Figuras geométricas. GRUPO ANAYA, S.A. Matemáticas 1. ESO. Material fotocopiable autorizado.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Figuras geométricas. GRUPO ANAYA, S.A. Matemáticas 1. ESO. Material fotocopiable autorizado."

Transcripción

1 12 Figus geométics L geometí de los egipcios y de los bbilonios fue, sobe todo, páctic. Sin embgo, l ctitud de los giegos fue muy distint: desligon el estudio de ls figus geométics y de sus popieddes de culquie povecho páctico que pudie obtenese de ells. Tles de Mileto vivió ente los siglos vii y vi.. De joven psó vios ños en Egipto, donde pendió l geometí egipci, l que supo d un gn impulso, mplindo sus contenidos e imponiendo que cd fómul y cd pocedimiento fue consecuenci de un zonmiento lógico. demás de mtemático, Tles fue stónomo (ente ots coss, pedijo eclipses de Sol) y el pimeo de los gndes filósofos giegos. Ejeció gn influenci sobe los pensdoes posteioes. si tes siglos después, Euclides culminó el poceso deductivo en l mtemátic gieg. Sus obs de geometí tuvieon un enome impotnci hst el siglo xix. Incluso hoy en dí, l geometí que se estudi más menudo se l llm euclíde. DEERÁS RERDR Q ué son los polígonos y cómo se clsificn. ómo se designn los elementos de un tiángulo. uáles son los elementos elciondos con l cicunfeenci.

2 1 Tiángulos lsificción on seguidd, dos de los ángulos de un tiángulo son gudos. Según como se el oto ángulo, el tiángulo es cutángulo, ectángulo u obtusángulo. UTÁNGUL RETÁNGUL TUSÁNGUL Un tiángulo con los tes ldos igules se llm equiláteo. Si tiene dos ldos igules, se llm isósceles. Y si los tes ldos son distintos, se llm escleno. Relciones ente los ángulos y los ldos equiláteo y equiángulo Los tiángulos equiláteos tmbién tienen los ángulos igules. En un tiángulo isósceles, los ángulos opuestos los ldos igules son tmbién igules. Y, en genel, si un ldo es myo que oto, entonces sus ángulos opuestos siguen l mism elción (si > b entonces ì > ì ). = b < b < c b b ì ì ì ì ì = < < c c onstucción de tiángulos P constui un tiángulo, es suficiente conoce solo lgunos de sus elementos. Pueden dse distintos csos. Vemos quí l constucción pti de los tes ldos. En puedes encont los demás. dtos constucción esultdo ctividdes 1 onstuye con egl y compás un tiángulo cuyos ldos midn 7 cm, 5 cm y 8 cm, espectivmente. 2 Di cómo es, según sus ángulos y según sus ldos, cd tiángulo de l deech. 3 Dibuj un tiángulo escleno obtusángulo y un tiángulo isósceles cutángulo. c b ) b c b) c) e) f) ì b d) ì ì c 134

3 UNIDD 12 Equilibio Medins de un tiángulo. icento Se llm medin de un tiángulo un segmento que v de un vétice l punto medio del ldo opuesto. Medin Un tiángulo de ctulin, chp o mde se mntiene en equilibio si lo sostenemos en el bicento. bi-cento: cento de gvedd. ' Ls tes medins de un tiángulo se cotn en un punto llmdo bicento. ' ' ' icento ltus de un tiángulo. tocento L ltu de un tiángulo es un segmento que v, pependiculmente, desde un vétice l ldo opuesto o su polongción. ltu Todo tiángulo tiene tes ltus, que se cotn en un punto llmdo otocento. ctividdes 4 Dibuj el tiángulo cuyos ldos miden 8 cm, 10 cm y 12 cm. bsev que es cutángulo. Tz sus tes ltus y señl su otocento. 5 Dibuj el tiángulo cuyos ldos 6 cm, 8 cm y 12 cm. bsev que es obtusángulo. Tz sus medins y señl su bicento. tocento 6 Dibuj el tiángulo cuyos ldos miden 6 cm, 8 cm y 10 cm. bsev que es ectángulo. Locliz su otocento y su bicento. 7 Dibuj el tiángulo equiláteo cuyos ldos miden 6 cm. Locliz su otocento y su bicento. 135

4 2 udiláteos udiláteos son polígonos de cuto ldos. Recued que sus cuto ángulos sumn 360. Tienen dos digonles. lsificción de los cudiláteos tención Los cuddos son ectángulos, poque tienen los cuto ángulos ectos. Y tmbién son ombos, poque tienen los cuto ldos igules. PRLELGRMS (ldos opuestos plelos) RETÁNGULS (ángulos ectos) RMS (ldos igules) RMIDES UDRDS N PRLELGRMS TRPEIS (solo dos ldos plelos) TRS UDRILÁTERS (TRPEZIDES) Plelogmos. Digonles. Ejes de simetí Se llm plelogmos los cudiláteos cuyos ldos opuestos son plelos. Ls digonles de un plelogmo culquie se cotn en sus puntos medios. En el cuddo y el ombo, ls digonles son pependicules. En el cuddo y el ectángulo, ls digonles son igules. El omboide no tiene ejes de simetí. El ectángulo y el ombo tienen dos ejes de simetí. El cuddo tiene cuto ejes de simetí. 136

