA Y RESTA DE FUNCIONES Dds g unciones eles de vile el se deine l unción sum g como: g g con Dom g Dom Dom g Es deci, l unción g hce coesponde

Más detalles

PROBLEMAS RESUELTOS DE ELECTROSTÁTICA EN EL VACÍO. , r a

PROBLEMAS RESUELTOS DE ELECTROSTÁTICA EN EL VACÍO. , r a UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS PROFESOR: Ing. JORGE MONTAÑO PISFIL

Más detalles

a a a P P r r ( razones de simetría) Circulación del campo eléctrico (Campo central conservativo) r 4πε = = 4 r En efecto:

a a a P P r r ( razones de simetría) Circulación del campo eléctrico (Campo central conservativo) r 4πε = = 4 r En efecto: 3..- Ciculción del cmpo eléctico Tem 3..-- ottenciill ellécttiico q = e (Cmpo centl consevtivo) n efecto: e d q e d q d q d= = = = q q = = ( ) = 4 πε L ciculción del cmpo ente dos puntos es independiente

Más detalles

Fuerzas Magnéticas entre distribuciones de corriente.

Fuerzas Magnéticas entre distribuciones de corriente. Electicidd y Mgnetismo / Mgnetostátic efinición. El potencil vecto mgnético. Medios indefinidos. Popieddes. Ley de iot y Svt. Ley de Ampèe. Cmpo en puntos lejdos. Momento mgnético. Compotmiento en el infinito.

Más detalles

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA TERCER EJERCICIO GRUPO 1PV 22 de Mayo de 2002

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA TERCER EJERCICIO GRUPO 1PV 22 de Mayo de 2002 FUNDAMENTS FÍSCS DE LA NFMÁTCA TECE EJECC GUP 1P de Myo de 00 Cuestiones 1. ) Enunci el teoem de Ampèe. ) Aplic el teoem de Ampèe p clcul el cmpo mgnético cedo po un conducto ectilíneo indefinido, en un

Más detalles

Matemáticas II Unidad 4 Geometría

Matemáticas II Unidad 4 Geometría Mtemátic II Unidd Geometí UNIDAD EL ESPACIO AFÍN.- Demot que i do punto etán ddo epecto del item de efeenci fín cteino, entonce el vecto que lo une tiene po coodend l difeenci de l coodend de mbo punto

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS (Oposiciones de Secundi) TEMA 5 PRODUCTO ESCALAR DE VECTORES. PRODUCTO VECTORIAL Y PRODUCTO MIXTO. APLICACIONES A LA RESOLUCION DE PROBLEMAS FISICOS Y GEOMETRICOS.. Poducto escl. Popieddes...Nom

Más detalles

Se le define como toda situación física producida por una masa m en el espacio que lo rodea y que es perceptible debido a la fuerza que ejerce sobre

Se le define como toda situación física producida por una masa m en el espacio que lo rodea y que es perceptible debido a la fuerza que ejerce sobre Cpo vitcionl Se le define coo tod situción físic poducid po un s en el espcio que lo ode y que es peceptible debido l fuez que ejece sobe un s colocd en dicho espcio. Dd un s en el espcio y un s en difeentes

Más detalles

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A IE Mediteáneo de Málg olución Julio Jun Clos lonso Ginontti Opción Poblem.. Obtene ondmente escibiendo todos los psos del onmiento utilido que: El lo del deteminnte de l mti ( puntos l mti - que es l mti

Más detalles

Universidad de Chile Facultad de Ciencias Departamento de Física Electromagnetismo

Universidad de Chile Facultad de Ciencias Departamento de Física Electromagnetismo Univesidd de Chile Fcultd de Ciencis Deptmento de Físic Electomgnetismo Pue 1 de Cáted Pofeso: José Rogn C. 15 de Ail del 2005 Ayudntes: Mí Tees Ced G. Gemán Vs S. 1. Un distiución de cg esféicmente simétic

Más detalles

Unidad 3 Sistemas de Ecuaciones Lineales

Unidad 3 Sistemas de Ecuaciones Lineales Unidd 3 Sistems de Ecuciones Lineles Popedéutico 8 D. Ruth M. Aguil Ponce Fcultd de Ciencis Deptmento de Electónic Popedéutico 8 Fcultd de Ciencis Popedéutico 8 Fcultd de Ciencis Sistem de Ecuciones Lineles

