PSU Matemática NM-4 Guía 22: Congruencia de Triángulos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PSU Matemática NM-4 Guía 22: Congruencia de Triángulos"

Transcripción

1 Centro Educcionl Sn Crlos de Argón. Dpto. Mtemátic. Nivel: NM 4 Prof. Ximen Gllegos H. PSU Mtemátic NM-4 Guí : Congruenci de Triángulos Nombre: Curso: Fech: - Contenido: Congruenci. Aprendizje Esperdo: Aplic distintos criterios de congruenci en el nálisis de figurs plns. Instrucciones: resuelve y encierr en un círculo l lterntiv correct ) Los triángulos ABC y DEF que se muestrn en l figur son congruentes. Cuál es l medid del ldo EF? ) 40 cm b) 7 cm c) 5 cm d) 9 cm e) n.. ) Cuál de ls siguientes proposiciones es verdder? ) Dos triángulos son congruentes si sus ángulos respectivos son igules. b) Dos triángulos rectángulos son congruentes si sus ángulos gudos respectivos son congruentes. c) Pr demostrr que dos triángulos son congruentes se puede utilizr el criterio AAL. d) Dos triángulos son congruentes si sus ldos homólogos miden lo mismo. e) Tods ls nteriores ) En l figur, ABC equilátero y AF BD CE. El criterio que permite demostrr que los triángulos AFE, FBD y CED son congruentes es: ) LLA b) ALA c) LLL d) LAL e) n.. 4) En l figur, BD es bisectriz y AB = BC. Cuánto mide el ángulo? ) 0 b) 75 c) 60 d) 45 e) n.. 5) ABDC es un rombo. Cuál de los siguientes triángulos es congruente con el CAD? ) CDB b) BDA c) CBA d) Todos los nteriores e) Ninguno

2 6) En el rectángulo ABCD de l figur, cuánts prejs de triángulos congruentes hy? ) 0 b) 8 c) 6 d) 4 e) n.. 7) Respecto l cudrdo EFGH, cuál de ls siguientes proposiciones es FALSA? ) EIF EIH b) GHI GHF c) EFH GFH d) EIF GIH e) n.. 8) En l figur, los triángulos ABC y DEF son congruentes, BC EF. Cuál es l medid del ángulo EGC? ) 0º b) 40º c) 60º d) 80º e) n.. 9) Los triángulos que se muestrn en l figur son congruentes. Cuál es l medid del ángulo? ) 5º b) 55º c) 65º d) 7º e) n.. 0) El vlor de en l ecución 4 + = 7 es: ) ( log 4 log 7 ) log 4 log7 ) L figur: b) c) log log d) log( 6 49) e) ( log 4 + log 7) log 4 log 7 Es congruente con: ) b) c) d) e) b y c. ) Un tercer proporcionl geométric entre 4 y 8 podrí ser: ) b) 4 c) 8 d) 6 e)

3 ) Cuál debe ser el vlor de pr que L se prlel L? ) b) 7 c) 4 d) e) 4) L sum de los perímetros de dos cudrdos es 5 cm. y l sum de sus áres es 97 cm. Cuánto mide l digonl del cudrdo myor? ) 4 b) 9 c) d) 9 e) 4 5) = 6; entonces =? ) 5 b) 4 c) d) e) n. 6) En cuál de los siguientes esquems se verific l relción = p q? ) I y II b) II y III c) I y III d) I, II y III e) Ningun de ls nteriores 7) Si se escoge un letr l zr de l plbr SUEGRITA, cuál es l probbilidd de que est se vocl? ) b) 8 5 c) 8 d) 5 e) 4 8 8) L edd de Jun y l de Pedro están en l rzón de 6 : y l de Pedro con l de Diego en l rzón de 4 :. Si ls eddes de los sumn 8 ños. Qué edd tiene Pedro? ) 4 ños b) ños c) 8 ños d) 6 ños e) 4 ños 9) Ddo el triángulo ABC de l figur, determin el vlor de h c (ltur trzd desde el vértice C) 0 ) 60 b) c) 4 d) e) 5 = + ; entonces =? 0) log ( log logy logz) ) ( + y z) b) y z y c) z d) + y z e) + y z

