UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS"

Transcripción

1 u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus puntos extremos (no se cruzn). NOMR POLÍGONOS. TRIÁNGULOS URILÁTRO PNTÁGONO HXÁGONO HPTÁGONO OTÓGONO 3 LOS 4 LOS 5 LOS 6 LOS 7 LOS 8 LOS PROPIS POLÍGONOS n LOS: Sum de los ángulos interiores = 180º (n 2) igonles desde un vértice = n 3 n(n 3) Sum de los ángulos exteriores = 360º Totl de digonles = 2 JMPLOS 1. uánto sumn ls medids de los ángulos interiores de un polígono de 8 ldos? ) 1.440º ) 1.080º ) 720º ) 540º ) 360º 2. uántos ldos tiene un polígono, cuyos ángulos interiores sumn 900º? ) 4 ) 5 ) 6 ) 7 ) 8

2 3. l número de digonles que se pueden trzr en un pentágono desde un vértice es ) 2 ) 3 ) 4 ) 5 ) 6 4. n cuál de los siguientes polígonos, l sum de los ángulos interiores es igul l sum de los ángulos exteriores? ) udrilátero ) Pentágono ) Hexágono ) Triángulo ) Ninguno de los nteriores 5. l número totl de digonles de un octógono es ) 4 ) 7 ) 9 ) 14 ) L rzón entre ls medids de los ángulos interiores y exteriores de un cierto polígono es 3 : 2, cuánts digonles tiene dicho polígono? ) 2 ) 3 ) 4 ) 5 ) 6 7. uál es el número de ldos de un polígono, si de cd uno de sus vértices se puede trzr 12 digonles? ) 9 ) 10 ) 12 ) 14 ) 15 2

3 POLÍGONO RGULR FINIIÓN: s quel que tiene sus ldos y sus ángulos respectivmente congruentes. n cso contrrio se dice que es irregulr. Pentágono regulr 180º (n 2) = n 360 = n Hexágono regulr JMPLOS 1. uánto mide el suplemento de un ángulo interior de un pentágono regulr? ) 18º ) 72º ) 108º ) 124º ) 136º 2. uál (es) de ls siguientes firmciones, es (son) siempre verdder(s)? I) Si en un polígono sus ángulos exteriores sumn 360º, entonces se sbe que el polígono es un cudrilátero. II) Si un polígono tiene todos sus ldos igules, entonces dicho polígono es regulr. III) Si en un polígono regulr se trzn tods ls digonles posibles desde un vértice, los ángulos formdos en dicho vértice son igules entre sí. ) Sólo I ) Sólo II ) Sólo III ) Sólo I y III ) Sólo II y III 3. uántos ldos tiene un polígono regulr cuyos ángulos interiores miden 135º? ) 4 ) 5 ) 6 ) 7 ) 8 3

4 4. Si l sum de los ángulos interiores de un polígono es 900º, cuánts digonles se pueden trzr en dicho polígono? ) 4 ) 5 ) 14 ) 18 ) l hexágono de l figur 1 es regulr, cuánto mide el x? ) 22,5º ) 45º ) 67,5º ) 90º ) 112,5º x fig Qué polígono es tl que el número de sus digonles es igul l número de sus ldos? ) Octógono ) Hexágono ) Pentágono ) udrdo ) No existe tl polígono 7. n el pentágono regulr de l figur 2, cuál es l medid del? ) 36º ) 54º ) 60º ) 72º ) 75º fig. 2 4

5 URILÁTRO FINIIÓN udrilátero es culquier polígono de 4 ldos. LSIFIIÓN Los cudriláteros se clsificn en: PRLLOGRMOS, TRPIOS Y TRPZOIS. PROPIS L sum de los ángulos interiores es 360º. L sum de los ángulos exteriores es 360º. JMPLOS 1. n el cudrilátero de l figur 1, M y M son bisectrices de los y, respectivmente, entonces el ángulo x mide: ) 220º ) 140º ) 110º ) 80º ) 20º 120º M x 80º fig n el cudrilátero PQRS de l figur 2, = 60º y = 100º, entonces el vlor de 1 (x + y) = 2 ) 200º ) 160º ) 100º ) 90º ) 80º P x S R y Q fig. 2 5

6 3. Los ángulos interiores de un cudrilátero son entre sí como 3 : 4 : 5 : 6. l myor de sus ángulos interiores mide ) 85º ) 90º ) 100º ) 120º ) 125º 4. n l figur 3, el es isósceles de bse. Si es un rombo y entonces mide ) 30º ) 45º ) 60º ) 75º ) 80º fig Si en el cudrilátero de l figur 4, + = γ, entonces γ es igul ) 30º ) 50º ) 55º ) 70º ) 105º γ 150º fig Si en l figur 5, L 1, L 2, L 3 y L 4 son rects, entonces cuánto mide el ángulo x? ) 30º ) 40º ) 50º ) 80º ) 100º L 1 x 100º 50º fig. 5 80º L 2 L 3 L 4 6