5 UNIDD 12 Tpecios Un tpecio es un cudiláteo con dos ldos plelos y otos dos no plelos. se ltu Los ldos plelos se llmn bses, y l distnci ente ellos, ltu. se TRPEI RETÁNGUL e TRPEI ISÓSELES Un tpecio con dos ángulos ectos se llm tpecio ectángulo. Un tpecio con los dos ldos no plelos igules se llm isósceles. El tpecio isósceles tiene los ángulos igules dos dos. Peo, tención!, los ángulos igules son contiguos, no opuestos. Los tpecios isósceles tienen un eje de simetí. Tpezoides Los cudiláteos que no tienen ningún p de ldos plelos se llmn tpezoides. Hy tpezoides con foms muy vids. lgunos de ellos son inteesntes. ejemplos Este, con fom de comet, tiene los ldos igules dos dos, peo los ldos igules son contiguos, no opuestos (si fuen igules los ldos opuestos, seí plelogmo). demás, sus digonles son pependicules, como ls del ombo, peo no se cotn en sus puntos medios. Solo tiene un eje de simetí, su digonl myo. Este tmbién tiene los ldos igules dos dos. Sus digonles, unque tienen diecciones pependicules, no se cotn, pues un de ells está fue del polígono. Estos cudiláteos, en los que un digonl qued fue, se llmn cóncvos. ctividdes 1 bsev los cudiláteos de l deech. ) uáles son plelogmos, cuáles tpecios y cuáles tpezoides? b) Ponle un nombe decudo cd uno. Po ejemplo, cuddo, tpezoide c) Di cuántos ejes de simetí tiene cd figu. d) uáles de ests figus tienen ls digonles pependicules? I II V IX VI III VII X IV VIII XI XII 137

6 3 Polígonos egules Un polígono egul es el que tiene todos sus ldos igules y todos sus ángulos igules. Todos los polígonos egules tienen un cicunfeenci cicunscit. l l l l Se llmn cento,, y dio,, de un polígono egul l cento y l dio de l cicunfeenci cicunscit. potem,, es el segmento pependicul desde el cento,, l ldo, l. L potem siempe cot l ldo en su punto medio. En todos los polígonos egules,, y l /2 son los ldos de un tiángulo ectángulo. Ejes de simetí Todos los polígonos egules tienen tntos ejes de simetí como ldos. ctividdes 1 lc en tu cudeno ls figus siguientes: Dibuj en ojo todos sus ejes de simetí. 2 lc ls figus del ejecicio nteio en hojs pte y ecótls. Señl, medinte pliegues, todos sus ejes de simetí. bsev que en el cuddo puedes elizlo medinte tes pliegues, y en el octógono, medinte cuto. 138

7 4 icunfeenci UNIDD 12 L cicunfeenci es l líne que ode l cículo. El cículo es l figu pln más pefect: ulquie de sus diámetos es eje de simetí. Po tnto, tiene infinitos ejes de simetí. Su áe es l myo posible ente tods ls figus que tienen su mismo peímeto. Es deci, si con un cued queemos delimit un teeno cuy supeficie se l myo posible, debeemos constui un cicunfeenci. Posiciones eltivs de ect y cicunfeenci Ten en cuent d es l distnci de l ect. es el dio de l cicunfeenci. d d > d d = d < d EXTERIRES TNGENTES SENTES Posiciones eltivs de dos cicunfeencis d d d EXTERIRES TNGENTES EXTERIRES SENTES d ctividdes 1 Tz un cicunfeenci de 5 cm de dio y tes ects que psen 3 cm, 5 cm y 8 cm, espectivmente, del cento de l cicunfeenci. 2 Dibuj en tu cudeno: ) Dos cicunfeencis secntes. b) Dos cicunfeencis inteioes. Mide, en mbos csos, l distnci ente sus centos y compál con sus dios. TNGENTES INTERIRES INTERIRES NÉNTRIS 3 Si tzs dos cicunfeencis de dios 7 cm y 4 cm con sus centos situdos 10 cm de distnci, en qué posición eltiv quedín? Tázls y compueb tu espuest. 4 Tz dos cicunfeencis de dios 5 cm y 3 cm tngentes exteioes. qué distnci están sus centos? Tz dos cicunfeencis de 5 cm y 3 cm de dio, que sen tngentes inteioes. qué distnci están sus centos? 139

8 5 uepos geométicos Los cuepos geométicos son, como sbes, figus de tes dimensiones, es deci, figus que ocupn un poción de espcio Geometí y civilizción Un gupo de pesons tuvieon un nufgio. Se slvon y llegon un ply de un isl desconocid. Ibn exhustos y temoizdos. 4 5 bsevon que en l en hbí dibujds uns figus geométics. Uno de los náufgos, discípulo de Pltón, l vels exclmó con legí: Ánimo! quí viven pesons civilizds tención Ls figus 4 y 10 no son poliedos, pues sus cs no son polígonos, ni cuepos de evolución, pues no se pueden obtene l hce gi un figu pln. ctividdes 1 Señl, ente los cuepos de ib, dos poliedos (pte del 2 y el 3). Tods ests figus ecuedn difeentes objetos de nuesto entono. Son cuepos geométicos. Ente ellos, distinguiemos dos gndes tipos: Poliedos: Están limitdos po cs plns poligonles. De los de ib, son poliedos, ente otos, el 2 y el 3. uepos de evolución: Son el esultdo del gio de un figu pln en tono un eje. Po ejemplo, el 1 y el 6 de ib. 2 Ente los cuepos de ib, señl dos cuepos de evolución (pte del 1 y el 6). 140