4 4 ) Si el promedio (medi ritmétic) de: 7, 8 y + es P, entonces cuál es P el promedio entre P y? ) b) + 0 c) + 0 d) e) ) Si A, B, D y C, B, E son colineles respectivmente, determinr el vlor de ( + y) ) b) 4 c) 56 d) 86 e) 96 ) Si h vrí directmente con el cudrdo de t, y si h = 8 cundo t =, el vlor de h cundo t = 5 es: ) 0 b) 40 c) 50 d) 55 e) 60 4) Si + + =, cuál es el vlor de? ) b) c) 6 d) 9 e) 7 5) Cuál es el perímetro del trpecio ABCD? ) 4 b) c) 0 d) e) 6) De un sco lleno de fruts, l probbilidd de scr un mnzn es de un 0%. Cuál es l probbilidd de scr culquier frut que no se mnzn? ) 0% b) 40% c) 50% d) 80% e) Flt informción 7) En l figur, AED BEC. Estos triángulos demás serán congruentes si siempre se cumple que: ) ADE = 45 b) AE EC c) AE EB d) DE EB e) AE BC

5 5 8) Si se le sum 7 se obtiene: ) 9 b) 5 c) 5 d) e) 9) Si f ( ) = 5 y ( ) 7 f t =, entonces t =? ) b) 0 c) d) e) 0) Si f ( ) = 4, entonces f =? ) b) c) d) ) Si en l figur, ABCD es un cudrdo, cuál es el vlor de? e) ) 5 b) 7 c) 9 d) 4,5 e) Otro vlor ) Se tiene un cudrdo de ldo y un triángulo isósceles en C de ltur hc = equivlentes. Cuánto mide el ldo AC del triángulo en términos de y de? ) b) c) + d) + 4 e) n.. ) Tres llves que entregn l mism cntidd de gu por minuto llenn un tin en 8 minutos. Cuánto demorrán dos de ests llves en llenr l mism tin? ) 0min. b) min. c) 5 min. d) 7 min. e) Más de un hor 4) ( ) + ( ) + ( ) ) + ( ) =? ) b) c) d) e) Otro vlor 5) Si en un rectángulo los ldos umentn en un 0%, entonces: ) El áre del rectángulo obtenido es 0% myor que el áre del rectángulo inicil. b) El perímetro del rectángulo obtenido es 40% myor que el perímetro inicil. c) L rzón entre el áre del rectángulo finl e inicil es,44 d) L rzón entre el áre del rectángulo finl e inicil es 0,04 e) El áre y el perímetro finl e inicil son igules.

6 6 6) En l circunferenci de l figur, AB CD. AE = 6, BE =, DE = 4, cuál(es) de ls siguientes proposiciones es(son) verdder(s)? I) CE = 4 II) AC + BD = 5 5 III) AE EB = CE ED ) Sólo I b) Sólo II y III c) Sólo I y III d) I, II y IIII e) Ningun 7) Cuál(es) de ls siguientes firmciones es (son) siempre verdder(s)? I) Dos triángulos equiláteros son congruentes. II) Dos triángulos isósceles de bse común son congruentes. III) Dos triángulos rectángulos de ctetos respectivmente congruentes son congruentes. ) Sólo I b) Sólo II c) Sólo I y II d) Sólo III e) I, II y III 8) Qué criterio de congruenci permite firmr que los triángulos de l figur son congruentes? ) L, L, L b) L, A, L c) A, L, A d) L, L, A e) A, A, L 9) El semiperímetro de un rectángulo es 7 cm. El ldo menor mide: () El lrgo y el ncho están en l rzón 5 : () El áre es.5 cm ) () por sí sol b) () por sí sol c) Ambs junts, () y () d) Cd un por sí sol, () ó () e) Se requiere informción dicionl 40) Se puede conocer el vlor de si: () El doble de es igul l triple de b () El doble de b es igul l triple de ) () por sí sol b) () por sí sol c) Ambs junts, () y () d) Cd un por sí sol, () ó () e) Se requiere informción dicionl Hoj de Respuests ) c ) d ) d 4) c 5) b 6) b 7) b 8) d 9) b 0) e ) b ) d ) 4) b 5) 6) 7) 8) c 9) d 0) d ) c ) e ) c 4) d 5) 6) d 7) c 8) c 9) d 0) d ) ) d ) 4) d 5) c 6) b 7) d 8) c 9) d 40) c