7 PRLLOGRMO FINIIÓN: Prlelogrmo es quel cudrilátero que tiene dos pres de ldos opuestos prlelos. LSIFIIÓN Y PROPIS NOMR URO ROMO RTÁNGULO ROMOI 45º 45º PROPIS Ldos opuestos 45º 45º 45º 45º congruentes Ángulos opuestos congruentes Ls digonles se dimidin Ángulos contiguos suplementrios igonles perpendiculres igonles bisectrices igonles congruentes 45º 45º b b b b JMPLOS 1. uál de los siguientes cudriláteros es un prlelogrmo? ) ) ) ) ) 130º 50º 50º 130º 130º 50º 130º 50º 130º 130º 130º 130º 50º 50º 50º 2. uál(es) de ls siguientes firmciones es (son) verdder(s)? I) Todo prlelogrmo tiene congruentes sus ldos opuestos. II) Todo prlelogrmo tiene congruentes sus ángulos opuestos. III) os ángulos contiguos de un prlelogrmo son complementrios. ) Sólo I ) Sólo II ) Sólo III ) Sólo I y II ) Sólo I y III 7

8 3. n l figur 1, L 1 // L 2. uál (es) de ls siguientes proposiciones es (son) siempre verdder(s)? I) F es un prlelogrmo II) Si = 90º entonces es un rectángulo III) Si = y = 90º, entonces F es un cudrdo. ) Sólo I ) Sólo III ) Sólo I y II ) Sólo I y III ) I, II y III F L 1 fig. 1 L 2 4. Pr que un cudrilátero se un prlelogrmo, se debe cumplir necesrimente que ) sus digonles sen congruentes. ) sus digonles sen bisectrices. ) sus digonles se dimidien. ) sus digonles sen perpendiculres. ) tengn un pr de ldos prlelos. 5. uál(es) de ls siguientes proposiciones es (son) necesrimente verdder(s) en un prlelogrmo de digonles y? I) Si y, entonces es un rombo. II) Si y =, entonces es un cudrdo. III) Si y, entonces es un romboide. ) Sólo I ) Sólo II ) Sólo I y II ) Sólo I y III ) I, II y III 6. n l figur 2, es romboide. Si y = 85º, entonces es igul ) 5º ) 45º ) 50º ) 55º ) 85º fig. 2 8

9 TRPIO FINIIÓN: Trpecio es quel cudrilátero que tiene sólo un pr de ldos prlelos, llmdos bses. PROPIS: δ γ // Trpecio scleno + δ = 180º + γ = 180º δ γ // Trpecio Isósceles n todos los trpecios, los ángulos colterles internos entre ls bses ( y ) son suplementrios. TRPIO ISÓSLS PROPIS: demás de ls propieddes generles de los trpecios, los isósceles tienen ls siguientes propieddes: igonles congruentes. Ángulos bsles congruentes. Ángulos opuestos suplementrios. JMPLOS 1. n el trpecio de l figur 1, // y =. Si el = 35º, entonces el = ) 180º ) 140º ) 110º ) 100º ) 70º fig Si en el trpecio isósceles de l figur 2, // y = 70º, entonces el mide ) 210º ) 140º ) 110º ) 70º ) ningun de ls nteriores. fig. 2 9

10 3. Si en l figur 3, es un cudrdo y G //, cuál(es) de ls siguientes firmciones es (son) siempre verdder(s)? I) F isósceles. II) FG es ltur del F. III) Los trpecios F y F son congruentes. ) Sólo I ) Sólo II ) Sólo III ) Sólo I y III ) I, II y III F G fig L medin de un trpecio mide 20 cm. Si un de ls bses es el triple de l otr, entonces l bse myor mide ) 40 cm ) 30 cm ) 15 cm ) 10 cm ) 5 cm 5. n el trpecio de l figur 4, y //. ntonces, siempre se cumple que ) ) ) ) ) fig n l figur 5, //. Si, cuál(es) de ls siguientes firmciones es (son) verdder(s)? I) es isósceles. II) es bisectriz. III) fig. 5 ) Sólo II ) Sólo III ) Sólo I y II ) Sólo I y III ) I, II y III 10

11 TRPZOI FINIIÓN: LSIFIIÓN: Trpezoide es quel cudrilátero que no tiene pr de ldos prlelos. Los trpezoides se clsificn en simétricos y simétricos. PROPIS L LTOI TRPZOI SIMÉTRIO igonles perpendiculres. Un digonl es bisectriz. L digonl que es bisectriz, es su vez, simetrl de l otr digonl. TRPZOI SIMÉTRIO (LTOI) y b b b JMPLOS 1. n l figur 1, FG es un deltoide con G = y GF = F. Si GF = 109º y F = 14º, entonces el ángulo GF mide F ) 33º ) 57º ) 76º ) 109º ) 114º G fig n el deltoide de l figur 2, = y =. Si = 135º y = 70º, entonces + = ) 45º ) 55º ) 65º ) 90º ) 125º 11 fig. 2

12 3. n el deltoide de l figur 3, = y =. Si = 50º y = 150º, entonces el vlor del ángulo x es ) 95º ) 85º ) 75º ) 65º ) 55º x fig l unir los puntos medios de los ldos de un trpezoide en form consecutiv se obtiene siempre ) un trpezoide. ) un trpecio. ) un prlelogrmo. ) un cudrdo. ) no se puede determinr. 5. n el trpezoide de l figur 4, = 120º, = 60º y = 40º, entonces l medid de es ) 20º ) 40º ) 60º ) 80º ) 120º 5 fig Si en l figur 5, es un deltoide, =, F : F = 1 : 2 y F = 8. ntonces, es igul ) 8 ) 7 ) 6 ) 5 ) 2 5 F fig. 5 12