Más detalles

Electromagnetismo II

Electromagnetismo II Electomgnetismo II Semeste: 215-1 EXAMEN PARCIAL 2: Solución D. A. Reyes-Coondo Poblem 1 (2 pts.) Po: Jesús Cstejón Figueo ) Escibe ls cuto ecuciones de Mxwell en fom difeencil, escibiendo el nombe de

Más detalles

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO DOCENTE EL SABINO DEPARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II PROFESORA CARMEN ADRIANA CONCEPCIÓN 1. Un potón (q potón

Más detalles

TEMA 6. Radiación electromagnética. Miguel Ángel Solano Vérez

TEMA 6. Radiación electromagnética. Miguel Ángel Solano Vérez TM 6 Rdición electomgnétic Miguel Ángel Solno Vée lectodinámic Tem 6: Rdición electomgnétic Índice 6. Intoducción 6. Potenciles en el dominio de l fecuenci 6.. l potencil vecto 6.. l potencil vecto 6.3.3

Más detalles

AMPLIACIÓN DE FÍSICA ELECTROMAGNETISMO TIEMPO: 1 hora Septiembre 2006 Nombre: DNI:

AMPLIACIÓN DE FÍSICA ELECTROMAGNETISMO TIEMPO: 1 hora Septiembre 2006 Nombre: DNI: AMPLAÓN D FÍSA LTOMAGNTSMO TMPO: ho Septieme 6 Nome: DN: Teoí ( puntos). () Fomule l ley de Guss en el vcío, tnto en su fom integl como difeencil. A pti de est ley justifique po qué ls línes del cmpo eléctico

Más detalles

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2)

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2) IES ÁFRIC º BCHILLERTO CCNN EJERCICIOS DE REPSO TOD L MTERI (Fich ) Ejecicio nº.- Un estdo comp biles de petóleo tes suministdoes dieentes que lo venden 7,8 y dóles el bil, espectivmente. L ctu totl sciende

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

LA RECTA EN EL PLANO

LA RECTA EN EL PLANO FACULTAD DE CIENCIAS EXACTAS INGENIERIA Y AGRIMENSURA U.N.R. LA RECTA EN EL PLANO E INECUACIONES LINEALES EN DOS VARIABLES CATEDRA ALGEBRA Y GEOMETRIA I 9 RICARDO SAGRISTA PATRICIA CO MONICA DEL SASTRE

Más detalles

TEMA 5: VECTORES 1. VECTOR FIJO

TEMA 5: VECTORES 1. VECTOR FIJO TEMA 5: 1. VECTOR FIJO Hy gnitudes que no quedn ien definids edinte un núeo el, necesitos deás conoce su diección y su sentido. Ests gnitudes se lln gnitudes vectoiles y ls epesentos edinte. P detein un

Más detalles

CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin

CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin CAMPO MAGNÉTCO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRENTE dl - P X d φ φ sin sin φ φ 3/ sin d d φ Cundo l longitud del conducto es mu gnde en compción con, l ecución se conviete en: >> 8. Un lmbe ecto

Más detalles

INTRODUCCIÓN AL CÁLCULO VECTORIAL

INTRODUCCIÓN AL CÁLCULO VECTORIAL INTRODUCCIÓN L CÁLCULO VECTORIL 1.- MGNITUDES ESCLRES Y VECTORILES. Mgnitudes esles: son ls que quedn pefetmente definids po el vlo de l medid. Mgnitudes vetoiles: son ls que p definils pefetmente es peiso

Más detalles

Universidad Nacional de La Plata

Universidad Nacional de La Plata Univesidd Ncionl de L Plt Fcultd de Ciencis Ntules y Museo Cáted de Mtemátic y Elementos de Mtemátic Asigntu: Mtemátic Contenidos de l Unidd Temátic nº VECTORES Sum y difeenci de vectoes. Poducto de un

Más detalles

Síntesis Física 2º Bach. Campo Magnético. M - 1

Síntesis Física 2º Bach. Campo Magnético. M - 1 Síntesis Físic º ch. Cmpo Mgnético. M - 1 CAMPO MAGNÉTCO. ntoducción. Se obsev expeimentlmente que un imán ce un zon de influenci su lededo que se mnifiest po l oientción que dquieen ls limdus de hieo

Más detalles

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS

PROBLEMAS RESUELTOS SOBRE CAMPO ELECTROSTÁTICO EN MEDIOS DIELÉCTRICOS UNIVRSIDAD NACIONAL DL CALLAO FACULTAD D INGNIRÍA LÉCTRICA Y LCTRÓNICA SCULA PROFSIONAL D INGNIRÍA LÉCTRICA CURSO: TORÍA D CAMPOS LCTROMAGNÉTICOS PROFSOR: Ing. JORG MONTAÑO PISFIL PROBLMAS RSULTOS SOBR

Más detalles

Tema 8. Funciones vectoriales de variable real.

Tema 8. Funciones vectoriales de variable real. Tem 8. Funciones vecoiles de vile el. 8.1 Cuvs ecuciones pméics. Cálculo en pméics. 8. Funciones vecoiles: límie, coninuidd, deivción e inegción. 8.3 Cuvs en coodends poles. Aneo: cónics. E. U. Poliécnic

Más detalles

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( )

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( ) Te de Estdo Sólido 5/Septiembe/008 Min Eugeni Fís Anguino. Pob que, b b, b π π π Donde los vectoes b i cumplen l siguiente elción: b πδ i j ij Po constucción geométic, los dos conjuntos de vectoes y b

Más detalles

Fuerza de una masa de fluido en movimiento

Fuerza de una masa de fluido en movimiento Fuez de un ms de fluido en movimiento e un ms m de fluido en movimiento que choc cont un supeficie, pependicul l diección del movimiento del fluido. P obtene l fuez que est ms de fluido ejece sobe l supeficie,

Más detalles

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA

MAGNITUDES ESCALARES Y VECTORIALES. Dr. CARLOS MOSQUERA 1 MAGNITUDES ESCALARES Y VECTRIALES D. CARLS MSQUERA 2 Mgntudes escles y vectoles Defncones; popeddes y opecones En los conceptos de mecánc que desollemos, nos encontemos con dos dfeentes tpos de mgntudes:

Más detalles

BLOQUE 2 :GEOMETRIA ANALITICA EN EL PLANO.

BLOQUE 2 :GEOMETRIA ANALITICA EN EL PLANO. LOQUE :GEOMETRI NLITIC EN EL PLNO. Lección : Vectoes..-El conjunto R El conjunto R está fomdo po dupls del tipo (,) donde, son númeos eles. Dos elementos de R son igules si tienen igul su pime segund componentes.

Más detalles

Magnetostática INTRODUCCIÓN. ρ = densidad de carga volumétrica. ! = densidad de corriente de convección (cargas en movimiento)

Magnetostática INTRODUCCIÓN. ρ = densidad de carga volumétrica. ! = densidad de corriente de convección (cargas en movimiento) Mgnetostátic NTODUÓN ntoduci el concepto de cmpo equiió un gn dosis de imginción po pte de los físicos, pues es difícil ce en l cuent de que lo elmente impotnte en el estudio del cmpo electomgnético no

Más detalles

=-2.8 µc, se mantiene en una posición fija por medio de soportes aislantes. Se proyecta hacia q 1

=-2.8 µc, se mantiene en una posición fija por medio de soportes aislantes. Se proyecta hacia q 1 . n esfe etálic peueñ, con un cg net de -.8 µ, se ntiene en un posición fij po edio de sopotes islntes. Se poyect hci un segund esfe etálic peueñ, con un cg net de -7.8 µ y un s de.5 g. undo ls dos esfes

Más detalles

Tema 0 Cálculo vectorial

Tema 0 Cálculo vectorial Tem 0 Cálcul vectil IES Pe Mnjón Pf: Edud Eismn 1 1 Tem 0. Cálcul vectil Mgnitudes físics escles vectiles. Vectes Vect uniti ves Descmpsición de un vect en el pln Descmpsición de un vect en el espci Sum

Más detalles

FIGURAS EN EL PLANO Y EN EL ESPACIO

FIGURAS EN EL PLANO Y EN EL ESPACIO Consejeí de Educción, Cultu y Depotes CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simienz C/ Fncisco Gcí Pvón, 16 Tomelloso 1700 (C. Rel) Teléfono Fx: 96 51 9 9 Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS

Más detalles

Figura 1 Figura 2. Figura 3. a 12V

Figura 1 Figura 2. Figura 3. a 12V Exmen de Repción, Pof. José Cácees. Nombe: CI: Fech: 1. Cuto cgs puntules idéntics (= +10 µc) se loclizn sobe un ectángulo como se muest en l figu 1, con L=60cm y =15cm. Clcule el cmpo eléctico neto y

Más detalles

a) El sistema puede ser visto como dos capacitores en paralelo, donde cada capacidad es de la forma C i = ε i A i /d i. Entonces se obtiene:

a) El sistema puede ser visto como dos capacitores en paralelo, donde cada capacidad es de la forma C i = ε i A i /d i. Entonces se obtiene: Julio 8 Exmen de Electomgnetismo Solución Poblem ) El sistem puede se visto como dos cpcitoes en plelo, donde cd cpcidd es de l fom C i ε i i /d i. Entonces se obtiene: ( ε ε ) L ε L ε L + C C + C + 4d

Más detalles

Física. g u a y F R. Entonces : tg

Física. g u a y F R. Entonces : tg Físic g u y. Clcul l istnci el equiliio ente ls os esfes e l figu, e ms m, cgos con q coulomios, si se supone que el ángulo con l veticl es muy pequeño, y los hilos que los sujetn no tienen ms. SOLUCIÓN:

Más detalles

a + b b - a b b SECCION I VECTORES 1.1. VECTORES Y ESCALARES

a + b b - a b b SECCION I VECTORES 1.1. VECTORES Y ESCALARES SECCION I VECTORES 1.1. VECTORES Y ESCALARES Ls cntiddes físics equeids p el desollo de ls teoís que petenden descibi el oden univesl se pueden clsific, en un pime vesión, en dos ctegoís: escles y vectoes.

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

x y Si el vector está en tres dimensiones: x y coordenadas se les llama cosenos directores

x y Si el vector está en tres dimensiones: x y coordenadas se les llama cosenos directores Sum de ectoes Si tienen el mismo punto de plicción se tzn plels cd ecto po el extemo del oto. Si están uno continución de oto, se une el oigen del pimeo con el extemo del último. S c S - L est es un cso

Más detalles

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA Colegio L Pesentción Gnd OPCIÓN A 1- () [1 punto] Sen u y v dos vectoes otogonles y de módulo 1 Hll los vloes del pámeto p que lo vectoes u + v y u v fomen un ángulo 60º (b) [1 punto] Hll un vecto z de

Más detalles

x y Si el vector está en tres dimensiones: x y z cos cos cos 1 Conociendo dos ángulos, el tercero queda determinado.

x y Si el vector está en tres dimensiones: x y z cos cos cos 1 Conociendo dos ángulos, el tercero queda determinado. Sum de ectoes Si tienen el mismo punto de plicción se tzn plels cd ecto po el extemo del oto. Si están uno continución de oto, se une el oigen del pimeo con el extemo del último. S c S - L est es un cso

Más detalles

TEMA 10: INTEGRALES DOBLES Y TRIPLES.

TEMA 10: INTEGRALES DOBLES Y TRIPLES. ESCUELA TÉCNICA SUPERIOR E INGENIERÍA EPARTAMENTO E MATEMÁTICA APLICAA TITULACIONES Ingenieí Industil GITIGITI+AE Ingenieí de Telecomunicción GITTGITT+AE CÁLCULO Cuso 5-6 TEMA : INTEGRALES OBLES Y TRIPLES.

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación:

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación: Repesent ls dos poyecciones y l tece poyección de los puntos ddos continución: pto. lej. cot A + 0 B + = + C + < + D 0 + E - > + F - = + G - > + H - 0 I - > - J - = - K L - 0 < - - M + < - N + = - + >

Más detalles

Velocidad en el movimiento relativo

Velocidad en el movimiento relativo INTRDUCCIÓN AL MIMIENT RELATI elocidd en el movimiento eltivo Fig.1 o Se un punto donde se sitú un S.R. con unos ejes (x,y,z) que vn pemnece fijos (en l páctic no es posible disceni medinte un expeimento,

Más detalles

PROBLEMAS RESUELTOS DE MÉTODOS GENERALES PARA RESOLVER PROBLEMAS ELECTROSTÁTICOS

PROBLEMAS RESUELTOS DE MÉTODOS GENERALES PARA RESOLVER PROBLEMAS ELECTROSTÁTICOS UNIVRSIDAD NACIONAL DL CALLAO FACULTAD D INGNIRÍA LÉCTRICA Y LCTRÓNICA SCULA ROFSIONAL D INGNIRÍA LÉCTRICA CURSO: TORÍA D CAMOS LCTROMAGNÉTICOS ROFSOR: Ing. JORG MONTAÑO ISFIL ROBLMAS RSULTOS D MÉTODOS

Más detalles

Tema II Potencial eléctrico - Capacidad

Tema II Potencial eléctrico - Capacidad UNN Fcultd de Ingenieí Tem II Potencil eléctico - Cpcidd Integl cuvilíne del cmpo eléctico. Ciculción. Difeenci de potencil, potencil y función potencil. Supeficies y Línes euipotenciles. Uniddes. Gdiente

Más detalles

I.E.S. Al-Ándalus. Dpto. de Física y Química. Física 2º Bach. Tema 0. Vectores. Cinemática

I.E.S. Al-Ándalus. Dpto. de Física y Química. Física 2º Bach. Tema 0. Vectores. Cinemática I.E.S. Al-Ándlus. Dpto. de Físic Químic. Físic º Bch. Tem 0. Vectoes. Cinemátic. - 1 - TEMA 0: VECTORES. CINEMÁTICA. DINÁMICA DE LA ARTÍCULA VECTORES: Un vecto es l epesentción mtemátic de un mgnitud vectoil.

Más detalles

A continuación obligamos, aplicando el producto escalar, a que los vectores:

A continuación obligamos, aplicando el producto escalar, a que los vectores: G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

Facultad de Ingeniería Instituto de Ciencias Básicas

Facultad de Ingeniería Instituto de Ciencias Básicas Fcultd de Ingenieí Instituto de Ciencis Básics LGUNOS TÓPICOS Y PLICCIONES DE L MECNIC CIONL (Incluye 5 poblems esueltos Julio Pozo Péez 5 lgunos C pítulo I: tópicos lgunos y plicciones tópicos de de cinemátic

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 2

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 2 INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tem FUNDAMENTOS PROPIEDADES ALGEBRAICAS DE LOS NÚMEROS REALES R.- Qué conjuntos epesentn N, Z, Q, R? R.- Qué elementos se encuentn en los conjuntos A = { m Z m

Más detalles

EXAMEN RESUELTO Septiembre de 2002

EXAMEN RESUELTO Septiembre de 2002 EXMEN RESUELTO Sepieme de V L{ 45} ë ë Sen los suespcios de R : V ë ë V Hll: Ls dimensiones uns ses de los es suespcios. L dimensión del suespcio VV c Uns ecuciones implícis del suespcio V V. d Compo si

Más detalles

CONDENSADORES Y CAPACITORES

CONDENSADORES Y CAPACITORES CONDNADOR Y CAPACITOR n el pesente cpítulo nos pepmos estudi unos dispositivos que se hn eveldo como fundmentles en electicidd: LO CAPACITOR Los cpcitoes son dispositivos que son cpces de lmcen enegí eléctic

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electomgnetismo /3 Electostátic efinición Los conuctoes en electostátic. Cmpo e un cg puntul. plicciones e l Le e Guss Integles e supeposición. Potencil electostático efinición e Intepetción. Integles

Más detalles

Problema 4 del primer parcial de FT1-2do cuatri 2014

Problema 4 del primer parcial de FT1-2do cuatri 2014 Poblem 4 del pime pcil de FT - 2do cuti 204 Solución po imágenes Usulmente cundo nos plnten lgun geometí de conductoes tie, lo más común es pens en el método de imágenes, más que nd cundo se tt de lgun

Más detalles

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1 .6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8

Más detalles

PROBLEMAS DE OPTIMACIÓN

PROBLEMAS DE OPTIMACIÓN PROBLEMS DE OPTIMCIÓN. Con un chp de hojlt cudd de ldo 0 cm es peciso hce un cjón sin tp que teng volumen máimo. Se ecotn cuddos en los ángulos de l chp y se dobl está p fom el cjón. Cuál debe se l longitud

Más detalles

Cartesiano Curvilíneas generalizadas: cilíndrico y esférico.

Cartesiano Curvilíneas generalizadas: cilíndrico y esférico. Electici Mgnetismo so 4-5 Tem : Intocción oncepto e cmpo Repso e álgeb vectoil Sistems e cooens tesino vilínes genelis: cilínico esféico. Opeoes vectoiles. Giente Divegenci Rotcionl Deiv tempol ombinción

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

Lección 1. Campo electrostático en el vacío: Conceptos y resultados fundamentales.

Lección 1. Campo electrostático en el vacío: Conceptos y resultados fundamentales. Lección 1 Cmpo electostático en el vcío: Conceptos y esultdos fundmentles. 1. Cg eléctic. Ley de Coulomb. 1.1. Intoducción. Cg eléctic y distibuciones de cg. 1.. Ley de Coulomb.. Cmpo eléctico. Línes de

Más detalles

Cap 4: Potencial eléctrico

Cap 4: Potencial eléctrico Cp 4: Potencil eléctico egundo Leiniz, el esultdo de ls intecciones ente ptículs se ve po el intemedi de un cmio de enegí, cuntificdo po el tjo W El tjo descie el efecto de un fuez en un intevlo del espcio-

Más detalles