9 6 Poliedos UNIDD 12 Los cuepos geométicos limitdos po polígonos se llmn poliedos. s del poliedo son los polígonos que lo fomn. ists son los ldos de ls cs. En cd ist se juntn dos cs. Vétices del poliedo son los vétices de ls cs. En cd vétice concuen tes o más cs. RTEDR PRISM PENTGNL REGULR No te confunds Este poliedo no es egul, poque en unos vétices concuen tes tiángulos, y en otos, cuto. pisms Un pism es un poliedo limitdo po dos polígonos igules y plelos, llmdos bses, y vios plelogmos llmdos cs lteles. Si ls bses son polígonos egules y ls cs lteles son ectángulos, el pism se llm egul. Los pisms cuys cs son tods ectángulos se llmn otoedos. piámides Un piámide es un poliedo que tiene po bse un polígono culquie y po cs lteles tiángulos con un vétice común, que se denomin vétice de l piámide. Un piámide es egul cundo l bse es un polígono egul y el vétice se poyect sobe el cento de ese polígono. poliedos egules PIRÁMIDE UDRNGULR REGULR Un poliedo es egul si tods sus cs son polígonos egules idénticos y en cd vétice concuen el mismo númeo de cs. ctividdes 1 Descibe los poliedos siguientes: nombe, cómo son sus cs y cuánts tienen, númeo de ists, de vétices TETREDR U TEDR DDEEDR ISEDR 141

10 7 uepos de evolución Los cuepos de evolución se oiginn hciendo gi un figu pln lededo de un eje. cilindos Un cilindo es un cuepo de evolución genedo po un ectángulo que gi lededo de uno de sus ldos. SE ltu SE VÉRTIE conos Un cono es un cuepo de evolución genedo po un tiángulo ectángulo que gi lededo de uno de los ctetos. ltu genetiz SE ctividdes 1 Utilizndo ls plbs cilindo, cono y esfe, descibe los siguientes cuepos geométicos: esfes Un esfe es un cuepo de evolución genedo po un cicunfeenci que gi lededo de culquie de sus diámetos. D E 142

11 Ejecicios y poblems onsolid lo pendido utilizndo tus competencis UNIDD 12 Polígonos y cicunfeenci 1 Di cuáles de estos tiángulos son: ) cutángulos. b) Rectángulos. c) btusángulos isósceles. E D F 2 Di cómo son, según sus ldos y según sus ángulos, los tiángulos siguientes: 3 Ponle nombe cd uno de los cudiláteos que pecen continución: G H D 5 Dibuj un tiángulo de ldos 4 cm, 5 cm y 6 cm, y tz sus ltus. ómo se llm el punto donde se cotn? Tz tmbién sus medins. 6 Si dibujs dos segmentos que sen pependicules en sus puntos medios y unes sus extemos, obtienes un cudiláteo. De qué tipo es? Hzlo en tu cudeno: ) P dos segmentos de distint longitud. b) P dos segmentos de igul longitud. 7 Dibuj dos segmentos que se coten en sus puntos medios y no sen pependicules. Une sus extemos y di qué tipo de cudiláteo se obtiene: ) Si los dos segmentos son de igul longitud. b) Si los dos segmentos son de distint longitud. 8 Dibuj un cicunfeenci de 5 cm de dio y un tiángulo cuyos ldos sen: uno secnte l cicunfeenci, oto tngente y oto exteio. 9 Uniendo listones de mde, medinte tonillos y plomills, podemos constui distintos polígonos. bsev que el tiángulo (Fig. ) es ígido, es deci, indefomble: E D F 4 lsific los polígonos siguientes en egules y no egules: D E G H F I G Fig. Sin embgo, el ombo (Fig. ) se puede defom. Peo si le ñdimos un listón (Fig. ), coincidiendo con un digonl, se hce ígido. Es deci, lo hemos fijdo: Fig. Figu ) uántos listones necesits p hce indefomble cd un de ests figus? D b) uántos listones necesits p hce indefomble un polígono de n ldos? 143

12 Ejecicios y poblems onsolid lo pendido utilizndo tus competencis uepos geométicos 10 bsev estos cuepos: 11 uáles de ls figus siguientes son cuepos de evolución? De cuáles conoces el nombe? ) uáles son poliedos? De ellos, nomb los pisms y l piámide. b) Hy lguno que no se pism ni piámide? c) uáles son cuepos de evolución? Nómblos. d) Hy lguno que no se poliedo ni cuepo de evolución? 12 l gi cd un de ls figus siguientes en tono l eje que se indic se gene un figu de ls del ejecicio nteio. Identifícl. D E utoevlución 1 Identific y nomb los cudiláteos que: ) Tienen todos los ángulos igules. b) Tienen los ldos opuestos plelos. c) No tienen los ldos opuestos plelos. d) Tienen los cuto ldos igules. e) Tienen solo dos ldos plelos. D F H E G 2 Di qué polígonos son egules y escibe sus nombes: E G J I D H F K 3 ) Dibuj dos cicunfeencis tngentes inteioes. b) Dibuj un ect tngente ls dos cicunfeencis. c) Dibuj ot ect tngente un cicunfeenci y secnte l ot. 4 De los siguientes cuepos geométicos, detemin cuáles son poliedos; cuáles, cuepos de evolución, y cuáles, ninguno de los dos. Pon nombe los que conozcs. F K G L H M D I N J E 144

FIGURAS EN EL PLANO Y EN EL ESPACIO

FIGURAS EN EL PLANO Y EN EL ESPACIO Consejeí de Educción, Cultu y Depotes CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simienz C/ Fncisco Gcí Pvón, 16 Tomelloso 1700 (C. Rel) Teléfono Fx: 96 51 9 9 Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y

Lámina 01. Ejercicio 3. Con la ayuda del compás, trazar: ( AB + CD) - EF, a partir del punto N, y E F G I J H M K M L N N Q P R S Ejecicio 1. Medi con un egl estos segmentos y not, encim de cd uno de ellos, el esultdo en milímetos. T Ejecicio 2. on l yud del compás, tz: +, pti del punto M, -, pti del

Más detalles

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo.

12 Cuerpos. en el espacio. 1. Elementos básicos en el espacio. Dibuja a mano alzada un punto, una recta, un romboide y un cubo. 12 uepos en el espcio 1. Elementos básicos en el espcio ibuj mno lzd un punto, un ect, un omboide y un cubo. P I E N S A Y A L U L A Rect Punto Romboide ubo né clculist 489,6 : 7,5 = 65,28; R = 0 1 2 Escibe

Más detalles

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS

GEOMETRÍA 3º E.S.O. FIGURAS SEMEJANTES SEMEJANZA DE TRIÁNGULOS SEMEJANZA DE TRIÁNGULOS GEOMETRÍ DEL PLNO 3º E.S.O. FIGURS SEMEJNTES Dos figus son semejntes cundo sólo difieen en tmño. Los segmentos coespondientes son popocionles. d longitud de un de ells se otiene multiplicndo l longitud

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

2πR π =

2πR π = PÁGIN 11 Pág. 1 oodends geogáfi cs 19 os ciuddes tienen l mism longitud, 15 E, y sus ltitudes son 7 5' N y 5' S. uál es l distnci ente ells? R b 7 5' b 5' Tenemos que ll l longitud del co coespondiente

Más detalles

. B. con regla y compás. 1.- Trazar, por el punto A, la recta perpendicular. 2.- Trazar, por el punto A, la recta perpendicular

. B. con regla y compás. 1.- Trazar, por el punto A, la recta perpendicular. 2.- Trazar, por el punto A, la recta perpendicular 1- Tz, po el punto, l ect pependicul l ect con egl y compás 2- Tz, po el punto, l ect pependicul l ect 3- Tz, po el punto, l ect plel l ect 4- Tz l meditiz del segmento 5- Tz, un ángulo igul l ángulo ddo

Más detalles

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota:

Grupo: Nombre: Fecha: Lámina nº : 1 Contenido: PARALELISMO Y PERPENDICULARIDAD Nota: Tz lines ects plels en posición hoizontl Tz lines ects plels en posición veticl Tz lines ects pependicules ls dds Tz lines ects plels l diección indicd Tz lines ects pependicules ls dds Tz lines ects pependicules

Más detalles

Mira bien las figuras PÁGINA 15

Mira bien las figuras PÁGINA 15 PÁGIN 5 Pág. Hll el áe de l pte sombed. l 0 cm El áe que buscmos es el doble de l que está coloed en est figu: l 0 cm 5 cm 5 cm Clculmos pimeo el ldo del cuddo inteio: Ldo 5 +5 50 5 cm CÍRCULO π 5 5π CUDRDO

Más detalles

1. SUPERFICIE PRISMÁTICA Y PRISMA

1. SUPERFICIE PRISMÁTICA Y PRISMA 1. SUPERFICIE PRISMÁTICA Y PRISMA. SUPERFICIE PIRAMIDAL Y PIRÁMIDE. CUERPOS REDONDOS. 4. SÓLIDOS DE REVOLUCIÓN Objetivos: Detemin áes de supeficies. Detemin volúmenes de sólidos. 1 1. SUPERFICIE PRISMÁTICA

Más detalles

RESOLUCIÓN RESOLUCIÓN SEMANA 6 CIRCUNFERENCIA RPTA.: C. 2r 2k = 2R 5k r 2 = R 5 RPTA.: A

RESOLUCIÓN RESOLUCIÓN SEMANA 6 CIRCUNFERENCIA RPTA.: C. 2r 2k = 2R 5k r 2 = R 5 RPTA.: A SEMN 6 IRUNFERENI. En un tiángulo ectángulo cuyos ángulos gudos miden 7 y 5. lcule l elción ente ls medids indio y el cicundio. ) /5 ) /5 )/0 D) /5 E) /7 Indio R = icundio Dto: + b + c = 4. R =.. : Teoem

Más detalles

Colegio Villa María la Planicie ÁREA DE MATEMÁTICA

Colegio Villa María la Planicie ÁREA DE MATEMÁTICA oleio Vill Mí l Plnicie ÁRE DE MEMÁI MERI N 10 Pofeso: S. los lmeid ellido Quinto de Secundi oodindo de áe: S. Gby Sáncez Fec: ctube de 2016 1. U ó HEXEDR REGUR SÓIDS GEMÉRIS Áe del cubo: = 6 2 Volumen

Más detalles

Área de figuras planas

Área de figuras planas 4º ESO Mtemátics Acdémics Unidd 0. Áes y voúmenes Áe de figus pns Tendemos en cuent que, en cd cso, memos A áe o supeficie de cd un de s figus pns. Poígonos Cuddo Rectánguo Romo A = do A = se = tu Romoide

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nome: Cuso: Fec: Se m ug geomético conjunto de todos os puntos que cumpen un detemind popiedd geométic. EJEMPLO Cuá es e ug geomético de os puntos

Más detalles

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( )

( ) ( ) ( ) i j ij B (1.1) Y que su volumen se expresa en términos del producto punto de vectores como: ( ) Te de Estdo Sólido 5/Septiembe/008 Min Eugeni Fís Anguino. Pob que, b b, b π π π Donde los vectoes b i cumplen l siguiente elción: b πδ i j ij Po constucción geométic, los dos conjuntos de vectoes y b

Más detalles

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro OBJETIVO 1 CLASIICAR POLIEDROS NOMBRE: CURSO: ECHA: POLIEDROS Un poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Aista Los polígonos que limitan al poliedo se llaman caas. Caa

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

( x ) ( x 2 4 ) = x 2

( x ) ( x 2 4 ) = x 2 9. Teoems de Tles y itágos 5. Dibuj un eágono y todos sus ángulos. Cuánto sumn ente todos ellos? 1. Luges geométios y ángulos IENS Y CLCUL Cuánto mide d uno de los ino ángulos entles de un pentágono egul?

Más detalles

CLASIFICAR POLIEDROS. Nombre: Curso: Fecha:

CLASIFICAR POLIEDROS. Nombre: Curso: Fecha: CLASIICAR POLIEDROS OBJETIVO 1 Nombe: Cuso: eca: POLIEDROS poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Los polígonos que limitan al poliedo se llaman caas. Los lados de las

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA

EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 0 TALLER Nº: SEMESTRE EJERCICIOS MISCELÁNEOS DE TRIGONOMETRÍA RESEÑA HISTÓRICA Pitágos. (isl de Smos, ctul Geci, h. 57.C.- h. 97.C.)

Más detalles

Tema 5B. Geometría analítica del plano

Tema 5B. Geometría analítica del plano Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem

Más detalles

TEORÍA: Te tienes que saber esto y no lo del libro (esta sería una pregunta de lo que he dicho antes en el apartado 4)

TEORÍA: Te tienes que saber esto y no lo del libro (esta sería una pregunta de lo que he dicho antes en el apartado 4) José Guzmán Tem Tigonometí pg. nº sevciones: ) Los ejecicios esueltos te los tienes que pende muy ien, poque los de los eámenes seán pecidos ) Los ejecicios que tu hgs, en cs y en los eámenes, tienen que

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 50 "# Si α, qué elción tienen con los númeos α80º y 60º-α?! α80º [ cos( α 80º) i sen ( α 80º) ] (-cosα isenα ) -[(cosα isenα)] -( α ) -, luego son opuestos.! 60º-α [ cos( 60º- α) i sen (60º- α ) ] (cosα

Más detalles

PRIMERA UNIDAD. Materiales fundamentales empleados en Dibujo Técnico

PRIMERA UNIDAD. Materiales fundamentales empleados en Dibujo Técnico iujo de Pimeo de chilleto: uto: Rmón del Águil olán PRIMER UNI. Mteiles fundmentles empledos en iujo Técnico ontenido: Lápices, plntills, compses, etc. onocimiento de sopotes Técnics de odo Uso coecto

Más detalles

1. ELEMENTOS BÁSICOS DE LA GEOMETRÍA EL PUNTO LA LÍNEA LA SUPERFICIE.

1. ELEMENTOS BÁSICOS DE LA GEOMETRÍA EL PUNTO LA LÍNEA LA SUPERFICIE. 1. ELEMENTOS ÁSICOS DE L GEOMETRÍ. 1.1. EL UNTO. Definición. El punto no tiene ptes ni medid ni fom. No tiene dimensiones. Todos los elementos y figus de l geometí están fomdos po puntos. El punto tiene

Más detalles

Clasifica los siguientes polígonos. a) b) c) d)

Clasifica los siguientes polígonos. a) b) c) d) 1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr

Más detalles

Si dos rectas coplanares no se cortan diremos que son paralelas.

Si dos rectas coplanares no se cortan diremos que son paralelas. - 1 - pítulo I: plelismo y pependiculidd Definición de ects plels Si dos ects coplnes no se cotn diemos que son plels xiom de Euclides Si dos ects coplnes ( y ) son cotds po un tece () fomndo ángulos colteles

Más detalles

10. Teoremas de Thales y Pitágoras

10. Teoremas de Thales y Pitágoras 140 SOLUCIONRIO 10. Teoems de Tles y itágos 5. Dibuj un eágono y todos sus ángulos. Cuánto sumn ente todos ellos? 1. LUGRES GEOMÉTRICOS Y ÁNGULOS IENS Y CLCUL Cuánto mide d uno de los ino ángulos entles

Más detalles

Tema 2. Magnitudes Geométricas

Tema 2. Magnitudes Geométricas Tem. Mgnitudes Geométics Cuánto mide l supeficie de l hoj de ce? 1 1. Intoducción En pime lug ttemos de un culidd de los objetos (su extensión, lo que ocupn en el plno) llmd, genelmente, supeficie o áe.

Más detalles

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA

TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 10 TALLER Nº: SEMESTRE 1 TRIANGULOS RECTÁNGOS Y TRIGONOMETRÍA RESEÑA HISTÓRICA HISTORIA DE LA TRIGONOMETRÍA. L histoi de l tigonometí

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. Página 68 Reconoce, nomba y descibe figuas geométicas que apaecen en esta ilustación. Respuesta libe. Po ejemplo: cilindo, otoedo, cono, pisma tiangula Recueda otas figuas geométicas que foman pate

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

12. Los polígonos y la circunferencia

12. Los polígonos y la circunferencia l: ldo SLUINI 107 1. Los polígonos y l circunferenci 1. PLÍGNS PIENS Y LUL lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos:? l: ldo? 4. ivide un circunferenci de de rdio en seis prtes

Más detalles

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A.