13 JRIIOS 1. Si en un polígono convexo l sum de sus ángulos interiores es igul 1.440º, entonces el polígono es un ) hexágono. ) octógono. ) decágono. ) dodecágono. ) eneágono. 2. Si l diferenci entre el número totl de digonles y el número de ldos de un polígono es tres, entonces el polígono tiene ) 9 ldos ) 8 ldos ) 7 ldos ) 6 ldos ) 5 ldos 3. uál (es) de ls siguientes firmciones es (son) verdder(s)? I) n un pentágono regulr, el suplemento de un ángulo interior mide 72º. II) l totl de digonles que se pueden trzr en un octógono son 24. III) L sum de los ángulos interiores de un heptágono es 720º. ) Sólo I ) Sólo II ) Sólo III ) Sólo II y III ) I, II y III 4. n cuál de los siguientes polígonos regulres, el ángulo interior mide el triple del ángulo exterior correspondiente? ) Triángulo ) Pentágono ) Hexágono ) ecágono ) Octógono 13

14 5. n el rectángulo de l figur 1, digonl y PQ. Si PQ = 113º determinr el vlor de ) 23º ) 43º ) 67º ) 76º ) 113º P 113º Q fig n el pentágono regulr de l figur 2, los puntos, y F son colineles. ntonces, mide ) 60º ) 72º ) 80º ) 90º ) 108º F fig Si en l figur 3, es un rectángulo y L rect, cuál(es) de ls siguientes firmciones es (son) siempre verdder(s)? I) s + u = t + v II) s + v = u + t III) s = v y u = t ) Sólo I ) Sólo II ) Sólo I y III ) Sólo II y III ) I, II y III sº uº vº tº fig L digonl del cudrdo de l figur 4, se prolong de modo que =, entonces l medid del x es ) 18º ) 22,5º ) 24º ) 45º ) 135º x fig. 4 14

15 9. Si en el polígono de l figur 5,, F y F, cuál(es) de ls siguientes firmciones es (son) verdder(s)? I) F II) F isósceles. III) F = 45º ) Sólo I ) Sólo II ) Sólo III ) Sólo II y III ) I, II y III F 60º 30º fig Si en el trpecio isósceles de l figur 6, // y el y = 70º, cuál es l medid del x? ) 210º ) 140º ) 110º ) 70º ) Ningun de ls nteriores y x fig n l figur 7, es un pentágono regulr y los ldos de l estrell son ls prolongciones del pentágono, entonces el ángulo x mide ) 75º ) 72º ) 54º ) 36º ) 18º x fig n el cudrdo de l figur 8, = 37º, cuánto mide el ángulo x? ) 30º ) 45º ) 53º ) 60º ) 127º x fig. 8 15

16 13. Si se trzn ls digonles de un prlelogrmo. uál(es) de ls siguientes firmciones es (son) verdder(s)? I) Se obtienen cutro triángulos congruentes. II) Se obtienen cutro triángulos semejntes. III) Se obtienen sólo triángulos rectángulos. ) Sólo I ) Sólo II ) Sólo I y II ) Sólo II y III ) Ningun de ells 14. n el trpecio rectángulo de l figur 9, ls bisectrices Q y Q de los ángulos en y en, respectivmente, formn un ángulo x que mide: ) 45º ) 60º ) 75º ) 90º ) 105º Q x fig n l figur 10, es un trpecio isósceles, //, =. Si : = 2 : 1 y //, cuál es l medid del? ) 70º ) 60º ) 55º ) 30º ) 20º fig Si en l figur 11, MNP QOR, NMP = 50º y NPM = 70º, entonces l medid del OQP es ) 130º ) 120º ) 110º ) 70º ) 50º M 50º P 70º Q N R O fig

17 17. n l figur 12, es romboide. Si H es punto medio de F y G GF F, entonces se cumple que I) F es un rombo. II) GH = HGF H F III) HG F ) Sólo I ) Sólo II ) Sólo III ) Sólo I y II ) Sólo II y III G fig n l figur 13, F es un hexágono regulr,, y son digonles. uál(es) de ls siguientes firmciones es (son) verdder(s)? I) F II) III) F fig. 13 ) Sólo I ) Sólo II ) Sólo I y II ) Sólo II y III ) I, II y III 19. n el polígono de l figur 14, // P, P //, P y P son bisectrices de los ángulos interiores respectivos, entonces el vlor del ángulo es ) 160º ) 140º ) 120º ) 100º ) 60º 20. n el cudrdo de l figur 15, se h trzdo l digonl el mide l tercer prte del. uál de ls siguientes opciones no es correct? 80º P 60º fig. 14 ) = 45º ) F = 60º ) = 60º ) F = 105 F fig. 15 ) = 120º 17