7 7 Centro Educcionl Sn Crlos de Argón. Dpto. Mtemátic. Prof. Ximen Gllegos H. PSU Mtemátic NM-4 Guí : Congruenci de Triángulos Nombre: Curso: Fech: - Contenido: Congruenci. Aprendizje Esperdo: Aplic distintos criterios de congruenci en el nálisis de figurs plns. Instrucciones: resuelve y encierr en un círculo l lterntiv correct ) Los triángulos ABC y DEF que se muestrn en l figur son congruentes. Cuál es l medid del ldo EF? ) 40 cm b) 7 cm c) 5 cm d) 9 cm e) n.. ) Cuál de ls siguientes proposiciones es verdder? ) Dos triángulos son congruentes si sus ángulos respectivos son igules. d) Dos triángulos rectángulos son congruentes si sus ángulos gudos respectivos son congruentes. e) Pr demostrr que dos triángulos son congruentes se puede utilizr el criterio AAL. d) Dos triángulos son congruentes si sus ldos homólogos miden lo mismo. e) Tods ls nteriores ) En l figur, ABC equilátero y AF BD CE. El criterio que permite demostrr que los triángulos AFE, FBD y CED son congruentes es: ) LLA b) ALA c) LLL d) LAL e) n.. 4) En l figur, BD es bisectriz y AB = BC. Cuánto mide el ángulo? ) 0 b) 75 c) 60 d) 45 e) n.. 5) ABDC es un rombo. Cuál de los siguientes triángulos es congruente con el CAD? ) CDB b) BDA c) CBA d) Todos los nteriores e) Ninguno

8 8 6) En el rectángulo ABCD de l figur, cuánts prejs de triángulos congruentes hy? ) 0 b) 8 c) 6 d) 4 e) n.. 7) Respecto l cudrdo EFGH, cuál de ls siguientes proposiciones es FALSA? ) EIF EIH b) GHI GHF c) EFH GFH d) EIF GIH e) n.. 8) En l figur, los triángulos ABC y DEF son congruentes, BC EF. Cuál es l medid del ángulo EGC? ) 0º b) 40º c) 60º d) 80º e) n.. 9) Los triángulos que se muestrn en l figur son congruentes. Cuál es l medid del ángulo? ) 5º b) 55º c) 65º d) 7º e) n.. 0) El vlor de en l ecución 4 + = 7 es: ) ( log 4 log 7 ) log 4 log7 ) L figur: b) c) log log d) log( 6 49) e) ( log 4 + log 7) log 4 log 7 Es congruente con: ) b) c) d) e) b y c. ) Un tercer proporcionl geométric entre 4 y 8 podrí ser: ) b) 4 c) 8 d) 6 e)

9 9 ) Cuál debe ser el vlor de pr que L se prlel L? ) b) 7 c) 4 d) e) 4) L sum de los perímetros de dos cudrdos es 5 cm. y l sum de sus áres es 97 cm. Cuánto mide l digonl del cudrdo myor? ) 4 b) 9 c) d) 9 e) 4 5) = 6; entonces =? ) 5 b) 4 c) d) e) n. 6) En cuál de los siguientes esquems se verific l relción = p q? ) I y II b) II y III c) I y III d) I, II y III e) Ningun de ls nteriores 7) Si se escoge un letr l zr de l plbr SUEGRITA, cuál es l probbilidd de que est se vocl? ) b) 8 5 c) 8 d) 5 e) 4 8 8) L edd de Jun y l de Pedro están en l rzón de 6 : y l de Pedro con l de Diego en l rzón de 4 :. Si ls eddes de los sumn 8 ños. Qué edd tiene Pedro? ) 4 ños b) ños c) 8 ños d) 6 ños e) 4 ños 9) Ddo el triángulo ABC de l figur, determin el vlor de h c (ltur trzd desde el vértice C) 0 ) 60 b) c) 4 d) e) 5 = + ; entonces =? 0) log ( log logy logz) ) ( + y z) b) y z y c) z d) + y z e) + y z

10 0 ) Si el promedio (medi ritmétic) de: 7, 8 y + es P, entonces cuál es P el promedio entre P y? ) b) + 0 c) + 0 d) e) ) Si A, B, D y C, B, E son colineles respectivmente, determinr el vlor de ( + y) ) b) 4 c) 56 d) 86 e) 96 ) Si h vrí directmente con el cudrdo de t, y si h = 8 cundo t =, el vlor de h cundo t = 5 es: ) 0 b) 40 c) 50 d) 55 e) 60 4) Si + + =, cuál es el vlor de? ) b) c) 6 d) 9 e) 7 5) Cuál es el perímetro del trpecio ABCD? ) 4 b) c) 0 d) e) 6) De un sco lleno de fruts, l probbilidd de scr un mnzn es de un 0%. Cuál es l probbilidd de scr culquier frut que no se mnzn? ) 0% b) 40% c) 50% d) 80% e) Flt informción 7) En l figur, AED BEC. Estos triángulos demás serán congruentes si siempre se cumple que: ) ADE = 45 b) AE EC c) AE EB d) DE EB e) AE BC

