Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)"

Transcripción

1 Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede clcul tvés de S=, siendo un de sus ses y l ltu coespondiente. A c C El peímeto se otiene sumndo sus ldos P=++c. En función de los ldos se clsificn en: ) Tiángulo equiláteo: Tiene los tes ldos igules. El áe se puede tmién clcul como S = El peímeto como P = 3 3 ) Tiángulo isósceles: Tiene dos ldos igules. c) Tiángulo escleno: Tiene los tes ldos distintos. En función de sus ángulos se clsificn en: ) Tiángulo cutángulo: Tiene los tes ángulos gudos. ) Tiángulo ectángulo: Tiene un ángulo ecto. (ipotenus) c A c) Tiángulo otusángulo: Tiene un ángulo otuso. Siempe veific que = + c (T. Pitágos) c Su áe se puede clcul tvés de l fómul S =

2 Págin.- Polígono de ldos: Cudiláteo. Los ángulos inteioes de culquie cudiláteo sumn siempe 360º. Existen dos gndes tipos: Los plelogmos, que tienen los ldos plelos dos dos y los no plelogmos que no cumplen esto. Dento de los plelogmos ce distingui: ) Cuddo: Tiene ldos igules y cuto ángulos ectos. El áe puede clculse como S = El peímeto puede clculse como P = ) Rectángulo: Tiene ángulos ectos. El áe puede clculse como S = El peímeto puede clculse como P = + c) Romo: Tiene ldos igules y, los ángulos igules de en. Sus digonles son distints D d El áe puede clculse como S = siendo D y d ls digonles (en zul y ojo). Su peímeto puede clculse como P = D + d d) Romoide: Tiene los ldos y los ángulos igules dos dos. El áe puede clculse como S = Ente los no plelogmos existen tmién dos tipos: ) Tpecio: Tiene dos ldos plelos El áe puede clculse como S = B + B Dento de estos, ce difeenci el tpecio isósceles, que tiene los ángulos igules dos dos ) Tpezoide: es un polígono de cuto ldos en genel, con ldos no plelos.

3 Págin Polígono de 5 ldos: Pentágono..- Polígono de 6 ldos: Hexágono. 5.- Polígono de 7 ldos: Heptágono. 6.- Polígono de 8 ldos: Octógono. 7.- Polígono de 9 ldos: Eneágono. 8.- Polígono de 10 ldos: Decágono FIGURAS CON LADOS CURVILÍNEOS 1.- Cicunfeenci. El ángulo inteio de culquie cicunfeenci mide 360º. El áe del cículo puede clculse como S = π L longitud (peímeto) de l cicunfeenci mide L = π.- Semicicunfeenci 3.- Secto cicul d El ángulo inteio mide 180º El áe puede clculse como S = π π d = 8 El peímeto viene ddo po P = d + π siendo = d Si el ángulo del secto mide º, el áe vle S = π El peímeto totl P = π 360º + 360º.- Segmento Cicul Si el ángulo del segmento mide º, l supeficie del segmento es: S = π sen 360º Si l cued mide c entonces l supeficie del segmento es:

4 Págin FIGURAS EN EL ESPACIO POLIEDROS Son figus en el espcio (tes dimensiones) limitdos po polígonos plnos llmdos cs. L intesección de dos cs se llm ist. L intesección de tes o más ists se llm vétice. Existen poliedos de mucos tipos e incluso se pueden ce distints clsificciones. 1.- Pism: Es un sólido poliedo fomdo po dos cs (polígonos) igules y plels, llmds ses y unids ente sí po plelogmos, llmdos cs lteles. El volumen de culquie pism es V = S, siendo S el áe de l se y l ltu. En función del polígono se, los pisms se clsificn en : ) Pism tingul, si sus ses son tiángulos. ) Pism cudngul, si sus ses son cudiláteos. c) Pism pentgonl, si sus ses son pentágonos d)... En el cso conceto de que el polígono de l se se egul, decimos que el pism es egul. Dependiendo de l fom de ls cs lteles, los pisms se dividen en: ) Pism ecto: Ls cs lteles son ectángulos (o cuddos) ) Pism olicuo: Ls cs lteles son omos o omoides. Pism tingul ecto Pism cudngul olicuo Dento de los pisms cudngules, í que distingui ente los plelepípedos, poliedos en los que tods sus cs son plelogmos (po tnto tods sus cs son plels dos dos) y los no plelepípedos, que no cumplen est condición. Ente los plelepípedos, podemos distingui el Otoedo (vulgmente llmdo cj de ceills), fomdo po seis cs ectngules y en el que culquie p de cs opuests son plels e igules. En este cso pticul: V = lgo nco lto