18 21. esde un vértice de un polígono regulr se pueden trzr 27 digonles, cuánto mide cd ángulo exterior de este polígono? ) 12º ) 15º ) 24º ) 30º ) 168º 22. Si en l figur 16, es un prlelogrmo, = 40º y = 50º. Qué tipo de prlelogrmo es? ) Rectángulo ) Trpecio ) Rombo ) Romboide ) udrdo 100º fig l trzr un de ls digonles de un cudrilátero se formn dos triángulos isósceles cuys bses son l digonl, sin embrgo los ángulos bsles de un triángulo miden el doble de los ángulos bsles del otro, por lo tnto dicho cudrilátero se trt de un ) cudrdo. ) trpecio. ) romboide. ) trpezoide. ) deltoide. 24. n un trpecio rectángulo l medid del myor ángulo interno es el cuádruplo de l medid del ángulo menor, cuánto mide el menor de los ángulos? ) 30º ) 36º ) 45º ) 72º ) 90º 25. n l figur 17, es un trpecio rectángulo en y, = 40º, es isósceles de bse, cuál es el vlor de? ) 70º ) 30º ) 90º ) 45º ) 120º fig

19 26. Se puede determinr los ldos de un polígono regulr si : (1) Se puede inscribir en un circunferenci de rdio 5 cm. (2) Sus ángulos exteriores sumn 360º. ) (1) por sí sol ) (2) por sí sol ) mbs junts, (1) y (2) ) d un por sí sol, (1) ó (2) ) Se requiere informción dicionl 27. n l figur 18, es rectángulo. Se puede firmr que si : (1) = 45º (2) es punto medio. ) (1) por sí sol ) (2) por sí sol ) mbs junts, (1) y (2) ) d un por sí sol, (1) ó (2) ) Se requiere informción dicionl fig Se puede determinr l medid del del cudrilátero de l figur 19, si : (1) es un prlelogrmo y triángulo es equilátero. (2) l ángulo mide 60º. ) (1) por sí sol ) (2) por sí sol ) mbs junts, (1) y (2) ) d un por sí sol, (1) ó (2) ) Se requiere informción dicionl fig Se puede determinr el número de ldos de un polígono convexo, si : (1) Se conoce l sum de los ángulos interiores. (2) Se conoce el número totl de digonles. ) (1) por sí sol ) (2) por sí sol ) mbs junts, (1) y (2) ) d un por sí sol, (1) ó (2) ) Se requiere informción dicionl 19

20 30. n l figur 20, se puede determinr l medid del ángulo si : (1) + γ + δ = 300º (2) es un romboide y + γ = 180º. γ fig. 20 ) (1) por sí sol ) (2) por sí sol ) mbs junts, (1) y (2) ) d un por sí sol, (1) ó (2) ) Se requiere informción dicionl δ MM13 Puedes complementr los contenidos de est guí visitndo nuestr web 20

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 UÍ TÓRIO PRÁTI Nº 11 UNI: OMTRÍ POLÍONOS URILÁTROS POLÍONOS INIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus puntos

Más detalles

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área. POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A

Más detalles

UNIDAD: GEOMETRÍA TRIÁNGULO RECTÁNGULO

UNIDAD: GEOMETRÍA TRIÁNGULO RECTÁNGULO u r s o : Mtemátic 3º Medio Mteril Nº MT-16 UNI: GOMTÍ TIÁNGULO TÁNGULO TOM ITÁGOS n todo triángulo rectángulo, l sum de ls áres de los cudrdos construidos sobre sus ctetos, es igul l áre del cudrdo construido

Más detalles

fig. 1 fig. 2 fig. 3 fig. 4 fig. 5 EJEMPLOS 1. Si el área de un cuadrado es 144 cm 2, entonces su perímetro mide

fig. 1 fig. 2 fig. 3 fig. 4 fig. 5 EJEMPLOS 1. Si el área de un cuadrado es 144 cm 2, entonces su perímetro mide Profesor ln Rvnl S. UNI: GOMTRÍ PRÍMTROS Y ÁRS Perímetro de un polígono, es l sum de ls longitudes de todos sus ldos. l perímetro se denotrá por p. Áre es l medid que le corresponde tod l región poligonl.

Más detalles

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos Centro Educcionl Sn Crlos de Argón. Dpto. Mtemátic. Nivel: NM 4 Prof. Ximen Gllegos H. PSU Mtemátic NM-4 Guí : Congruenci de Triángulos Nombre: Curso: Fech: - Contenido: Congruenci. Aprendizje Esperdo:

Más detalles

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras.

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras. POIROS - PRISMS POIRO I. POIRO: es el sólido limitdo por cutro o más regiones poligonles llmdos crs. RIST TR TUR RIST SI PRISM VRTI S R 1. PRISM: l prism es un poliedro cuys crs lterles son tres o más

Más detalles

UNIDAD: GEOMETRÍA PERÍMETROS Y ÁREAS

UNIDAD: GEOMETRÍA PERÍMETROS Y ÁREAS u r s o : Mtemátic Mteril N 17 GUÍ TÓRI PRÁTI Nº 14 UNI: GMTRÍ PRÍMTRS Y ÁRS Perímetro de un polígono, es l sum de ls longitudes de todos sus ldos. l perímetro se denotrá por p y el semiperímetro por s.