11 8) Si se le sum 7 se obtiene: ) 9 b) 5 c) 5 d) e) 9) Si f ( ) = 5 y ( ) 7 f t =, entonces t =? ) b) 0 c) d) e) 0) Si f ( ) = 4, entonces f =? ) b) c) d) ) Si en l figur, ABCD es un cudrdo, cuál es el vlor de? e) ) 5 b) 7 c) 9 d) 4,5 e) Otro vlor ) Se tiene un cudrdo de ldo y un triángulo isósceles en C de ltur hc = equivlentes. Cuánto mide el ldo AC del triángulo en términos de y de? ) b) c) + d) + 4 e) n.. ) Tres llves que entregn l mism cntidd de gu por minuto llenn un tin en 8 minutos. Cuánto demorrán dos de ests llves en llenr l mism tin? ) 0min. b) min. c) 5 min. d) 7 min. e) Más de un hor 4) ( ) + ( ) + ( ) ) + ( ) =? ) b) c) d) e) Otro vlor 5) Si en un rectángulo los ldos umentn en un 0%, entonces: ) El áre del rectángulo obtenido es 0% myor que el áre del rectángulo inicil. b) El perímetro del rectángulo obtenido es 40% myor que el perímetro inicil. c) L rzón entre el áre del rectángulo finl e inicil es,44 d) L rzón entre el áre del rectángulo finl e inicil es 0,04 e) El áre y el perímetro finl e inicil son igules.

12 6) En l circunferenci de l figur, AB CD. AE = 6, BE =, DE = 4, cuál(es) de ls siguientes proposiciones es(son) verdder(s)? I) CE = 4 II) AC + BD = 5 5 III) AE EB = CE ED ) Sólo I b) Sólo II y III c) Sólo I y III d) I, II y IIII e) Ningun 7) Cuál(es) de ls siguientes firmciones es (son) siempre verdder(s)? I) Dos triángulos equiláteros son congruentes. II) Dos triángulos isósceles de bse común son congruentes. III) Dos triángulos rectángulos de ctetos respectivmente congruentes son congruentes. ) Sólo I b) Sólo II c) Sólo I y II d) Sólo III e) I, II y III 8) Qué criterio de congruenci permite firmr que los triángulos de l figur son congruentes? ) L, L, L b) L, A, L c) A, L, A d) L, L, A e) A, A, L 9) El semiperímetro de un rectángulo es 7 cm. El ldo menor mide: () El lrgo y el ncho están en l rzón 5 : () El áre es.5 cm ) () por sí sol b) () por sí sol c) Ambs junts, () y () d) Cd un por sí sol, () ó () e) Se requiere informción dicionl 40) Se puede conocer el vlor de si: () El doble de es igul l triple de b () El doble de b es igul l triple de ) () por sí sol b) () por sí sol c) Ambs junts, () y () d) Cd un por sí sol, () ó () e) Se requiere informción dicionl Hoj de Respuests ) c ) d ) d 4) c 5) b 6) b 7) b 8) d 9) b 0) e ) b ) d ) 4) b 5) 6) 7) 8) c 9) d 0) d ) c ) e ) c 4) d 5) 6) d 7) c 8) c 9) d 0) d ) ) d ) 4) d 5) c 6) b 7) d 8) c 9) d 40) c

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 UÍ TÓRIO PRÁTI Nº 11 UNI: OMTRÍ POLÍONOS URILÁTROS POLÍONOS INIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus puntos

Más detalles

. M odulo 7 Geometr ıa Gu ıa de Ejercicios

. M odulo 7 Geometr ıa Gu ıa de Ejercicios . Módulo 7 Geometría Guía de Ejercicios Índice Unidad I. Conceptos y elementos de geometría. Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 09 Unidad II. Áreas y perímetros de figuras planas.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

C u r s o : Matemática. Material N 25 GUÍA TEÓRICO PRÁCTICA Nº 20 UNIDAD: ÁLGEBRA Y FUNCIONES. Sean a, b lr {0} y m, n.

C u r s o : Matemática. Material N 25 GUÍA TEÓRICO PRÁCTICA Nº 20 UNIDAD: ÁLGEBRA Y FUNCIONES. Sean a, b lr {0} y m, n. C u r s o : Mtemátic Mteril N 5 GUÍA TEÓRICO PRÁCTICA Nº 0 UNIDAD: ÁLGEBRA Y FUNCIONES POTENCIAS ECUACIÓN EXPONENCIAL FUNCIÓN EXPONENCIAL PROPIEDADES DE POTENCIAS Sen, b lr {0} y m, n PRODUCTO DE POTENCIAS

Más detalles

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área. POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A

Más detalles

UNIDAD: GEOMETRÍA PERÍMETROS Y ÁREAS

UNIDAD: GEOMETRÍA PERÍMETROS Y ÁREAS u r s o : Mtemátic Mteril N 17 GUÍ TÓRI PRÁTI Nº 14 UNI: GMTRÍ PRÍMTRS Y ÁRS Perímetro de un polígono, es l sum de ls longitudes de todos sus ldos. l perímetro se denotrá por p y el semiperímetro por s.