5 Págin 5.- Piámide: Es un poliedo cuy se es un polígono culquie y sus cs lteles son tiángulos que tienen (todos ellos) un vétice común. En función del polígono de l se, ls piámides se clsificn en: ) Piámide tingul, si l se es un tiángulo. ) Piámide cudngul, si l se es un cudiláteo. c) Piámide pentgonl, si l se es un pentágono. d)... Piámide cudngul Dependiendo del tipo de tiángulos que configun ls cs lteles, ls piámides se clsificn en: ) Piámide egul: Tods sus cs lteles son tiángulos isósceles o equiláteos. ) Piámide olicu: Algun cs ltel no es tiángulo isósceles ni equiláteo. Existe un figu que esult de quit un piámide de ot myo, seccionndo ést últim con un cote plelo l se. Est figu ecie el nome de piámide tuncd. P culquie piámide, el Volumen es V = 3 1 S, siendo S el áe de l se. P clcul l supeficie ltel, es necesio sum l áe de l se ls supeficies de cd uno de los tiángulos lteles. Se llmn poliedos egules quellos poliedos que tienen tods sus cs igules. Sólo existen cinco, que son: 1.- Tetedo: En l clsificción nteio seí un piámide tingul fomd po tiángulos equiláteos. Su áe seá: S = 3.- Octedo: Fomdo po 8 tiángulos equiláteos. Su áe vle: S = 3 Su volumen es: V = Cuo o exedo: Pism ecto cudngul fomdo po 6 cuddos. Su áe totl seá: S = 6 Su volumen viene ddo po: V = 3.- Dodecedo: Fomdo po 1 pentágonos egules. Su áe totl vle: S = 3 5 (5 + 5) ( ) Su volumen vle: V = Icosedo: Fomdo po 0 tiángulos equiláteos. Su áe totl vle: S =5 3 Su volumen vle: V = 5 5 3

6 Págin 6 REDONDOS Son figus en el espcio (tes dimensiones) en los que l menos un de ls cs no es pln. L clsificción más itul distingue ente: 1.- Cilindo: Cuepo sólido limitdo po dos cículos plelos y un c edond que une ls cicunfeencis. Puede se: ) Cilindo ecto: Si l c edond es pependicul los cículos. Su áe totl mide S = π + π (con tps) Su volumen V = π ) Cilindo olicuo: en oto cso.º.- Cono: Cuepo sólido limitdo po un cículo y po un c edond que se otiene de uni un punto exteio (vétice) l cicunfeenci coespondiente. Puede se. ) Cono ecto: Si l líne imgini que une el cento del cículo l vétice, es pependicul l cículo. Se llm genetiz del cono l ect que une el vétice con l cicunfeenci po el cmino más coto. g S = π g + π (con tp), siendo g l genetiz V = 3 1 π (g = + ) ) Cono olicuo: en oto cso. 3.- Esfe: Cuepo sólido en el que culquie sección es un cículo. Todos los puntos de l supeficie (supeficie esféic) equidistn de un punto fijo inteio l cuepo, llmdo cento. S = π V = π 3 3

FIGURAS EN EL PLANO Y EN EL ESPACIO

FIGURAS EN EL PLANO Y EN EL ESPACIO Consejeí de Educción, Cultu y Depotes CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simienz C/ Fncisco Gcí Pvón, 16 Tomelloso 1700 (C. Rel) Teléfono Fx: 96 51 9 9 Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS

Más detalles

2πR π =

2πR π = PÁGIN 11 Pág. 1 oodends geogáfi cs 19 os ciuddes tienen l mism longitud, 15 E, y sus ltitudes son 7 5' N y 5' S. uál es l distnci ente ells? R b 7 5' b 5' Tenemos que ll l longitud del co coespondiente

Más detalles

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo.