Más detalles

Los polígonos y la circunferencia

Los polígonos y la circunferencia l: ldo 12 Los polígonos y l circunferenci 1. Polígonos lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos: P I E N S Y L U L R l: ldo R R? R? R R? R R? R E l: ldo l: ldo F E 360 : 3 =

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

60 α α. 3 lados 2 lados 3 lados. α 1. (0 < α n. Rectángulo:

60 α α. 3 lados 2 lados 3 lados.  α 1. (0 < α n. Rectángulo: Personl Trinig for PSU nro.1. Prof. hef. Triángulos I: Propieddes ásics efinición dos los puntos,, ; se define triángulo como l reunión. P = punto interior Q = punto eterior ê 2 Q c P ê 1 φ b ê 3 Notción

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 06 EJERCICIOS Tipos de poliedros 1 Di, justificdmente, qué tipo de poliedro es cd uno de los siguientes: A B C D E Hy entre ellos lgún poliedro regulr? A Prism pentgonl recto. Su bse es un

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental

153 ESO. La mayoría de los hombres nacen como originales y terminan como copias. Oriental L myorí de los omres ncen como originles y terminn como copis 15 ESO Orientl ÍNDICE: MILLA NÁUTICA PISTA DE ATLETISMO 1. FÓRMULAS FUNDAMENTALES PARA CÁLCULO DE LONGITUDES, SUPERFICIES Y VOLÚMENES. LONGITUDES

Más detalles

UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS u r s o : Mtemátic Mteril N 38 GUÍ TEÓRIO PRÁTI Nº 29 UNIDD: GEOMETRÍ RETS Y PLNOS EN EL ESPIO - ÁRES Y VOLÚMENES DE UERPOS GEOMÉTRIOS Determinción del plno: Un plno qued determindo por: Dos rects que

Más detalles

2.- Dos ángulos de un triángulo miden 73º y 58º respectivamente. Determina el ángulo que forman sus bisectrices.

2.- Dos ángulos de un triángulo miden 73º y 58º respectivamente. Determina el ángulo que forman sus bisectrices. GEOMETRÍ 1.- Determin ls medids de los ángulos desconocidos. ) b) " 31º " 20º 47º 2.- Dos ángulos de un triángulo miden 73º y 58º respectivmente. Determin el ángulo que formn sus bisectrices. 3.- uánto

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

EGRESADOS. Matemática PROGRAMA. Guía: Generalidades de ángulos, polígonos y cuadriláteros. Ejercicios PSU // L 2. 1.

EGRESADOS. Matemática PROGRAMA. Guía: Generalidades de ángulos, polígonos y cuadriláteros. Ejercicios PSU // L 2. 1. PROGRM GRSOS Guía: Generalidades de ángulos, polígonos y cuadriláteros jercicios PSU 1. n la figura, L 1 // L 2 // L 3, entonces α mide ) 82º ) 90º ) 122º ) 168º ) 238º L 1 L 2 110º a L 3 12º Matemática

Más detalles

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES I TRJ Nombre Nº orden imestre IVº 4ºgrdo - sección iclo IVº ech: - 11-10 Áre : temátic Tem LIRS RULRS IRRULRS LIRS RULRS s quel poliedro en el cul sus crs son regiones poligonles congruentes entre sí,

Más detalles

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de

Más detalles

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS Prlels y Perpendiulres Lámin nº 1 Prlels y Perpendiulres Lámin nº 1 Trzr un perpendiulr en el extremo de un segmento de 60 mm. de longitud. Trzr un perpendiulr

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

C u r s o : Matemática. Material N 25 GUÍA TEÓRICO PRÁCTICA Nº 20 UNIDAD: ÁLGEBRA Y FUNCIONES. Sean a, b lr {0} y m, n.

C u r s o : Matemática. Material N 25 GUÍA TEÓRICO PRÁCTICA Nº 20 UNIDAD: ÁLGEBRA Y FUNCIONES. Sean a, b lr {0} y m, n. C u r s o : Mtemátic Mteril N 5 GUÍA TEÓRICO PRÁCTICA Nº 0 UNIDAD: ÁLGEBRA Y FUNCIONES POTENCIAS ECUACIÓN EXPONENCIAL FUNCIÓN EXPONENCIAL PROPIEDADES DE POTENCIAS Sen, b lr {0} y m, n PRODUCTO DE POTENCIAS

Más detalles

11 Perímetros y áreas de figuras planas

11 Perímetros y áreas de figuras planas 86464 _ 0371-0384.qxd 1//07 09:4 Págin 371 Perímetros y áres de figurs plns INTRODUCCIÓN En est unidd repsmos ls uniddes de longitud y superficie. Se introducen tmbién lguns uniddes de medid del sistem

Más detalles

Senx a) 0 b) 1 c) 2 d) 2

Senx a) 0 b) 1 c) 2 d) 2 EJERIIOS. lculr en : Sen( - 0º) = os( + 0º) ) b) c) 4 d) 6 e). Si : Tg (8 º) Tg ( + º) = Hllr: K = Sen tg 6 7 7 ) b) c) - d) - e) ) 0, b) c), d) e) 8. Si : Tg =, Sen lculr : K Tg ) c) e) ( ) b) d) ( ).

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

Mª Rosa Villegas Pérez

Mª Rosa Villegas Pérez Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o

Más detalles

Preguntas Propuestas

Preguntas Propuestas reguntas ropuestas 2 ... olígonos 1. alcule la suma de lados de dos polígonos si se sabe que las sumas de las medidas de sus ángulos interiores difieren en 540º y el número de diagonales del polígono de

Más detalles

INSTITUTO RAÚL SCALABRINI ORTIZ GEOMETRIA POLÍGONOS

INSTITUTO RAÚL SCALABRINI ORTIZ GEOMETRIA POLÍGONOS GEOMETRIA POLÍGONOS (1) Si un polígono tiene un ángulo central de 45º Cuántos lados tiene? (2) Inscribir en distintas circunferencias los siguientes polígonos: a) Triángulo equilátero b) Pentágono regular

Más detalles

DEFINICIONES BASICAS SEGMENTOS Y ANGULOS

DEFINICIONES BASICAS SEGMENTOS Y ANGULOS GOMTRÍ INIIONS SIS SGMNTOS Y NGULOS 1.1 ONPTO GOMTRI L Geometrí es l cienci que estudi ls propieddes de ls figurs geométrics, tendiendo su form, tmño y relción entre ells. Un figur geométric es un conjunto

Más detalles

Trigonometría: ángulos / triángulos. matemática / arquitectura

Trigonometría: ángulos / triángulos. matemática / arquitectura Trigonometrí: ángulos / triángulos mtemátic / rquitectur Grn pirámide de Guiz. Egipto. 2750.C. (h=146,62m / l=230,35m) Pirámide del Museo Louvre. Pris. 1989. rq. Ieoh Ming Pei. (h=20m / l=35m) Grn pirámide

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

Matemática Diseño Industrial Polígonos Ing. Avila Ing. Moll

Matemática Diseño Industrial Polígonos Ing. Avila Ing. Moll POLÍGONOS Pr clculr l cntidd de crtón necesri pr rmr l pirámide de l siguiente figur necesitmos conocer cómo trjr con los triángulos que l formn. Pr clculr l cntidd de mder necesri pr construir el poy

Más detalles

POLÍGONO ÁNGULOS DE UN POLÍGONO CLASIFICACIÓN: La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos

POLÍGONO ÁNGULOS DE UN POLÍGONO CLASIFICACIÓN: La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos POLÍGONO La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos Un polígono es una porción del plano limitada por una línea poligonal cerrada. Los segmentos

Más detalles

EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1

EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 3º ESO Geometría IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 TEOREMA DE THALES El Teorema de Thales sirve para dividir un segmento

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS 1. LA ESCUADRA Y EL CARTABÓN. Observando tu escuadra y tu cartabón describe su forma y sus ángulos.

Más detalles

1. En cuál(es) de las siguientes figuras el triángulo F es siempre semejante con el triángulo G? 63º 31º

1. En cuál(es) de las siguientes figuras el triángulo F es siempre semejante con el triángulo G? 63º 31º PROGRM GRSOS Guía: Semejanza de triángulos jercicios PSU 1. n cuál(es) de las siguientes figuras el triángulo es siempre semejante con el triángulo G? I) G 2º 2º II) 31º 86º G 31º 63º III) G Matemática

Más detalles

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que:

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que: Axiom de división del espcio: Todo plno del espcio determin en éste dos regiones tles que: - Cd punto del espcio pertenece un de ls dos regiones o l plno - Dos puntos de un mism región determinn un segmento

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C.

1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C. 1.1. Trazar la mediatriz del segmento. 1.2. Trazar la perpendicular que pasa por el punto. A B P 1.3. Trazar la perpendicular que pasa por C. 1.4. Trazar la perpendicular que pasa por el extremo de la

Más detalles

Guía Práctica N 13: Función Exponencial

Guía Práctica N 13: Función Exponencial Fuente: Pre Universitrio Pedro de Vldivi Guí Práctic N : Función Eponencil POTENCIAS ECUACIÓN EXPONENCIAL FUNCIÓN EXPONENCIAL PROPIEDADES DE LAS POTENCIAS Sen, b lr {0} m, n. Entonces: PRODUCTO DE POTENCIAS

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos:

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos: CTIVIDDES DE GEMETRÍ PR 4º ES DE EPV Nombre y apellidos: Curso: TEM 1: TRZDS BÁSICS. 1. RECTS PRLELS Las rectas paralelas son aquellas que por mucho que las prolongues nunca se van a cortar. 1.1. Trazado

Más detalles

AB CH. Área del PQR ABC AB CH. Área del ABC QR PA. Área del. El área de un triangulo rectángulo es igual al semiproducto de sus catetos.