Más detalles

Guía -5 Matemática NM-4: Volumen de Poliedros

Guía -5 Matemática NM-4: Volumen de Poliedros Centro Educcionl Sn Crlos de Argón. Coordinción Acdémic Enseñnz Medi. Sector: Mtemátic. Prof.: Ximen Gllegos H. 1 Guí -5 Mtemátic NM-4: Volumen de Poliedros Nombre: Curso: Fech: Unidd: Geometrí. Contenido:

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2. GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica

Más detalles

Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre..

Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre.. Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre.. 1) En la figura, AC // BD, entonces x mide: 2) Con respecto a la figura, donde AB // CD // EF, cuál de las siguientes

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 06 EJERCICIOS Tipos de poliedros 1 Di, justificdmente, qué tipo de poliedro es cd uno de los siguientes: A B C D E Hy entre ellos lgún poliedro regulr? A Prism pentgonl recto. Su bse es un

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

AB CH. Área del PQR ABC AB CH. Área del ABC QR PA. Área del. El área de un triangulo rectángulo es igual al semiproducto de sus catetos.

AB CH. Área del PQR ABC AB CH. Área del ABC QR PA. Área del. El área de un triangulo rectángulo es igual al semiproducto de sus catetos. AREAS L noción de áre está socid l extensión o superficie de un figur. El áre es un número que nos dice que tn extens es un región y l expresmos en kilómetros cudrdos (Km ); metros cudrdos (m ); centímetros

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

2.- Dos ángulos de un triángulo miden 73º y 58º respectivamente. Determina el ángulo que forman sus bisectrices.

2.- Dos ángulos de un triángulo miden 73º y 58º respectivamente. Determina el ángulo que forman sus bisectrices. GEOMETRÍ 1.- Determin ls medids de los ángulos desconocidos. ) b) " 31º " 20º 47º 2.- Dos ángulos de un triángulo miden 73º y 58º respectivmente. Determin el ángulo que formn sus bisectrices. 3.- uánto

Más detalles

Guía Práctica N 13: Función Exponencial

Guía Práctica N 13: Función Exponencial Fuente: Pre Universitrio Pedro de Vldivi Guí Práctic N : Función Eponencil POTENCIAS ECUACIÓN EXPONENCIAL FUNCIÓN EXPONENCIAL PROPIEDADES DE LAS POTENCIAS Sen, b lr {0} m, n. Entonces: PRODUCTO DE POTENCIAS

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS Nombre: Grado: 9 5 1. Costrucciones 2. las rectas y puntos notables de un triángulo Sabemos que los polígonos son figuras cerradas planas, de lados rectos,

Más detalles

1. Teoremas válidos para triángulos rectángulos

1. Teoremas válidos para triángulos rectángulos 1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa

Más detalles

11 Perímetros y áreas de figuras planas

11 Perímetros y áreas de figuras planas 86464 _ 0371-0384.qxd 1//07 09:4 Págin 371 Perímetros y áres de figurs plns INTRODUCCIÓN En est unidd repsmos ls uniddes de longitud y superficie. Se introducen tmbién lguns uniddes de medid del sistem

Más detalles

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.

donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos. Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

fig. 1 fig. 2 fig. 3 fig. 4 fig. 5 EJEMPLOS 1. Si el área de un cuadrado es 144 cm 2, entonces su perímetro mide

fig. 1 fig. 2 fig. 3 fig. 4 fig. 5 EJEMPLOS 1. Si el área de un cuadrado es 144 cm 2, entonces su perímetro mide Profesor ln Rvnl S. UNI: GOMTRÍ PRÍMTROS Y ÁRS Perímetro de un polígono, es l sum de ls longitudes de todos sus ldos. l perímetro se denotrá por p. Áre es l medid que le corresponde tod l región poligonl.