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo. 12 uepos en el espcio 1. Elementos básicos en el espcio ibuj mno lzd un punto, un ect, un omboide y un cubo. P I E N S A Y A L U L A Rect Punto Romboide ubo né clculist 489,6 : 7,5 = 65,28; R = 0 1 2 Escibe

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS GEOMETRÍ DEL PLNO 3º E.S.O. FIGURS SEMEJNTES Dos figus son semejntes cundo sólo difieen en tmño. Los segmentos coespondientes son popocionles. d longitud de un de ells se otiene multiplicndo l longitud

Más detalles

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota:

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota: Tz lines ects plels en posición hoizontl Tz lines ects plels en posición veticl Tz lines ects pependicules ls dds Tz lines ects plels l diección indicd Tz lines ects pependicules ls dds Tz lines ects pependicules

Más detalles

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y E F G I J H M K M L N N Q P R S Ejecicio 1. Medi con un egl estos segmentos y not, encim de cd uno de ellos, el esultdo en milímetos. T Ejecicio 2. on l yud del compás, tz: +, pti del punto M, -, pti del

Más detalles

Colegio Villa María la Planicie ÁREA DE MATEMÁTICA

Colegio Villa María la Planicie ÁREA DE MATEMÁTICA oleio Vill Mí l Plnicie ÁRE DE MEMÁI MERI N 10 Pofeso: S. los lmeid ellido Quinto de Secundi oodindo de áe: S. Gby Sáncez Fec: ctube de 2016 1. U ó HEXEDR REGUR SÓIDS GEMÉRIS Áe del cubo: = 6 2 Volumen

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

1. SUPERFICIE PRISMÁTICA Y PRISMA

1. SUPERFICIE PRISMÁTICA Y PRISMA 1. SUPERFICIE PRISMÁTICA Y PRISMA. SUPERFICIE PIRAMIDAL Y PIRÁMIDE. CUERPOS REDONDOS. 4. SÓLIDOS DE REVOLUCIÓN Objetivos: Detemin áes de supeficies. Detemin volúmenes de sólidos. 1 1. SUPERFICIE PRISMÁTICA

Más detalles

Mira bien las figuras PÁGINA 15

Mira bien las figuras PÁGINA 15 PÁGIN 5 Pág. Hll el áe de l pte sombed. l 0 cm El áe que buscmos es el doble de l que está coloed en est figu: l 0 cm 5 cm 5 cm Clculmos pimeo el ldo del cuddo inteio: Ldo 5 +5 50 5 cm CÍRCULO π 5 5π CUDRDO

Más detalles

. B. con regla y compás. 1.- Trazar, por el punto A, la recta perpendicular. 2.- Trazar, por el punto A, la recta perpendicular

. B. con regla y compás. 1.- Trazar, por el punto A, la recta perpendicular. 2.- Trazar, por el punto A, la recta perpendicular 1- Tz, po el punto, l ect pependicul l ect con egl y compás 2- Tz, po el punto, l ect pependicul l ect 3- Tz, po el punto, l ect plel l ect 4- Tz l meditiz del segmento 5- Tz, un ángulo igul l ángulo ddo

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

Área de figuras planas

Área de figuras planas 4º ESO Mtemátics Acdémics Unidd 0. Áes y voúmenes Áe de figus pns Tendemos en cuent que, en cd cso, memos A áe o supeficie de cd un de s figus pns. Poígonos Cuddo Rectánguo Romo A = do A = se = tu Romoide

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro OBJETIVO 1 CLASIICAR POLIEDROS NOMBRE: CURSO: ECHA: POLIEDROS Un poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Aista Los polígonos que limitan al poliedo se llaman caas. Caa

Más detalles

CLASIFICAR POLIEDROS. Nombre: Curso: Fecha:

CLASIFICAR POLIEDROS. Nombre: Curso: Fecha: CLASIICAR POLIEDROS OBJETIVO 1 Nombe: Cuso: eca: POLIEDROS poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Los polígonos que limitan al poliedo se llaman caas. Los lados de las

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 50 "# Si α, qué elción tienen con los númeos α80º y 60º-α?! α80º [ cos( α 80º) i sen ( α 80º) ] (-cosα isenα ) -[(cosα isenα)] -( α ) -, luego son opuestos.! 60º-α [ cos( 60º- α) i sen (60º- α ) ] (cosα

Más detalles

Figuras geométricas. GRUPO ANAYA, S.A. Matemáticas 1. ESO. Material fotocopiable autorizado.

Figuras geométricas. GRUPO ANAYA, S.A. Matemáticas 1. ESO. Material fotocopiable autorizado. 12 Figus geométics L geometí de los egipcios y de los bbilonios fue, sobe todo, páctic. Sin embgo, l ctitud de los giegos fue muy distint: desligon el estudio de ls figus geométics y de sus popieddes de

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

1. ELEMENTOS BÁSICOS DE LA GEOMETRÍA EL PUNTO LA LÍNEA LA SUPERFICIE.

1. ELEMENTOS BÁSICOS DE LA GEOMETRÍA EL PUNTO LA LÍNEA LA SUPERFICIE. 1. ELEMENTOS ÁSICOS DE L GEOMETRÍ. 1.1. EL UNTO. Definición. El punto no tiene ptes ni medid ni fom. No tiene dimensiones. Todos los elementos y figus de l geometí están fomdos po puntos. El punto tiene

Más detalles

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( )

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( ) Te de Estdo Sólido 5/Septiembe/008 Min Eugeni Fís Anguino. Pob que, b b, b π π π Donde los vectoes b i cumplen l siguiente elción: b πδ i j ij Po constucción geométic, los dos conjuntos de vectoes y b

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nome: Cuso: Fec: Se m ug geomético conjunto de todos os puntos que cumpen un detemind popiedd geométic. EJEMPLO Cuá es e ug geomético de os puntos

Más detalles

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO DOCENTE EL SABINO DEPARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II PROFESORA CARMEN ADRIANA CONCEPCIÓN 1. Un potón (q potón

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

TEORÍA: Te tienes que saber esto y no lo del libro (esta sería una pregunta de lo que he dicho antes en el apartado 4)

TEORÍA: Te tienes que saber esto y no lo del libro (esta sería una pregunta de lo que he dicho antes en el apartado 4) José Guzmán Tem Tigonometí pg. nº sevciones: ) Los ejecicios esueltos te los tienes que pende muy ien, poque los de los eámenes seán pecidos ) Los ejecicios que tu hgs, en cs y en los eámenes, tienen que

Más detalles

Tema 2. Magnitudes Geométricas

Tema 2. Magnitudes Geométricas Tem. Mgnitudes Geométics Cuánto mide l supeficie de l hoj de ce? 1 1. Intoducción En pime lug ttemos de un culidd de los objetos (su extensión, lo que ocupn en el plno) llmd, genelmente, supeficie o áe.

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

( ) RESOLUCIÓN RESOLUCIÓN SEMANA 16 ESFERA Y ROTACIONES RPTA.: E RPTA.: C

( ) RESOLUCIÓN RESOLUCIÓN SEMANA 16 ESFERA Y ROTACIONES RPTA.: E RPTA.: C SEMN 6 ESFER Y ROTCIONES. Calcule a que distancia del cento de una esfea de adio R ( + 5) se debe secciona con un plano paa que la difeencia de las áeas de los casquetes esféicos deteinados sea igual al

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área. POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A

Más detalles

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin.

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin. RECTAS Y ÁNGULOS 5º de E. Pimaia RECTAS Y ÁNGULOS -TEMA 5 RECTA.- Es una sucesión infinita de puntos que tienen la misma diección. La ecta no tiene ni pincipio ni fin. Po dos puntos del plano pasa una

Más detalles

Ejemplo de Parcial Física 3 abril 1, EcyT UNSAM. Nombre: Carrera:

Ejemplo de Parcial Física 3 abril 1, EcyT UNSAM. Nombre: Carrera: Ejemplo de cil Físic 3 il 1, 11 - EcyT UNSAM Nome: Ce: e-mil: 1. Un cg Q se encuent en el cento de un cscón metálico que tiene un cg -Q/ de dio inteio y eteio (>). i) indique l diección y sentido del cmpo

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. Página 68 Reconoce, nomba y descibe figuas geométicas que apaecen en esta ilustación. Respuesta libe. Po ejemplo: cilindo, otoedo, cono, pisma tiangula Recueda otas figuas geométicas que foman pate

Más detalles

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v Escles cmpos escles nálisis Vectoil Teoí Electomgnétic 1 Dipl.-Ing. noldo Rojs oto Escl: ntidd cuo lo puede se epesentdo po un simple númeo el positio o negtio mpos escles: Función mtemátic del ecto que

Más detalles

1.- LÍNEAS POLIGONALES Y POLÍGONOS.

1.- LÍNEAS POLIGONALES Y POLÍGONOS. 1.- LÍNEAS POLIGONALES Y POLÍGONOS. Línea poligonal.- Una línea poligonal está formada por varios segmentos consecutivos. Las líneas poligonales pueden ser abiertas o cerradas. Polígono.- Es la región

Más detalles

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: SEMESTRE 1 TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA RESEÑA HISTÓRICA HISTORIA DE LA TRIGONOMETRÍA. L histoi de l tigonometí

Más detalles

Un cuadro. Un libro. Una WEb. Mirando a través. La perspectiva en las artes, de J. Navarro de Zuvillaga (2000). Ediciones del Serbal, Barcelona.

Un cuadro. Un libro. Una WEb. Mirando a través. La perspectiva en las artes, de J. Navarro de Zuvillaga (2000). Ediciones del Serbal, Barcelona. Un cudo Rfel Snio, L Escuel de tens, 1511. Óleo. En est pintu, Rfel muest sus etodinios conocimientos de pespectiv cónic fontl, l epesent sobe el lieno los divesos elementos quitectónicos que configun

Más detalles

EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA

EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 0 TALLER Nº: SEMESTRE EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA RESEÑA HISTÓRICA Pitágos. (isl de Smos, ctul Geci, h. 57.C.- h. 97.C.)

Más detalles

Tema 5B. Geometría analítica del plano

Tema 5B. Geometría analítica del plano Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem

Más detalles

10. Teoremas de Thales y Pitágoras

10. Teoremas de Thales y Pitágoras 140 SOLUCIONRIO 10. Teoems de Tles y itágos 5. Dibuj un eágono y todos sus ángulos. Cuánto sumn ente todos ellos? 1. LUGRES GEOMÉTRICOS Y ÁNGULOS IENS Y CLCUL Cuánto mide d uno de los ino ángulos entles

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 11 Figuas en el espacio Recueda lo fundamental Nombe y apellidos:... Cuso:... Fecha:... FIGURAS EN EL ESPACIO POLIEDROS REGULARES Y SEMIRREGULARES Un poliedo es egula si sus caas son... y en cada vétice

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A.

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A. 1 Halla la mediatiz del segmento. 2 Taza la ecta pependicula a la ecta po el punto. 3 Taza la pependicula a la ecta desde el punto. uál es la distancia del punto a la ecta? 4 Dibuja dos ectas pependiculaes

Más detalles

( x ) ( x 2 4 ) = x 2

( x ) ( x 2 4 ) = x 2 9. Teoems de Tles y itágos 5. Dibuj un eágono y todos sus ángulos. Cuánto sumn ente todos ellos? 1. Luges geométios y ángulos IENS Y CLCUL Cuánto mide d uno de los ino ángulos entles de un pentágono egul?