AB CH. Área del PQR ABC AB CH. Área del ABC QR PA. Área del. El área de un triangulo rectángulo es igual al semiproducto de sus catetos. AREAS L noción de áre está socid l extensión o superficie de un figur. El áre es un número que nos dice que tn extens es un región y l expresmos en kilómetros cudrdos (Km ); metros cudrdos (m ); centímetros

Más detalles

Conquistando terrenos y haciendo pompas de jabón

Conquistando terrenos y haciendo pompas de jabón Conquistndo terrenos y hciendo pomps de jbón Crlos Prieto de Cstro Universidd Ncionl Autónom de México 2º Encuentro con los números Envigdo, Antioqui, Colombi 19 de octubre de 2013 http://www.mtem.unm.mx/cprieto

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

Escaleno: Obtusángulo: un ángulo obtuso TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS

Escaleno: Obtusángulo: un ángulo obtuso TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS TRIÁNGULO: Superfiie pln limitd por tres segmentos o ldos que se ortn dos dos en tres vérties. NOMNLTUR: Los vérties se nombrn on letrs minúsuls y los ldos on letrs myúsuls emplendo l mism letr que el

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

Lados Vértice complementarios CONVEXO CÓNCAVO suplementarios

Lados Vértice complementarios CONVEXO CÓNCAVO suplementarios Geometrí Ánguos Un ánguo es región de pno imitd por dos semirrects con e origen común. IES Rmiro de Meztu Mdrid Ldos Vértice Csificción de os ánguos Compementrios y supementrios CÓNCAVO CONVEXO Dos ánguos

Más detalles

SOLUCIONARIO 1. PERÍMETROS Y ÁREAS DE LOS POLÍGONOS (I) 4. Calcula el área de un triángulo rectángulo en el que los catetos miden 22 m y 16 m

SOLUCIONARIO 1. PERÍMETROS Y ÁREAS DE LOS POLÍGONOS (I) 4. Calcula el área de un triángulo rectángulo en el que los catetos miden 22 m y 16 m 11 elige Mtemátics, curso y tem. 13. Perímetros y áres 4. Clcul el áre de un triángulo rectángulo en el que los ctetos miden m y 16 m 1. PERÍMETROS Y ÁREAS DE LOS POLÍGONOS (I) PIENSA Y CALCULA Hll mentlmente

Más detalles

ANGULOS. La unidad de medida es el grado sexagesimal. La "circunferencia completa " mide 360º (grados sexagesimales). Además considere que.

ANGULOS. La unidad de medida es el grado sexagesimal. La circunferencia completa  mide 360º (grados sexagesimales). Además considere que. PREUNIVERSITARIO PROGRAMA DE NIVELACIÓN Y REFORZAMIENTO M 04 PRO-OCTAV@ TEXTO Nº 2 GEOMETRÍA ANGULOS SISTEMAS DE UNIDADES DE MEDIDA: SISTEMA SEXAGESIMAL: La unidad de medida es el grado sexagesimal. La

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

Tutorial MT-b5. Matemática Tutorial Nivel Básico. Triángulos I

Tutorial MT-b5. Matemática Tutorial Nivel Básico. Triángulos I 134567890134567890 M ate m ática Tutorial MT-b5 Matemática 006 Tutorial Nivel ásico Triángulos I Matemática 006 Tutorial Triángulos 1 Marco Teórico 1. efinición: polígono de 3 lados.. lementos primarios:

Más detalles

TALLER No. 17 GEOMETRÍA

TALLER No. 17 GEOMETRÍA TLLER No. 17 GEOMETRÍ ontenidos: Los triángulos Fecha de entrega: Mayo 12 de 2014 1. Investigue sobre las líneas y puntos notables en un triángulo. 2. Responda las siguientes preguntas: a. Qué es un polígono?

Más detalles

1.- LÍNEAS POLIGONALES Y POLÍGONOS.

1.- LÍNEAS POLIGONALES Y POLÍGONOS. 1.- LÍNEAS POLIGONALES Y POLÍGONOS. Línea poligonal.- Una línea poligonal está formada por varios segmentos consecutivos. Las líneas poligonales pueden ser abiertas o cerradas. Polígono.- Es la región

Más detalles

GUIA DOS CUADRILATEROS

GUIA DOS CUADRILATEROS PROF.: XIMN STRO NIVL IV MIO GUI OS URILTROS 1) Si el lado de un cuadrado mide m, entonces cuánto mide la altura de un triángulo de base m y cuya área es equivalente al del cuadrado? ) m ) m ) m ) m )

Más detalles

DIBUJO TÉCNICO BACHILLERATO TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo IUJO TÉNIO HILLERTO TEM 3. POLÍGONOS. eprtmento e rtes Plástics y iujo TEM 3. POLÍGONOS. 1º 2º? Triángulos o efinición y notciones o lsificción o uestiones generles o Puntos y rects notles o onstrucciones?

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 1. LÍNE RET Representación: Notación : 2. RYO Representación: O Notación : O 3. SEGMENTO DE RET Representación: SUSTRIÓN: P = P P = P m m P = m P EJERIIOS PROPUESTOS (1) En una línea recta se ubican puntos

Más detalles

1º ESO TEMA 12 FIGURAS PLANAS

1º ESO TEMA 12 FIGURAS PLANAS 1º ESO TEMA 12 FIGURAS PLANAS 1 1.- POLÍGONOS Concepto de polígono POLÍGONO 2 1.- POLÍGONOS Elementos de un polígono Lado: segmento que une dos vértices consecutivos Vértice: punto en común entre dos lados

Más detalles

Contenidos. Triángulos I. Elementos primarios. Clasificación. Elementos secundarios. Propiedad Intelectual Cpech

Contenidos. Triángulos I. Elementos primarios. Clasificación. Elementos secundarios. Propiedad Intelectual Cpech ontenidos Triángulos I Elementos primarios lasificación Elementos secundarios Triángulos Es un polígono de tres lados. Posee tres vértices, tres lados, tres ángulos interiores y tres ángulos exteriores.

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

CAPÍTULO 1. Rectas y ángulos

CAPÍTULO 1. Rectas y ángulos ÍTUO 1 Elementos ásicos de l Geometrí Rects y ángulos 1.1 En Geometrí hy ides ásics que todos entendemos pero que no definimos. Ésts son ls ides de unto, Rect, lno y Espcio. Señlmos un punto con un mrc

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA)

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3-1 Desempeño: Determina la clasificación

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

CUADRILÁTEROS. ELEMENTOS BÁSICOS Son los mismos que en un polígono cualquiera, excepto el triángulo, ya que un triángulo no tiene diagonales.

CUADRILÁTEROS. ELEMENTOS BÁSICOS Son los mismos que en un polígono cualquiera, excepto el triángulo, ya que un triángulo no tiene diagonales. DEFINICIÓN Un curilátero es un polígono cerro compuesto por cutro los. 1 EEMENTOS ÁSICOS Son los mismos que en un polígono culquier, excepto el triángulo, y que un triángulo no tiene igonles. VÉRTICES:

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

Geometría del Espacio

Geometría del Espacio Geometrí del Espcio GEMETRÍA DE ESPACI. Denomind tmbién Esterenometrí, estudi tods ls propieddes en Geometrí Pln, y plicds en plnos diferentes. ESPACI. El espcio geométrico euclidino es el conjunto de

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros)

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) 3 TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) Ejemplo 1: Un rectángulo tiene 60 m de área y 3m de perimetro. Hallar sus dimensiones.. Ejemplo : La base de un rectángulo es el triple de su altura

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO CUADRILATERO INTRODUCCION Son polígonos de 4 lados. La suma de los ángulos interiores es igual a 360º y la suma de los ángulos exteriores es igual a 360º. Vértices : A, B, C, D Lados : a, b, c, d Ángulos

Más detalles

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia 1. Cuáles son algunas de las relaciones especiales entre los ángulos? 2. Explique qué es un polígono y cómo determinar

Más detalles

MATEMÁTICAS (GEOMÉTRÍA)

MATEMÁTICAS (GEOMÉTRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMÉTRÍA) GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3 1 Desempeños: * Identifica, clasifica

Más detalles

A B Trazo AB se denomina AB

A B Trazo AB se denomina AB PÍTULO I. GEOMETRÍ BÁSI. GENERLIDDES DE GEOMETRÍ SÉPTIMO. SMS PROF. J.K.B.M EL punto es un ente matemático creado por el hombre para poder representar las figuras geométricas. El punto no tiene peso, ni

Más detalles

PMI 5º Grado Geometría Trabajo en Clase-Trabajo en Casa Polígonos Trabajo en Casa 1. Establece si las siguientes figuras son polígonos o no. a.

PMI 5º Grado Geometría Trabajo en Clase-Trabajo en Casa Polígonos Trabajo en Casa 1. Establece si las siguientes figuras son polígonos o no. a. PMI 5º Grado Geometría Trabajo en Clase-Trabajo en Casa Polígonos Trabajo en Casa 1. Establece si las siguientes figuras son polígonos o no. a. b. c. 2. Qué características hacen a un polígono? 3. Cuáles

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

10 cm. Hallamos la altura de la base: 6 2 = x 2 + 5 2 8 36 = x 2 + 25 8 x 2 = 36 25 = 11 8. 8 x = 11 3,3 cm 10 3,3 2. Área base =

10 cm. Hallamos la altura de la base: 6 2 = x 2 + 5 2 8 36 = x 2 + 25 8 x 2 = 36 25 = 11 8. 8 x = 11 3,3 cm 10 3,3 2. Área base = PÁGINA 09 Pá. 1 Prctic Desrrollos y áres 1 Dibuj el desrrollo plno y clcul el áre totl de los siuientes cuerpos eométricos: ) b) 1 cm 1 4 cm ) 19 6 6 6 10 6 Hllmos l ltur de l bse: 6 = + 5 8 36 = + 5 8

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

CLASIFICACIÓN DE POLÍGONOS: SU DIDÁCTICA.

CLASIFICACIÓN DE POLÍGONOS: SU DIDÁCTICA. CLASIFICACIÓN DE POLÍGONOS: SU DIDÁCTICA. AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO Resumen EN ÉSTE ARTÍCULO, ESTUDIAMOS LA CLASIFICACIÓN DE POLÍGONOS. HACEMOS UNA CLASIFICACIÓN

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

Estándar Anual. Matemática. Ejercicios PSU. Guía práctica Generalidades de los triángulos GUICES022MT22-A16V1. Programa

Estándar Anual. Matemática. Ejercicios PSU. Guía práctica Generalidades de los triángulos GUICES022MT22-A16V1. Programa rograma Estándar nual Nº Guía práctica Generalidades de los triángulos Ejercicios U 1. Los ángulos interiores de un triángulo están en la razón 5 : 6 : 7, entonces el ángulo exterior adyacente al menor

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática 12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +

Más detalles