Más detalles

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360 Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"

Más detalles

UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS u r s o : Mtemátic Mteril N 38 GUÍ TEÓRIO PRÁTI Nº 29 UNIDD: GEOMETRÍ RETS Y PLNOS EN EL ESPIO - ÁRES Y VOLÚMENES DE UERPOS GEOMÉTRIOS Determinción del plno: Un plno qued determindo por: Dos rects que

Más detalles

PSU MATEMATICA 530 preguntas de facsímiles oficiales

PSU MATEMATICA 530 preguntas de facsímiles oficiales 0 PSU MATEMATICA 0 pregunts de fcsímiles oficiles Bsdo en l recopilción hech por el profesor Álvro Sánchez V. Contiene sólo los ejercicios de ese trbjo, ordendos por contenidos y con un distribución diferente

Más detalles

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1 SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

Areas y perímetros de triángulos.

Areas y perímetros de triángulos. Areas y perímetros de triángulos. Teorema de Pitágoras. Propiedades de las medidas de los lados de todo triángulo. Area de un triángulo rectángulo y cualquiera. Perímetro y semiperímetro de un triángulo

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL Y EJERCITACION PERIODO GRADO No. FECHA DURACION 3 7 2 FEBRERO

Más detalles

C u r s o : Matemática ENSAYO UNIVERSIA Nº 6 MATEMÁTICA

C u r s o : Matemática ENSAYO UNIVERSIA Nº 6 MATEMÁTICA C u r s o : Matemática ENSAYO UNIVERSIA Nº 6 MATEMÁTICA PSU MATEMÁTICA INSTRUCCIONES ESPECÍFICAS. Esta prueba consta de 70 preguntas. Usted dispone de horas y 5 minutos para responderla.. A continuación

Más detalles

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º.

1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. MATEMÁTICAS NM TRIGONOMETRÍA 1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. a) Calcule AB. b) Halle el área del triángulo. 2. (D) La siguiente figura muestra una

Más detalles

UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS RACIONALES. y b distinto de cero. El conjunto de los números racionales se representa por la letra.

UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS RACIONALES. y b distinto de cero. El conjunto de los números racionales se representa por la letra. C u r s o : Mtemátic Mteril N 03 GUÍA TEÓRICO PRÁCTICA Nº 3 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS RACIONALES NÚMEROS RACIONALES Los números rcionles son todos quellos números de l form b con y b números

Más detalles

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

Subtemas: -Congruencia De Triángulos. -Tipos De Ángulos. -Tipos De Triángulos

Subtemas: -Congruencia De Triángulos. -Tipos De Ángulos. -Tipos De Triángulos Subtemas: -Congruencia De Triángulos -Tipos De Ángulos -Tipos De Triángulos Congruencia de triángulos La congruencia de triángulos estudia los casos en que dos o más triángulos presentan ángulos y lados

Más detalles

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que:

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que: Axiom de división del espcio: Todo plno del espcio determin en éste dos regiones tles que: - Cd punto del espcio pertenece un de ls dos regiones o l plno - Dos puntos de un mism región determinn un segmento

Más detalles

Trigonometría: ángulos / triángulos. matemática / arquitectura

Trigonometría: ángulos / triángulos. matemática / arquitectura Trigonometrí: ángulos / triángulos mtemátic / rquitectur Grn pirámide de Guiz. Egipto. 2750.C. (h=146,62m / l=230,35m) Pirámide del Museo Louvre. Pris. 1989. rq. Ieoh Ming Pei. (h=20m / l=35m) Grn pirámide

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.

Más detalles

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática 12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

SGUICES027MT22-A16V1. SOLUCIONARIO Congruencia de triángulos

SGUICES027MT22-A16V1. SOLUCIONARIO Congruencia de triángulos SGUICES07MT-A16V1 SOLUCIONARIO Congruencia de triángulos 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA CONGRUENCIA DE TRIANGULOS Ítem Alternativa 1 D Comprensión C 3 C 4 E Comprensión 5 E Comprensión 6 E Comprensión

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180 CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS

Más detalles

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES I TRJ Nombre Nº orden imestre IVº 4ºgrdo - sección iclo IVº ech: - 11-10 Áre : temátic Tem LIRS RULRS IRRULRS LIRS RULRS s quel poliedro en el cul sus crs son regiones poligonles congruentes entre sí,

Más detalles

Curso: Matemática ENSAYO EX CÁTEDRA Nº 1 MATEMÁTICA

Curso: Matemática ENSAYO EX CÁTEDRA Nº 1 MATEMÁTICA Curso: Matemática ENSAYO EX CÁTEDRA Nº MATEMÁTICA PSU MATEMÁTICA INSTRUCCIONES ESPECÍFICAS. Esta prueba consta de 75 preguntas. Usted dispone de horas y 5 minutos para responderla.. A continuación encontrará