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A. 1 Halla la mediatiz del segmento. 2 Taza la ecta pependicula a la ecta po el punto. 3 Taza la pependicula a la ecta desde el punto. uál es la distancia del punto a la ecta? 4 Dibuja dos ectas pependiculaes

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm

q 1 q 2 Resp.: V A = 1800 V; V B = 0 V; W A - B = 450*10-7 Joul. 13 cm 13 cm 6 cm 4 cm 4 cm UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO DOCENTE EL SABINO DEPARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II PROFESORA CARMEN ADRIANA CONCEPCIÓN 1. Un potón (q potón

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación:

Representar las dos proyecciones y la tercera proyección de los puntos dados a continuación: Repesent ls dos poyecciones y l tece poyección de los puntos ddos continución: pto. lej. cot A + 0 B + = + C + < + D 0 + E - > + F - = + G - > + H - 0 I - > - J - = - K L - 0 < - - M + < - N + = - + >

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad?

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad? PÁGIN 164 El director del equipo nliz un plno en el cul 1 cm corresponde 20 m en l relidd. Su mquet de l moto es l décim prte de lrg que l moto rel. L moto de l fotogrfí es l mism que se ve en l mquet.

Más detalles

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 223 EJERCICIOS Cuepos de evolución 1 Cuáles de las siguientes figuas son cuepos de evolución? De cuáles conoces el nombe? a) b) c) d) e) f) g) h) i) Todos son cuepos de evolución, excepto

Más detalles

Ejercicios. 100 Capítulo 8 Construcciones geométricas

Ejercicios. 100 Capítulo 8 Construcciones geométricas jecicios 1. a. Taza la ecta (MN). b. Taza la semiecta [N). c. Taza el segmento [Q]. d. Taza el segmento []. e. Taza la ecta (). f. Taza la semiecta [).. 7. () [] [) (G) G () [) [) () [] [] [) (G) H 8.

Más detalles

CALCULAR ÁREAS DE POLÍGONOS Y FIGURAS CIRCULARES

CALCULAR ÁREAS DE POLÍGONOS Y FIGURAS CIRCULARES REPSO Y POYO OBJETIVO 6 CLCULR ÁRES DE POLÍONOS Y FIURS CIRCULRES Nome: Cuso: Fec: ÁRE DE POLÍONOS Áe de tiánguo Áe de cuddo Áe de ectánguo se? tu? = = =? =? Áe de peogmo Áe de tpecio Áe de omo B D d B

Más detalles

11 FORMAS GEOMÉTRICAS

11 FORMAS GEOMÉTRICAS 11 FRMS GEMÉTRIS EJERIIS PRPUESTS 11.1 Dos puntos deteminan una ecta. a) uántas ectas se pueden taza con un solo punto? b) ómo son las ectas que pasan po ese punto? a) Tantas como se quiea. b) Secantes,

Más detalles

CALCULAR ÁREAS DE POLÍGONOS Y FIGURAS CIRCULARES

CALCULAR ÁREAS DE POLÍGONOS Y FIGURAS CIRCULARES REPSO Y POYO OBJETIVO 1 6 CLCULR ÁRES DE POLÍONOS Y FIURS CIRCULRES Nome: Cuso: Fec: ÁRE DE POLÍONOS Áe de tiánguo Áe de cuddo Áe de ectánguo se? tu? = = =? =? Áe de peogmo Áe de tpecio Áe de omo B D d

Más detalles

Un cuadro. Un libro. Una WEb. Mirando a través. La perspectiva en las artes, de J. Navarro de Zuvillaga (2000). Ediciones del Serbal, Barcelona.

Un cuadro. Un libro. Una WEb. Mirando a través. La perspectiva en las artes, de J. Navarro de Zuvillaga (2000). Ediciones del Serbal, Barcelona. Un cudo Rfel Snio, L Escuel de tens, 1511. Óleo. En est pintu, Rfel muest sus etodinios conocimientos de pespectiv cónic fontl, l epesent sobe el lieno los divesos elementos quitectónicos que configun

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Gráficamente se representan mediante un punto en una escala (de ahí el nombre).

Gráficamente se representan mediante un punto en una escala (de ahí el nombre). 1.- Intoducción. L Cinemátic es l pte de l ísic que descibe los movimientos de los cuepos sin bod ls cuss que los poducen, ls cules son objeto de ot pte de l ísic: l Dinámic. L Cinemátic esponde l necesidd

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR UNIVERSIDD NIONL DE FRONTER EPREUNF ILO REGULR 0708 URSO: MTEMÁTI SEMN 0 TEM: TRIÀNGULOS R.T. NGULOS GUDOS R.T. ULQUIER MGNITUD TEM: PRODUTOS NOTLES DIVISIÓN LGERI OIENTES NOTLES TRINGULOS DEFINIIÓN: Tiángulo

Más detalles

Unidad 3 Sistemas de Ecuaciones Lineales

Unidad 3 Sistemas de Ecuaciones Lineales Unidd 3 Sistems de Ecuciones Lineles Popedéutico 8 D. Ruth M. Aguil Ponce Fcultd de Ciencis Deptmento de Electónic Popedéutico 8 Fcultd de Ciencis Popedéutico 8 Fcultd de Ciencis Sistem de Ecuciones Lineles

Más detalles

IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS

IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS IV. SISTEMAS DE COORDENADAS Y ALGUNOS CONCEP TOS A. COORDENADAS POLARES Dado un punto en el plano catesiano, (coodenadas ectangulaes), dicho punto puede se epesentado con otas coodenadas (coodenadas polaes)

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

CUADRILÁTEROS. Cuadrado y Rectángulo.