Más detalles

RESOLUCIÓN RESOLUCIÓN SEMANA 6 CIRCUNFERENCIA RPTA.: C. 2r 2k = 2R 5k r 2 = R 5 RPTA.: A

RESOLUCIÓN RESOLUCIÓN SEMANA 6 CIRCUNFERENCIA RPTA.: C. 2r 2k = 2R 5k r 2 = R 5 RPTA.: A SEMN 6 IRUNFERENI. En un tiángulo ectángulo cuyos ángulos gudos miden 7 y 5. lcule l elción ente ls medids indio y el cicundio. ) /5 ) /5 )/0 D) /5 E) /7 Indio R = icundio Dto: + b + c = 4. R =.. : Teoem

Más detalles

CALCULAR ÁREAS DE POLÍGONOS Y FIGURAS CIRCULARES

CALCULAR ÁREAS DE POLÍGONOS Y FIGURAS CIRCULARES REPSO Y POYO OBJETIVO 1 6 CLCULR ÁRES DE POLÍONOS Y FIURS CIRCULRES Nome: Cuso: Fec: ÁRE DE POLÍONOS Áe de tiánguo Áe de cuddo Áe de ectánguo se? tu? = = =? =? Áe de peogmo Áe de tpecio Áe de omo B D d

Más detalles

1 Inductancia interna de conductores

1 Inductancia interna de conductores Cmpos y Onds nductnci inten de conductoes Pág. nductnci inten de conductoes En est sección se efectún ls deducciones de l inductnci inten de distints geometís de conductoes, que conducen un coiente estcioni

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

CALCULAR ÁREAS DE POLÍGONOS Y FIGURAS CIRCULARES

CALCULAR ÁREAS DE POLÍGONOS Y FIGURAS CIRCULARES REPSO Y POYO OBJETIVO 6 CLCULR ÁRES DE POLÍONOS Y FIURS CIRCULRES Nome: Cuso: Fec: ÁRE DE POLÍONOS Áe de tiánguo Áe de cuddo Áe de ectánguo se? tu? = = =? =? Áe de peogmo Áe de tpecio Áe de omo B D d B

Más detalles

12. Los polígonos y la circunferencia

12. Los polígonos y la circunferencia l: ldo SLUINI 107 1. Los polígonos y l circunferenci 1. PLÍGNS PIENS Y LUL lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos:? l: ldo? 4. ivide un circunferenci de de rdio en seis prtes

Más detalles

5.2 PROBLEMAS PRACTICOS DE MÁXIMOS Y MINIMOS

5.2 PROBLEMAS PRACTICOS DE MÁXIMOS Y MINIMOS 8. Un avión que vuela a velocidad constante de Km/h pasa sobe una estación teeste de ada a una altua de 1 Km. Y se eleva a un ángulo de º. qué velocidad aumenta la distancia ente el avión la estación de

Más detalles

Generalidades y ángulos en la circunferencia. II Medio 2016

Generalidades y ángulos en la circunferencia. II Medio 2016 Genealidades y ángulos en la cicunfeencia II Medio 2016 pendizajes espeados Identifica los elementos de una cicunfeencia y un cículo. Calcula áeas y peímetos del cículo, del secto cicula y del segmento

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

AXO-1 Z Z X Y X Y Z Z X Y X Y Z Z Y X Y X

AXO-1 Z Z X Y X Y Z Z X Y X Y Z Z Y X Y X 1- Halla los tiángulos de tazas coficientes de educción de estos ejes axonométicos O-1 2- Con los coeficientes de educción obtenidos en el ejecicio anteio, epesenta los siguientes puntos: =(3.5,2.0,4.0)

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

Perímetros. Cuadrado: EL PERÍMETRO: a a P = a + a + a + a P = 4a

Perímetros. Cuadrado: EL PERÍMETRO: a a P = a + a + a + a P = 4a Perímetros EL PEÍMETO: udrdo: P El perímetro de ls figurs puede medirse usndo uniddes de medid de longitud. Por lo tnto se puede medir en centímetros, decímetros, metros. Ejemplo: El perímetro del triángulo

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

GEOMETRÍA. punto, la recta y el plano.

GEOMETRÍA. punto, la recta y el plano. MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

4πε. r 1. r 2. E rˆ La carga puntual q 1

4πε. r 1. r 2. E rˆ La carga puntual q 1 .3 L cg puntul q -5. nc está en el oigen l cg puntul q 3 nc está sobe el eje de ls en 3 cm. l punto P está en 4 cm. ) Clcule los cmpos elécticos debidos ls dos cgs en P. b) Obteng el cmpo eléctico esultnte

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

CUADRILÁTEROS. Cuadrado y Rectángulo.

CUADRILÁTEROS. Cuadrado y Rectángulo. ibuja un NTÁN cuando nos dan el RI. 1. ibuja una cicunfeencia de adio el que nos dan.. ibuja dos diámetos pependiculaes (ojo que pasen po el cento de la cicunfeencia). 3. ibuja la mediatiz de uno de los

Más detalles

IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS

IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS A. COORDENADAS POLARES Dado un punto en el plano catesiano, (coodenadas ectangulaes), dicho punto puede se epesentado con otas coodenadas (coodenadas polaes)

Más detalles

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO

APUNTES DE CRISTALOGRAFÍA: RETÍCULO RECÍPROCO Màrius Vendrell RETÍCULO RECÍPROCO RETÍCULO RECÍPROCO A pti el etíulo efinio nteiomente, en el que omo nuo oespone un motivo o llmemos etíulo ieto, es posible efini oto etíulo (que llmemos eípoo) en el ul los tes vetoes funmentles son:

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

Si dos rectas coplanares no se cortan diremos que son paralelas.

Si dos rectas coplanares no se cortan diremos que son paralelas. - 1 - pítulo I: plelismo y pependiculidd Definición de ects plels Si dos ects coplnes no se cotn diemos que son plels xiom de Euclides Si dos ects coplnes ( y ) son cotds po un tece () fomndo ángulos colteles

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Mgnitudes vectoiles 1 de 8 MAGNITUDES VECTORIALES: Índice 1 Mgnitudes escles vectoiles Sum de vectoes lies Poducto de un escl po un vecto 3 Sistem de coodends vectoiles. Vectoes unitios 3 Módulo de un

Más detalles

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL 8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t

Más detalles

Cantidad de movimiento en la máquina de Atwood.

Cantidad de movimiento en la máquina de Atwood. Cntidd de movimiento en l máquin de Atwood. esumen Joge Sved y Pblo Adián Nuñez. jogesved@topmil.com. pblo_nuniez2000@yhoo.com. ed pticiptiv de Cienci UNSAM - 2005 En el pesente tbjo se puso pueb l pedicción

Más detalles

Ejercicios. 100 Capítulo 8 Construcciones geométricas

Ejercicios. 100 Capítulo 8 Construcciones geométricas jecicios 1. a. Taza la ecta (MN). b. Taza la semiecta [N). c. Taza el segmento [Q]. d. Taza el segmento []. e. Taza la ecta (). f. Taza la semiecta [).. 7. () [] [) (G) G () [) [) () [] [] [) (G) H 8.

Más detalles

SOLUCIONARIO. Examen UNI 2015 I. Matemática

SOLUCIONARIO. Examen UNI 2015 I.  Matemática SOLUIONRIO Emen UNI 05 I Mtemátic Pegunt 0 Semnlmente, un tbjdo ho ciet cntidd en soles, y dunte 0 semns ho ls siguientes cntiddes: 5 9 8 8 5 6 7 7 7 9 9 6 8 6 6 0 8 9 5 5 0 8 0 7 7 Se constuye un tbl

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electici Mgnetismo Cuso 5/6 Métoo e ls Imágenes. Es un métoo potente ue pemite esolve lgunos polems complicos. Consiste en moific el polem, mplino el ecinto, e fom ue:» Resulte más sencillo.» Se sign cumplieno

Más detalles

PRIMERA UNIDAD. Materiales fundamentales empleados en Dibujo Técnico

PRIMERA UNIDAD. Materiales fundamentales empleados en Dibujo Técnico iujo de Pimeo de chilleto: uto: Rmón del Águil olán PRIMER UNI. Mteiles fundmentles empledos en iujo Técnico ontenido: Lápices, plntills, compses, etc. onocimiento de sopotes Técnics de odo Uso coecto

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA TERCER EJERCICIO GRUPO 1PV 22 de Mayo de 2002

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA TERCER EJERCICIO GRUPO 1PV 22 de Mayo de 2002 FUNDAMENTS FÍSCS DE LA NFMÁTCA TECE EJECC GUP 1P de Myo de 00 Cuestiones 1. ) Enunci el teoem de Ampèe. ) Aplic el teoem de Ampèe p clcul el cmpo mgnético cedo po un conducto ectilíneo indefinido, en un

Más detalles

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación:

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación: Repesent ls dos poyecciones y l tece poyección de los puntos ddos continución: pto. lej. cot A + 0 B + = + C + < + D 0 + E - > + F - = + G - > + H - 0 I - > - J - = - K L - 0 < - - M + < - N + = - + >

Más detalles

Universidad de Chile Facultad de Ciencias Departamento de Física Electromagnetismo

Universidad de Chile Facultad de Ciencias Departamento de Física Electromagnetismo Univesidd de Chile Fcultd de Ciencis Deptmento de Físic Electomgnetismo Pue 1 de Cáted Pofeso: José Rogn C. 15 de Ail del 2005 Ayudntes: Mí Tees Ced G. Gemán Vs S. 1. Un distiución de cg esféicmente simétic

Más detalles

Colegio Los Robles Equipo Técnico de Matemáticas. Matemáticas 1º ESO

Colegio Los Robles Equipo Técnico de Matemáticas. Matemáticas 1º ESO Colegio Los Roles Equipo Técico de Mtemátics Resume de Coocimietos ásicos Mtemátics 1º ESO (IX.01) Todos los lumos de 1º de ESO de cooce pefectmete los coteidos de este esume, que se les podá pegut e culquie

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Clasificación de los polígonos convexos. Polígono. Definición. 1. Polígono equiángulo. 2. Polígono equilátero

Clasificación de los polígonos convexos. Polígono. Definición. 1. Polígono equiángulo. 2. Polígono equilátero olígonos y udriláteros olígono efinición Es l reunión de tres o más segmentos consecutivos y coplnres, tl que el etremo del primero coincid con el etremo del último; ningún pr de segmentos se intercepten,

Más detalles

Clasifica los siguientes polígonos. a) b) c) d)

Clasifica los siguientes polígonos. a) b) c) d) 1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr

Más detalles

Se le define como toda situación física producida por una masa m en el espacio que lo rodea y que es perceptible debido a la fuerza que ejerce sobre

Se le define como toda situación física producida por una masa m en el espacio que lo rodea y que es perceptible debido a la fuerza que ejerce sobre Cpo vitcionl Se le define coo tod situción físic poducid po un s en el espcio que lo ode y que es peceptible debido l fuez que ejece sobe un s colocd en dicho espcio. Dd un s en el espcio y un s en difeentes

Más detalles

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto.

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto. TRIGONOMETRÍA INTRODUCCIÓN En un sentido ásio, se puede fim que l Tigonometí es el estudio de ls eliones numéis ente los ángulos ldos del tiángulo. Peo su desollo l h llevdo tene un ojetivo más mplio,

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS (Oposiciones de Secundi) TEMA 5 PRODUCTO ESCALAR DE VECTORES. PRODUCTO VECTORIAL Y PRODUCTO MIXTO. APLICACIONES A LA RESOLUCION DE PROBLEMAS FISICOS Y GEOMETRICOS.. Poducto escl. Popieddes...Nom

Más detalles

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental L myorí de los omres ncen como originles y terminn como copis 15 ESO Orientl ÍNDICE: MILLA NÁUTICA PISTA DE ATLETISMO 1. FÓRMULAS FUNDAMENTALES PARA CÁLCULO DE LONGITUDES, SUPERFICIES Y VOLÚMENES. LONGITUDES

Más detalles