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 3 1. NÚMEROS RACIONALES UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS RACIONALES Los números rcionles son todos quellos números de l form b con y b números

Más detalles

B) Solo II C) I y II D) I y III E) I, II y III. A) 8 cm 2 B) 15 cm 2 C) 40 cm 2 D) 60 cm 2 E) 120 cm 2

B) Solo II C) I y II D) I y III E) I, II y III. A) 8 cm 2 B) 15 cm 2 C) 40 cm 2 D) 60 cm 2 E) 120 cm 2 EJERCICIOS DE ÁREAS Y PERÍMETROS DE TRIÁNGULOS 1. En el triángulo ABC es isósceles y rectángulo en C. Si AC = 5 cm y AD = cm, cuál (es) de las siguientes proposiciones es (son) verdadera (s)?: I) Área

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO CUADRILATERO INTRODUCCION Son polígonos de 4 lados. La suma de los ángulos interiores es igual a 360º y la suma de los ángulos exteriores es igual a 360º. Vértices : A, B, C, D Lados : a, b, c, d Ángulos

Más detalles

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES.

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES. TEM : PROPORCIONLIDD Y PORCENTJES.. Conceptos de Rzón y Proporción. Se define l RZÓN entre dos números como l frcción que se form con ellos. Es decir l rzón entre y es:, con 0. De quí que ls frcciones

Más detalles

Conquistando terrenos y haciendo pompas de jabón

Conquistando terrenos y haciendo pompas de jabón Conquistndo terrenos y hciendo pomps de jbón Crlos Prieto de Cstro Universidd Ncionl Autónom de México 2º Encuentro con los números Envigdo, Antioqui, Colombi 19 de octubre de 2013 http://www.mtem.unm.mx/cprieto

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles

1.- Simplificar las siguientes fracciones: h) 28/36 i) 84/126 j) 54/96 k) 510/850 l) 980/140

1.- Simplificar las siguientes fracciones: h) 28/36 i) 84/126 j) 54/96 k) 510/850 l) 980/140 ACTIVITATS DE N ESO PER A ESTIU ACTIVIDADES CON NÚMEROS ENTEROS º ESO. Reliz ls siguientes operciones. + + + d + + b + + 6 e + 6 c + f 6 + + + 6. Reliz ls siguientes operciones. ( + + ( + + ( + d + ( +

Más detalles

Una magnitud es cualquier propiedad que se puede medir numéricamente.

Una magnitud es cualquier propiedad que se puede medir numéricamente. Etueri Clses Prticulres Online Tem 4. Proporcionlidd Mgnitudes Un mgnitud es culquier propiedd que se puede medir numéricmente. Ejemplos: longitud, cpcidd de un recipiente, peso, Rzón L rzón es el cociente

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

G - 6. Guía Cursos Anuales. Matemática. Cuadriláteros I

G - 6. Guía Cursos Anuales. Matemática. Cuadriláteros I G - 6 Guía ursos nuales Matemática 2008 uadriláteros I Guía ursos nuales Introducción La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza,.

Más detalles

Respuesta: Con este resultado Anahí decide contratar a estos pintores.

Respuesta: Con este resultado Anahí decide contratar a estos pintores. Universidd de Concepción Fcultd de Ciencis Veterinris Nivelción de Mtemátics(0) Unidd-I: Conjunto de los Números Rcionles Introducción: Al plnter l necesidd de dividir números enteros, surge un problem:

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

10.- Teoremas de Adición.

10.- Teoremas de Adición. Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Geometría 1 de Secundaria: I Trimestre. yanapa.com. Rayo. I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano

Geometría 1 de Secundaria: I Trimestre. yanapa.com. Rayo. I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano Rayo Segmento : Rayo de Origen O y que pasa por B : Rayo de Origen O y que pasa por A La Recta : Se lee Segmento AB : Se lee

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #2

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #2 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #2 CONGRUENCIA DE TRIÁNGULOS Dos triángulos son congruentes si los tres lados de uno son respectivamente congruentes con los tres

Más detalles

Trabajo Práctico N 2: Geometría del triángulo

Trabajo Práctico N 2: Geometría del triángulo Trabajo Práctico N 2: Geometría del triángulo Problema 1: a. Qué puedes decir sobre los ángulos interiores de un triángulo rectángulo? Cuánto miden? b. Qué puedes decir sobre los ángulos interiores de

Más detalles

Los polígonos y la circunferencia

Los polígonos y la circunferencia l: ldo 12 Los polígonos y l circunferenci 1. Polígonos lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos: P I E N S Y L U L R l: ldo R R? R? R R? R R? R E l: ldo l: ldo F E 360 : 3 =