CUADRILÁTEROS. Cuadrado y Rectángulo. ibuja un NTÁN cuando nos dan el RI. 1. ibuja una cicunfeencia de adio el que nos dan.. ibuja dos diámetos pependiculaes (ojo que pasen po el cento de la cicunfeencia). 3. ibuja la mediatiz de uno de los

Más detalles

A B. Teniendo en cuenta que el lado de un pentágono regular es la sección aurea de su diagonal, se tiene la siguiente construcción:

A B. Teniendo en cuenta que el lado de un pentágono regular es la sección aurea de su diagonal, se tiene la siguiente construcción: 1. Dibuja el pentágono egula de diagonal 120 mm. D E O G AF/2 A B F Pate pimea: Dibujo del pentágono. Teniendo en cuenta que el lado de un pentágono egula es la sección auea de su diagonal, se tiene la

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA Colegio L Pesentción Gnd OPCIÓN A 1- () [1 punto] Sen u y v dos vectoes otogonles y de módulo 1 Hll los vloes del pámeto p que lo vectoes u + v y u v fomen un ángulo 60º (b) [1 punto] Hll un vecto z de

Más detalles

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1 .6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8

Más detalles

Figura 1 Figura 2. Figura 3. a 12V

Figura 1 Figura 2. Figura 3. a 12V Exmen de Repción, Pof. José Cácees. Nombe: CI: Fech: 1. Cuto cgs puntules idéntics (= +10 µc) se loclizn sobe un ectángulo como se muest en l figu 1, con L=60cm y =15cm. Clcule el cmpo eléctico neto y

Más detalles

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto.

TRIGONOMETRÍA. rad equivalen a 180º Observación: Generalmente no se utiliza «rad», cuando se da la medida de un ángulo en sistema absoluto. TRIGONOMETRÍA INTRODUCCIÓN En un sentido ásio, se puede fim que l Tigonometí es el estudio de ls eliones numéis ente los ángulos ldos del tiángulo. Peo su desollo l h llevdo tene un ojetivo más mplio,

Más detalles

Síntesis Física 2º Bach. Campo Magnético. M - 1

Síntesis Física 2º Bach. Campo Magnético. M - 1 Síntesis Físic º ch. Cmpo Mgnético. M - 1 CAMPO MAGNÉTCO. ntoducción. Se obsev expeimentlmente que un imán ce un zon de influenci su lededo que se mnifiest po l oientción que dquieen ls limdus de hieo

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

Escaleno: TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS

Escaleno: TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS TRIÁNGULO: Supefiie pln limitd po tes segmentos o ldos que se otn dos dos en tes véties. NOENLTUR: Los véties se nomn on lets minúsuls y los ldos on lets myúsuls emplendo l mism let que el vétie opuesto.

Más detalles

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL 8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

SOLUCIONARIO. Examen UNI 2015 I. Matemática

SOLUCIONARIO. Examen UNI 2015 I.  Matemática SOLUIONRIO Emen UNI 05 I Mtemátic Pegunt 0 Semnlmente, un tbjdo ho ciet cntidd en soles, y dunte 0 semns ho ls siguientes cntiddes: 5 9 8 8 5 6 7 7 7 9 9 6 8 6 6 0 8 9 5 5 0 8 0 7 7 Se constuye un tbl

Más detalles

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB

Si las cargas se atraen o repelen significa que hay una fuerza entre ellas. LEY DE COULOMB Cuso: FISICA II CB 3U Ley de Coulomb (1736-186). Si ls cgs se ten o epelen signific que hy un fuez ente ells. LEY DE COULOMB L fuez ejecid po un cg puntul sobe ot Está diigid lo lgo de l líne que los une.

Más detalles

Matemáticas II Unidad 4 Geometría

Matemáticas II Unidad 4 Geometría Mtemátic II Unidd Geometí UNIDAD EL ESPACIO AFÍN.- Demot que i do punto etán ddo epecto del item de efeenci fín cteino, entonce el vecto que lo une tiene po coodend l difeenci de l coodend de mbo punto

Más detalles

BLOQUE 2 :GEOMETRIA ANALITICA EN EL PLANO.

BLOQUE 2 :GEOMETRIA ANALITICA EN EL PLANO. LOQUE :GEOMETRI NLITIC EN EL PLNO. Lección : Vectoes..-El conjunto R El conjunto R está fomdo po dupls del tipo (,) donde, son númeos eles. Dos elementos de R son igules si tienen igul su pime segund componentes.

Más detalles

Identificación de propiedades de triángulos

Identificación de propiedades de triángulos Grdo 10 Mtemtics - Unidd 2 L trigonometrí, un estudio de l medid del ángulo trvés de ls funciones Tem Identificción de propieddes de triángulos Nombre: Curso: Ls ctividdes propuests continución se centrn

Más detalles

Generalidades y ángulos en la circunferencia. II Medio 2016

Generalidades y ángulos en la circunferencia. II Medio 2016 Genealidades y ángulos en la cicunfeencia II Medio 2016 pendizajes espeados Identifica los elementos de una cicunfeencia y un cículo. Calcula áeas y peímetos del cículo, del secto cicula y del segmento

Más detalles

Perímetros. Cuadrado: EL PERÍMETRO: a a P = a + a + a + a P = 4a

Perímetros. Cuadrado: EL PERÍMETRO: a a P = a + a + a + a P = 4a Perímetros EL PEÍMETO: udrdo: P El perímetro de ls figurs puede medirse usndo uniddes de medid de longitud. Por lo tnto se puede medir en centímetros, decímetros, metros. Ejemplo: El perímetro del triángulo

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 06 EJERCICIOS Tipos de poliedros 1 Di, justificdmente, qué tipo de poliedro es cd uno de los siguientes: A B C D E Hy entre ellos lgún poliedro regulr? A Prism pentgonl recto. Su bse es un

Más detalles

UNIDAD. Tangencias y enlaces

UNIDAD. Tangencias y enlaces UNIDD ngenci y enlce ÍNDICE DE CNENIDS 1. CNCES ÁSICS SRE NGENCIS Y ENLCES................................. 80 1.1. Relcione ente ect y cicunfeenci. opiedde................................... 80 1.2. Luge

Más detalles

Se le define como toda situación física producida por una masa m en el espacio que lo rodea y que es perceptible debido a la fuerza que ejerce sobre

Se le define como toda situación física producida por una masa m en el espacio que lo rodea y que es perceptible debido a la fuerza que ejerce sobre Cpo vitcionl Se le define coo tod situción físic poducid po un s en el espcio que lo ode y que es peceptible debido l fuez que ejece sobe un s colocd en dicho espcio. Dd un s en el espcio y un s en difeentes

Más detalles

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =

Más detalles

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que Tem 8: Integl de iemnn Monotonídelintegl Si f y g son funciones integbles en [, b] tles que f(x) g(x) x [, b] entonces b b f Como cso pticul p g =se obtiene que si f es un función integble en [, b] tl

Más detalles

BLOQUE IV. Geometría. 11. Movimientos 12. Áreas y volúmenes

BLOQUE IV. Geometría. 11. Movimientos 12. Áreas y volúmenes LQUE IV Geometía 11. Movimiento 12. Áea y volúmene 11 Movimiento 1. Tanfomacione geomética onideando poitivo el entido contaio a la aguja del eloj, y ecoiendo lo vétice del tiángulo ectángulo en oden alfabético,

Más detalles

Matemáticas para Maestros Primer Curso Grado en Primaria 2014/2015. Tema 2. Magnitudes Geométricas

Matemáticas para Maestros Primer Curso Grado en Primaria 2014/2015. Tema 2. Magnitudes Geométricas Tema 2. Magnitudes Geométicas 1. Intoducción En pime luga tataemos de una cualidad de las figuas planas (su extensión, lo que ocupan en el plano) llamada, genealmente, supeficie o áea. Algunos autoes establecen

Más detalles

ELIMINATORIA, 14 de abril de 2007 PROBLEMAS

ELIMINATORIA, 14 de abril de 2007 PROBLEMAS ELIMINATORIA, 14 de abil de 007 PROBLEMAS 1) Un númeo positivo tiene la popiedad de que su doble es una unidad más gande que él, cuántos divisoes positivos tiene? a) 1 b) c) 3 d) No se puede detemina )

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Deptmento de Físic, UTFSM Físic Genel II / of: A. Bunel. FIS10: FÍSICA GENERAL II GUÍA #3: otencil Eléctico. Objetivos de pendizje Est guí es un hemient que usted debe us p log los siguientes objetivos:

Más detalles

4 Dibuja dos rectas perpendiculares al segmento AB por sus

4 Dibuja dos rectas perpendiculares al segmento AB por sus 1 Hll l meditiz del egmento. 2 Tz l et pependiul l et po el punto. m 3 Tz l pependiul l et dede el punto. uál e l ditni del punto l et? 4 ibuj do et pependiule l egmento po u extemo. pli do método ditinto.

Más detalles

5.2 PROBLEMAS PRACTICOS DE MÁXIMOS Y MINIMOS

5.2 PROBLEMAS PRACTICOS DE MÁXIMOS Y MINIMOS 8. Un avión que vuela a velocidad constante de Km/h pasa sobe una estación teeste de ada a una altua de 1 Km. Y se eleva a un ángulo de º. qué velocidad aumenta la distancia ente el avión la estación de

Más detalles

Así, si la medida del arco AB es r, entonces:

Así, si la medida del arco AB es r, entonces: INSTITUTO EDUAIONAL ARAGUA MARAAY VMOL GUIA DE MATEMATIA, s. TRIGONOMETRÍA Nº Medid de Ángulos: (Siste Rdián y Sexgesil) B O α A Not: En est guí cundo se define l edid del ángulo centl α se lá indistintente

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Mateia: Matemáticas. Tema: Geometía 18 Exploando la esfea-1. Fecha: Pofeso: Fenando Viso Nombe del alumno: Sección del alumno: CONDICIONES: Tabajo individual. Sin libos, ni cuadenos, ni

Más detalles

mediatrices de cada lado se cortan en un B, C..., etc, son iguales. el mismo centro y es tangente a los lados del polígono en 1, 2...

mediatrices de cada lado se cortan en un B, C..., etc, son iguales. el mismo centro y es tangente a los lados del polígono en 1, 2... POLÍONOS RULRS Polígono (vaios ángulos), es la figua plana limitada po vaios ánulos, los tiángulos y los cuadiláteos estudiados hasta ahoa son polígonos de y ángulos, espectivamente. Un polígono seá egula

Más detalles