Más detalles

Problemas de Aplicación

Problemas de Aplicación www.matebrunca.com Prof. Waldo Márquez González Ejercicios: Teorema de Pitágoras 1 Problemas de Aplicación 1. En los ejercicios siguientes, establézcase si la ecuación dada es correcta o no. Supóngase

Más detalles

DIVERSIFICACIÓN CURRICULAR

DIVERSIFICACIÓN CURRICULAR ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un

Más detalles

Geometría y Arte. Didáctica de la Geometría en Educación Secundaria

Geometría y Arte. Didáctica de la Geometría en Educación Secundaria Geometrí y Arte Didáctic de l Geometrí en Educción Secundri Mª Encrnción Reyes. ETS Arquitectur. Universidd de Vlldolid Fcultd de Educción Vlldolid, Febrero 007 Proporciones Proporciones Otrs: Cordobes,

Más detalles

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9 1 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 < x + 4 c) x + 51 > 15x + 9 x < x > -1 c) x < 4 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 > x + 4 c) 5x + 10 < 1x - 4 x > x < -

Más detalles

Tema 10: Cuerpos geométricos y transformaciones geométricas

Tema 10: Cuerpos geométricos y transformaciones geométricas Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS

Más detalles

TEMA VI: ACIDOS Y BASES

TEMA VI: ACIDOS Y BASES www.selectividd-cgrnd.com TEMA VI: ACIDOS Y BASES 1.- El ácido clorocético (ClCH COOH) en concentrción 0,01M y 5 C se encuentr disocido en 1%. Clculr: ) L constnte de disocición de dicho ácido. b) El ph

Más detalles

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

1. Perímetro y área de los polígonos (I) Halla mentalmente el perímetro y el área de un rectángulo que mide 60 m de largo y 40 m de alto.

1. Perímetro y área de los polígonos (I) Halla mentalmente el perímetro y el área de un rectángulo que mide 60 m de largo y 40 m de alto. 13 Perímetros y áres 1. Perímetro y áre de los polígonos (I) Hll mentlmente el perímetro y el áre de un rectángulo que mide 60 m de lrgo y 40 m de lto. Perímetro: (60 + 40) = 00 m Áre = 60 40 = 400 m P

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

Q + simboliza el conjunto de los números fraccionarios y está formado por

Q + simboliza el conjunto de los números fraccionarios y está formado por CONJUNTOS NUMÉRICOS N simboliza el conjunto de los números naturales: N = {0; ; ; 3; 4; } Q + simboliza el conjunto de los números fraccionarios y está formado por a todas las fracciones de la forma ;

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

SIMCE Nº 2 Educación Matemática Octavo Básico Geometría.

SIMCE Nº 2 Educación Matemática Octavo Básico Geometría. SIMCE Nº 2 Educación Matemática Octavo Básico Geometría A b r i l, 2 0 0 6 Instrucciones para el profesor SIMCE 8º BASICO EDUCACIÓN MATEMÁTICA Nº 2 / Abril 2006 Objetivo: 1. En situaciones problema utilizan

Más detalles

Geometría: Ejercicios de Semejanza de Triángulos

Geometría: Ejercicios de Semejanza de Triángulos www.matebrunca.com Prof. Waldo Márquez González Semejanza de Triángulos 1 Geometría: Ejercicios de Semejanza de Triángulos 1. Escribir F si es falso, o V si es verdadero, según corresponda a cada proposición.

Más detalles

PRIMER ENSAYO EXAMEN DE GEOMETRIA Las diagonales de un rombo miden 10 cm y24cm. Entonces el perímetro del rombo es:

PRIMER ENSAYO EXAMEN DE GEOMETRIA Las diagonales de un rombo miden 10 cm y24cm. Entonces el perímetro del rombo es: EJÉRITO E HILE OMNO E INSTITUTOS MILITRES cademia Politécnica Militar PRIMER ENSYO EXMEN E GEOMETRI 2005 1. Las diagonales de un rombo miden 10 cm y24cm. Entonces el perímetro del rombo es: a) 68cm b)

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

CUENCA DEL ALTO PARANÁ Soluciones - Primer Nivel

CUENCA DEL ALTO PARANÁ Soluciones - Primer Nivel CUENCA DEL ALTO PARANÁ Soluciones - Primer Nivel Problema 1: Si se traza una recta m paralela a r que pase por el centro del rectángulo, éste quedará seccionado en dos trapecios iguales. En efecto, trazando

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles