Guía -5 Matemática NM-4: Volumen de Poliedros

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Guía -5 Matemática NM-4: Volumen de Poliedros"

Transcripción

1 Centro Educcionl Sn Crlos de Argón. Coordinción Acdémic Enseñnz Medi. Sector: Mtemátic. Prof.: Ximen Gllegos H. 1 Guí -5 Mtemátic NM-4: Volumen de Poliedros Nombre: Curso: Fech: Unidd: Geometrí. Contenido: Áre y Volumen de cuerpos geométricos. Aprendizje Esperdo: Aplic teorem conocidos de l geometrí pln y determin áre y volumen de diferentes cuerpos geométricos. Complet el siguiente cudro con l fórmul correspondiente cd figur. CUBO PARALELEPÍPEDO PIRÁMIDE h b V = V = b h V = A h b I) Texto Págins II) Resuelve plicndo ls fórmuls nteriores. 1) Clculr el volumen de un prism rectngulr de bse 8 cm por 5 cm y ltur 6 cm 2) Queremos construir con cubos de 1 cm un prism de bse rectngulr de 6cm por 8 cm y ltur 8 cm, cuántos cubos necesitmos? ) Qué volumen, en centímetros cúbicos, tiene un cubo de 0,2 m de rist?, cuál es su cpcidd en litros?

2 2 4) Qué volumen, en centímetros cúbicos, tiene un cj de 0,62 m de lrgo, 0,25 m de ncho y 0,4 m de lto? 5) Qué volumen tiene un piscin rectngulr de 18 m de lrgo, 10 m de ncho y 2,5 m de profundidd?, Cuántos litros cben en ell? 6) Clculr el volumen de un prism de bse tringulr de ldo 6 cm, ltur de l bse cm y ltur del prism 8 cm. 7) Hllr el volumen de un prism tringulr de ltur 8 cm y cuy bse tiene un áre de 12 cm 2 8) Clcul el volumen de un prism tringulr de 18 cm de ltur sbiendo que l bse es un triángulo equilátero de 6 cm de ldo. 9) Clculr el volumen de un prism hexgonl de áre bsl 6 cm 2 y ltur 5 cm. 10) El volumen de un prism, de 16 cm de ltur y bse cudrd, es 128 cm. Cuáles son ls longitudes de ls rists de l bse? 11) Cuál es el volumen de un prism de bse hexgonl de 7 cm de ltur y rist bsl 2 cm?

3 12) Clculr el volumen de un pirámide de 9 cm de ltur y bse cudrd de 5 cm de rist. 1) Clculr el volumen de un pirámide de bse cudrd de 6 cm de rist bsl y 15 cm de ltur. 14) Hllr el volumen de un pirámide pentgonl regulr de 7 cm de ltur, rist bsl 4 cm y potem bsl cm. 15) L rist bsl de un pirámide cudrngulr mide 10 cm y l ltur de ls crs lterles es de 1 cm. Clcul l ltur de l pirámide y su volumen. Cuerpos generdos por rotción Cilindro Cono Tronco de Cono g h g h h g π 2 V = r h 2 r V = π h 2 2 h R + r + R r V = π III) Resuelve plicndo ls fórmuls nteriores. 16) Hllr el volumen de un cilindro de 15 cm de ltur y cm de rdio.

4 4 17) Hllr el volumen de un cilindro de 5 m de ltur y 2 metros de diámetro. 18) Si el volumen de un cilindro de 7 cm de rdio es.077,2 cm. Cuál es l ltur de este cilindro? 19) Clculr el volumen de un cono de 8 cm de ltur y 2 cm de rdio. 20) Cuál es l cpcidd en litro de un cono de 5 m de ltur y 2,5 m de rdio.? 21) El rdio de un cono es 8 cm y su genertriz mide 17 cm. Hll l tur del cono y encuentr su volumen. 22) Qué ltur tiene un cono de 4 cm de rdio y 150,7cm de volumen. 2) Al girr el triángulo rectángulo de l figur lrededor del cteto myor qué figur se form?, cuál es su ltur?, cuál es su rdio?, cuál es su volumen? 4 cm cm 24) Clculr el volumen de un tronco de cono de rdios 4 cm y 2 cm y ltur cm.

5 5 Esfer V = 4 π r 25) Qué volumen tiene un esfer de 4 cm de rdio? 26) Qué volumen tiene un esfer de 10 cm de diámetro? 27) En un vso cilíndrico de 5 cm de rdio y 10 cm de ltur, introducimos un esfer de plomo de 5 cm de rdio, qué cntidd de gu cbe en el vso? 28) En el interior de un cubo de 12 cm de rist hy un pelot de 12 cm de diámetro, qué volumen del cubo no está ocupdo por l pelot? 29) Un tronco de árbol de form cilíndric mide 4 m de ltur y 1,5 m de diámetro. Cuántos m de mder tiene? 0) Consider un esfer de rdio r l cul se duplic su rdio. En cuánto ument su áre?, en cuánto ument su volumen?

6 6 1) Consider un cono y un esfer, mbos de igul rdio r. Si l ltur del cono es 2r, cuál tiene myor volumen? 2) Qué ltur tiene un cono si su volumen es igul l de un esfer y mbos tienen igul rdio? ) Qué ltur tiene un cilindro si su volumen coincide con el de un esfer con l que tienen el mismo rdio? 4) Un trro de pelots de tenis tiene 24 cm de lrgo y 4 cm de rdio. En su interior hy tres pelots de 4 cm de rdio cd un, qué volumen del trro no está ocupdo por ls pelots? Respuests. 1) 240 cm 2) 84 ) cm ; 2,7 litros 4) cm 5) 450 m ; litros 6) 72 cm 7) 96 cm 8) 162 cm 9) 0 cm 10) 2 2 cm 11) 42 cm 12) 75 cm 1) 180 cm 14) 70 cm 15) h = 12 cm V = 400 cm 16) V = 15π cm 17) V = 5π m 18) h = 20 cm 19) 2π V = cm 20) 125π V = m 12 21) h = 15cm V = 20π cm 22) h = 9cm 2) Cono h = 12cm r = 5cm V = 100π cm 24) V = 28π cm 25) 256 cono V = π cm esfer ) V = π cm 27) 205 V = π cm 28) V = π 82,68cm 29) 7,1 0) A 4 veces ; V 8veces 2π r 4π r 4 1) V = ; V = Myor Volumen : esfer 2) h = 4r cm ) h = r 4) V = 128π cm

UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS u r s o : Mtemátic Mteril N 38 GUÍ TEÓRIO PRÁTI Nº 29 UNIDD: GEOMETRÍ RETS Y PLNOS EN EL ESPIO - ÁRES Y VOLÚMENES DE UERPOS GEOMÉTRIOS Determinción del plno: Un plno qued determindo por: Dos rects que

Más detalles

P I E N S A Y C A L C U L A

P I E N S A Y C A L C U L A Áres y volúmenes. Uniddes de volumen P I E N S Y C C U L Clcul mentlmente el volumen de ls siguientes figurs teniendo en cuent que cd cubo es un unidd. ) b) c) d) e) ) 7 u b) 4 u c) 8 u d) 6 u e) 8 u Crné

Más detalles

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES I TRJ Nombre Nº orden imestre IVº 4ºgrdo - sección iclo IVº ech: - 11-10 Áre : temátic Tem LIRS RULRS IRRULRS LIRS RULRS s quel poliedro en el cul sus crs son regiones poligonles congruentes entre sí,

Más detalles

1. Perímetro y área de los polígonos (I) Halla mentalmente el perímetro y el área de un rectángulo que mide 60 m de largo y 40 m de alto.

1. Perímetro y área de los polígonos (I) Halla mentalmente el perímetro y el área de un rectángulo que mide 60 m de largo y 40 m de alto. 13 Perímetros y áres 1. Perímetro y áre de los polígonos (I) Hll mentlmente el perímetro y el áre de un rectángulo que mide 60 m de lrgo y 40 m de lto. Perímetro: (60 + 40) = 00 m Áre = 60 40 = 400 m P

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 06 EJERCICIOS Tipos de poliedros 1 Di, justificdmente, qué tipo de poliedro es cd uno de los siguientes: A B C D E Hy entre ellos lgún poliedro regulr? A Prism pentgonl recto. Su bse es un

Más detalles

10 cm. Hallamos la altura de la base: 6 2 = x 2 + 5 2 8 36 = x 2 + 25 8 x 2 = 36 25 = 11 8. 8 x = 11 3,3 cm 10 3,3 2. Área base =

10 cm. Hallamos la altura de la base: 6 2 = x 2 + 5 2 8 36 = x 2 + 25 8 x 2 = 36 25 = 11 8. 8 x = 11 3,3 cm 10 3,3 2. Área base = PÁGINA 09 Pá. 1 Prctic Desrrollos y áres 1 Dibuj el desrrollo plno y clcul el áre totl de los siuientes cuerpos eométricos: ) b) 1 cm 1 4 cm ) 19 6 6 6 10 6 Hllmos l ltur de l bse: 6 = + 5 8 36 = + 5 8

Más detalles

Volumen de cuerpos geométricos

Volumen de cuerpos geométricos 829485 _ 0369-0418.qxd /9/07 15:06 Págin 381 Volumen de cuerpos geométricos INTRODUCCIÓN RESUMEN DE LA UNIDAD Como complemento l estudio del Sistem Métrico Deciml, inicimos est unidd con el concepto de

Más detalles

Geometría del Espacio

Geometría del Espacio Geometrí del Espcio GEMETRÍA DE ESPACI. Denomind tmbién Esterenometrí, estudi tods ls propieddes en Geometrí Pln, y plicds en plnos diferentes. ESPACI. El espcio geométrico euclidino es el conjunto de

Más detalles

1. Perímetro y área de los polígonos (I) Halla mentalmente el perímetro y el área de un rectángulo que mide 60 m de largo y 40 m de alto.

1. Perímetro y área de los polígonos (I) Halla mentalmente el perímetro y el área de un rectángulo que mide 60 m de largo y 40 m de alto. 13 Perímetros y áres 1. Perímetro y áre de los polígonos (I) Hll mentlmente el perímetro y el áre de un rectángulo que mide 60 m de lrgo y 40 m de lto. Perímetro: (60 + 40) = 00 m Áre = 60 40 = 400 m P

Más detalles

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras.

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras. POIROS - PRISMS POIRO I. POIRO: es el sólido limitdo por cutro o más regiones poligonles llmdos crs. RIST TR TUR RIST SI PRISM VRTI S R 1. PRISM: l prism es un poliedro cuys crs lterles son tres o más

Más detalles

UNIDAD: GEOMETRÍA PERÍMETROS Y ÁREAS

UNIDAD: GEOMETRÍA PERÍMETROS Y ÁREAS u r s o : Mtemátic Mteril N 17 GUÍ TÓRI PRÁTI Nº 14 UNI: GMTRÍ PRÍMTRS Y ÁRS Perímetro de un polígono, es l sum de ls longitudes de todos sus ldos. l perímetro se denotrá por p y el semiperímetro por s.

Más detalles

UNIDAD 10 CUERPOS GEOMÉTRICOS

UNIDAD 10 CUERPOS GEOMÉTRICOS UNIDAD 10 CUERPOS GEOMÉTRICOS EJERCICIOS RESUELTOS Objetivo General. Al terminar ésta unidad identificarás los diferentes tipos de Cuerpos Geométricos, resolverás ejercicios y problemas en los que apliques

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 5. VOLUMEN

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 5. VOLUMEN FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 5. VOLUMEN Grdo 11 Tller # 5 Nivel I M. C. ESCHER Un de ls obrs más conocids del rtist gráfico holndés M. Escher es l litogrfí

Más detalles

Hallar el área de estas figuras

Hallar el área de estas figuras Hallar el área de estas figuras El área de la pirámide es la suma de las áreas de un cuadrado y 4 triángulos. El área del prisma es la suma de las áreas las bases ( pentágonos) y 5 rectángulos. Hallar

Más detalles

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área. POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A

Más detalles

fig. 1 fig. 2 fig. 3 fig. 4 fig. 5 EJEMPLOS 1. Si el área de un cuadrado es 144 cm 2, entonces su perímetro mide

fig. 1 fig. 2 fig. 3 fig. 4 fig. 5 EJEMPLOS 1. Si el área de un cuadrado es 144 cm 2, entonces su perímetro mide Profesor ln Rvnl S. UNI: GOMTRÍ PRÍMTROS Y ÁRS Perímetro de un polígono, es l sum de ls longitudes de todos sus ldos. l perímetro se denotrá por p. Áre es l medid que le corresponde tod l región poligonl.

Más detalles

a) 8 cm y 3 cm b) 15 m y 9 m

a) 8 cm y 3 cm b) 15 m y 9 m 7 Cpítulo 5: Geometrí del plno del espcio. Longitudes, áres volúmenes. TEORÍA. Mtemátics 4º de ESO. TEOREMA DE PITÁGORAS Y TEOREMA DE TALES.. Teorem de Pitágors Teorem de Pitágors en el plno Y sbes que:

Más detalles

2.- Dos ángulos de un triángulo miden 73º y 58º respectivamente. Determina el ángulo que forman sus bisectrices.

2.- Dos ángulos de un triángulo miden 73º y 58º respectivamente. Determina el ángulo que forman sus bisectrices. GEOMETRÍ 1.- Determin ls medids de los ángulos desconocidos. ) b) " 31º " 20º 47º 2.- Dos ángulos de un triángulo miden 73º y 58º respectivmente. Determin el ángulo que formn sus bisectrices. 3.- uánto

Más detalles

1 Calcula en la siguiente figura el elemento que falta: 2 Calcula en la siguiente figura el elemento que falta:

1 Calcula en la siguiente figura el elemento que falta: 2 Calcula en la siguiente figura el elemento que falta: 1 Calcula en la siguiente figura el elemento que falta: Calcula en la siguiente figura el elemento que falta: Calcula el valor de la diagonal de un ortoedro de aristas cm, 4 cm y 5 cm. 4 Comprueba la fórmula

Más detalles

SOLUCIONARIO 1. PERÍMETROS Y ÁREAS DE LOS POLÍGONOS (I) 4. Calcula el área de un triángulo rectángulo en el que los catetos miden 22 m y 16 m

SOLUCIONARIO 1. PERÍMETROS Y ÁREAS DE LOS POLÍGONOS (I) 4. Calcula el área de un triángulo rectángulo en el que los catetos miden 22 m y 16 m 11 elige Mtemátics, curso y tem. 13. Perímetros y áres 4. Clcul el áre de un triángulo rectángulo en el que los ctetos miden m y 16 m 1. PERÍMETROS Y ÁREAS DE LOS POLÍGONOS (I) PIENSA Y CALCULA Hll mentlmente

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS.

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS. PRISMAS 1.) Las dimensiones de un ortoedro son a = 7 cm, b = 5 cm y c = 10 cm. Dibuja esquemáticamente su desarrollo y calcula su área, su volumen y la longitud de la diagonal. Sol: 310 cm 2 ; 350 cm 3

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS 10 FIGURS Y UERPOS GEOMÉTRIOS EJERIIOS PR ENTRENRSE Poliedros y cuerpos redondos. Propiedades 10.2 Un poliedro regular tiene 8 vértices y 12 aristas. Utiliza la fórmula de Euler para saber de qué poliedro

Más detalles

Esquema de la unidad. 10 Medida del volumen MEDIDA DEL VOLUMEN. dam 3. m 3 dm 3. dal l dl. 10 m 3 = cm 3 7 l = dam 3 1 hm 3 = dl V =

Esquema de la unidad. 10 Medida del volumen MEDIDA DEL VOLUMEN. dam 3. m 3 dm 3. dal l dl. 10 m 3 = cm 3 7 l = dam 3 1 hm 3 = dl V = 10 Medid del volumen Esquem de l unidd Nombre y pellidos:... Curso:... Fec:... MEDIDA DEL VOLUMEN UNIDADES DE VOLUMEN dm 3 m 3 dm 3 : 10 3 Ò 10 3 dl l dl : 10 Ò 10 EJEMPLOS: 10 m 3 = cm 3 7 l = dm 3 1

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

ÁREAS DE CUERPOS GEOMÉTRICOS Poliedros. Para calcular el área de un poliedro calculamos el área de cada una de sus caras y las sumamos.

ÁREAS DE CUERPOS GEOMÉTRICOS Poliedros. Para calcular el área de un poliedro calculamos el área de cada una de sus caras y las sumamos. TEMA 9: ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Un poliedro se llama regular cunado cumple las dos condiciones siguientes: Sus caras son polígonos regulares idénticos. En cada vértice

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

TETRAEDRO CUBO OCTAEDRO DODECAEDRO ICOSAEDRO

TETRAEDRO CUBO OCTAEDRO DODECAEDRO ICOSAEDRO 6.- SÓLIDOS Al finalizar el sexto curso de Educación Primaria, los estudiantes deben describir cuerpos geométricos usando el vocabulario apropiado con términos como vértices, caras, aristas, planos, diedros,

Más detalles

Ejercicios de optimización

Ejercicios de optimización Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 215

10Soluciones a los ejercicios y problemas PÁGINA 215 0Soluciones a los ejercicios y problemas PÁGINA 5 Pág. U nidades de volumen Transforma en metros cúbicos las siguientes cantidades de volumen: a) 0,05 hm b)59 hm c) 5 dm d)0,05 km e) dam f) 58 000 l a)

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

Volúmenes. Volúmenes. Unidades de volumen Cuerpos geométricos Formulario

Volúmenes. Volúmenes. Unidades de volumen Cuerpos geométricos Formulario Volúmenes El volumen es un concepto que expres l medid del espcio que ocup un cuerpo. Es un vrible tridimensionl. En l División El Teniente se utiliz este concepto pr mrcr grndes bloques rectngulres de

Más detalles

EJERCICIOS RESUELTOS DE ÁREAS Y VOLÚMENES

EJERCICIOS RESUELTOS DE ÁREAS Y VOLÚMENES EJERCICIOS RESUELTOS DE ÁREAS Y VOLÚMENES 1. Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho y 2500 mm de alto. 2. Una piscina tiene 8 m de largo, 6

Más detalles

GEOMETRÍA ESPACIAL Programación

GEOMETRÍA ESPACIAL Programación GEOMETRÍA ESPACIAL Programación En clase, con la ayuda del libro, se explicará la teoría y se realizarán ejercicios similares a los de las fichas, de modo que los ejercicios que realizan por la tarde les

Más detalles

12. Áreas y volúmenes

12. Áreas y volúmenes 6. Áres y volúmenes. ÁEA Y VOLUMEN DE CUEPOS EN EL ESPACIO PIENSA Y CALCULA Clcul mentlmente el áre y el volumen de un cubo de m de rist. Áre: 6 = 54 m m = 7 m 4. Clcul el áre y el volumen de un prism

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

d. Se llama altura del prisma a la distancia entre sus dos caras. Cuál sería la altura del prisma de la figura 1?

d. Se llama altura del prisma a la distancia entre sus dos caras. Cuál sería la altura del prisma de la figura 1? MATERIAL PARA EL ESTUDIANTE EJEMPLOS DE ACTIVIDADES Actividad 1 Prismas rectos En años anteriores hemos aprendido a calcular perímetros y áreas de figuras geométricas. Ahora veremos cómo se puede calcular

Más detalles

Nº caras. Nº vértices

Nº caras. Nº vértices Tipo De Caras (Ángulo Interior) Triángulo Equilátero (60º) Cuadrado (90º) Pentágono (108º) Hexágono (10º) Nº caras por vértice Suma de los ángulos de cada vértice Nº caras Nº vértices Nº aristas C + V

Más detalles

9Soluciones a los ejercicios y problemas PÁGINA 200

9Soluciones a los ejercicios y problemas PÁGINA 200 PÁGINA 200 Pág. 1 T ipos de cuerpos geométricos 1 Di, justificadamente, qué tipo de poliedro es cada uno de los siguientes: A B C D E F Hay entre ellos algún poliedro regular? A 8 Prisma pentagonal recto.

Más detalles

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

4TO AÑO DE SECUNDARIA 1. 01. Si " " es la medida de un ángulo agudo y se cumple que:

4TO AÑO DE SECUNDARIA 1. 01. Si   es la medida de un ángulo agudo y se cumple que: 0. Si " " es l medid de un ángulo gudo y se cumple que: Tg ; clculr: T Sen ot b) 8 0 0. n un triángulo rectángulo recto en "" se cumple que: Sen=Sen; clculr: Sen Tg 0 b) 0 0 0. l perímetro de un triángulo

Más detalles

3. Si la capacidad de un cubo es 8 litros, entonces la suma de las medidas de todas las aristas del cubo es

3. Si la capacidad de un cubo es 8 litros, entonces la suma de las medidas de todas las aristas del cubo es Programa Estándar Anual Nº Guía práctica Poliedros Ejercicios PSU 1. Si la arista de un cubo mide 4 cm, entonces el área del cubo mide Matemática A) 12 cm 2 D) 96 cm 2 B) 48 cm 2 E) 576 cm 2 C) 64 cm 2

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS 10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10. Completa la siguiente tabla. Caras (C ) Vértices (V )

Más detalles

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad

VOLUMENES. Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad VOLUMENES Los cuerpos en el espacio (sólidos) poseen tres dimensiones: largo, ancho y profundidad POLIEDROS Un poliedro es un cuerpo limitado por polígonos Los polígonos que limiten el poliedro, se llaman

Más detalles

Los polígonos y la circunferencia

Los polígonos y la circunferencia l: ldo 12 Los polígonos y l circunferenci 1. Polígonos lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos: P I E N S Y L U L R l: ldo R R? R? R R? R R? R E l: ldo l: ldo F E 360 : 3 =

Más detalles

UNIDAD 10 CUERPOS GEOMÉTRICOS. Objetivo General.

UNIDAD 10 CUERPOS GEOMÉTRICOS. Objetivo General. UNIDAD 10 CUERPOS GEOMÉTRICOS Objetivo General. Al terminar ésta unidad identificarás los diferentes tipos de Cuerpos Geométricos, resolverás ejercicios y problemas en los que apliques definiciones y fórmulas.

Más detalles

En el ejercicio 3 el alumno demuestra nociones de aritmética, sobre números pares e impares, media aritmética, y nociones de lógica.

En el ejercicio 3 el alumno demuestra nociones de aritmética, sobre números pares e impares, media aritmética, y nociones de lógica. L prueb de l XV Olimpid Mtemátic de º de ESO de Cntbri, celebrd en Universidd de Cntbri el 16 de bril de 011 const de 5 ejercicios de diferentes tems decudos los contenidos de º de ESO. Est prueb fue pensd

Más detalles

UNIDAD 12. GEOMETRÍA DEL ESPACIO (II). CUERPOS DE REVOLUCIÓN.

UNIDAD 12. GEOMETRÍA DEL ESPACIO (II). CUERPOS DE REVOLUCIÓN. UNIDAD 12. GEOMETRÍA DEL ESPACIO (II). CUERPOS DE REVOLUCIÓN. Unidad 12: Geometría del espacio (II). Cuerpos de revolución. Al final deberás haber aprendido... Describir cuerpos de revolución e identificar

Más detalles

Los poliedros y sus elementos

Los poliedros y sus elementos Los poliedros y sus elementos De las siguientes figuras, rodea las que sean poliedros o tengan forma de poliedro. Dibuja y escribe el nombre de tres objetos que tengan forma de poliedro. espuesta libre

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS ÁRES Y VOLÚMENES DE CUERPOS GEOMÉTRICOS. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

13 CUERPOS GEOMÉTRICOS

13 CUERPOS GEOMÉTRICOS 13 CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 13.1 Observa la figura y di qué elemento geométrico determinan la recta y el plano. r α La recta r y el plano determinan un punto. 13.2 Con los cuatro puntos

Más detalles

TEOREMA DE PITÁGORAS

TEOREMA DE PITÁGORAS TEOREMA DE PITÁGORAS 1.- El ldo de un udrdo mide 10 m. Cuánto mide su digonl? (Aproxim el resultdo hst ls déims)..- Ls digonles de un romo miden 15 m y 17 m, respetivmente. Cuánto miden sus ldos? (Aproxim

Más detalles

CFGS Curso de acceso, parte común. Matemáticas

CFGS Curso de acceso, parte común. Matemáticas FGS urso de cceso, prte común. Mtemátics Qued prohiid, slvo excepción previst en l ley, culquier form de reproducción, distriución, comunicción y trnsformción de est or sin contr con l utorizción de los

Más detalles

Colegio C. C. Mª Auxiliadora II Marbella Urb. La Cantera, s/n. 952822586 http:/www.mariaauxiliadora2.com SISTEMAS DE ECUACIONES

Colegio C. C. Mª Auxiliadora II Marbella Urb. La Cantera, s/n. 952822586 http:/www.mariaauxiliadora2.com SISTEMAS DE ECUACIONES Colegio C. C. Mª Auiliadora II Marbella Urb. La Cantera, s/n. 988 http:/www.mariaauiliadora.com º ESO SISTEMAS DE ECUACIONES º. Une con flechas cada pareja de números con el sistema del que es solución:

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

Volúmenes de cuerpos geométricos

Volúmenes de cuerpos geométricos Volúmenes de cuerpos geométricos TEORÍA Cuerpos geométricos En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

Guia PSU Matemática IV Medio PERÍMETROS, ÁREAS Y VOLÚMENES

Guia PSU Matemática IV Medio PERÍMETROS, ÁREAS Y VOLÚMENES PERÍMETROS, ÁREAS Y VOLÚMENES Antes de entrar al análisis de fórmulas referente al perímetro, área y volumen de figuras geométricas, repasemos estos temas y efectuemos ejercicios pertinentes Llamamos área

Más detalles

PENDIENTES 2º ESO. Tercer examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del tercer examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014

PENDIENTES 2º ESO. Tercer examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del tercer examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014 014 015 Preparación del tercer examen de recuperación de MATEMÁTICAS DE º ESO PENDIENTES º ESO Tercer examen DEPARTAMENTO DE MATEMÁTICAS 1.- En un triángulo rectángulo, los catetos miden 5 y 1cm, respectivamente.

Más detalles

Areas de los cuerpos geometrlcos

Areas de los cuerpos geometrlcos ,,. Areas de los cuerpos geometrlcos PARA EMPEZAR Cómo se calcula el área de un prisma regular Área lateral: Área de la base: Área tata 1: As endo p el perímetro de una de las bases, h la altura del prisma

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Página 85 PRACTICA Desarrollos y áreas Haz corresponder cada figura con su desarrollo y calcula el área total: I II cm III cm IV cm 7 cm A B C D 8 Pág. I C Área de una cara: 6 h + 6 h + 9 h 6 9

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. PÁGINA EJERCICIOS Unidades de volumen Transforma en metros cúbicos: a) 50 dam b) 0,08 hm c) 0, km d) 5 80 dm e) 500 hl f) 0 000 l a) 50 dam = 50 000 m b) 0,08 hm = 8 000 m c) 0, km = 0 000 000 m d)

Más detalles

PÁGINA 196. 1 Di qué tipo de prisma es cada uno de los siguientes. Indica cuáles son regulares. Dibuja el desarrollo del primero de ellos.

PÁGINA 196. 1 Di qué tipo de prisma es cada uno de los siguientes. Indica cuáles son regulares. Dibuja el desarrollo del primero de ellos. Soluciones a las actividades de cada epígrafe PÁGINA 196 1 Di qué tipo de prisma es cada uno de los siguientes. Indica cuáles son regulares. Dibuja el desarrollo del primero de ellos. a) b) c) d) a) Triangular,

Más detalles

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES.

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES. DP. - AS - 5119 007 Mtemátics ISSN: 1988-79X 00 APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON VARIABLES. Descompón el número 9 en dos sumndos e, tles que l sum + 6 se mínim. DETERMINACIÓN DE INCÓGNITAS

Más detalles

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que:

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que: Axiom de división del espcio: Todo plno del espcio determin en éste dos regiones tles que: - Cd punto del espcio pertenece un de ls dos regiones o l plno - Dos puntos de un mism región determinn un segmento

Más detalles

11 Perímetros y áreas de figuras planas

11 Perímetros y áreas de figuras planas 86464 _ 0371-0384.qxd 1//07 09:4 Págin 371 Perímetros y áres de figurs plns INTRODUCCIÓN En est unidd repsmos ls uniddes de longitud y superficie. Se introducen tmbién lguns uniddes de medid del sistem

Más detalles

Práctica 06. Instituto Tecnológico de Costa Rica Escuela de Matemática Matemática General. I. Plantee y resuelva los siguientes problemas:

Práctica 06. Instituto Tecnológico de Costa Rica Escuela de Matemática Matemática General. I. Plantee y resuelva los siguientes problemas: Instituto Tecnológico de Costa Rica Escuela de Matemática Matemática General I. Plantee y resuelva los siguientes problemas: Práctica 06 Geometría 1) Un árbol proyecta una sombra de 5 m en el mismo instante

Más detalles

LEE CORRECTAMENTE LO QUE SE PIDE Y CONTESTA EN HOJAS PARA ENTREGAR A MANO CON LETRA LEGIBLE Y BUENA PRESENTACIÓN.

LEE CORRECTAMENTE LO QUE SE PIDE Y CONTESTA EN HOJAS PARA ENTREGAR A MANO CON LETRA LEGIBLE Y BUENA PRESENTACIÓN. ESCUELA COMERCIAL CAMARA DE COMERCIO Profesora Ingeniero María del Pilar García Rico Materia Matemáticas II Grupo 51-A Guía Semestral LEE CORRECTAMENTE LO QUE SE PIDE Y CONTESTA EN HOJAS PARA ENTREGAR

Más detalles

SOLIDOS LOS POLIEDROS RECTOS

SOLIDOS LOS POLIEDROS RECTOS SOLIDOS Las invenciones de los objetos concretos al concepto abstracto de los griegos, sentaron las bases para la geometría Euclidea. Aquí apreciamos algunas formas que ellos derivaron y que aún hoy día

Más detalles

AB CH. Área del PQR ABC AB CH. Área del ABC QR PA. Área del. El área de un triangulo rectángulo es igual al semiproducto de sus catetos.

AB CH. Área del PQR ABC AB CH. Área del ABC QR PA. Área del. El área de un triangulo rectángulo es igual al semiproducto de sus catetos. AREAS L noción de áre está socid l extensión o superficie de un figur. El áre es un número que nos dice que tn extens es un región y l expresmos en kilómetros cudrdos (Km ); metros cudrdos (m ); centímetros

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m Problem 5.54 A w A 4 kn 0 kn.8 m 0. m w L vig A soport dos crgs concentrds y descns sobre el suelo el cul ejerce un crg linelmente distribuid hci rrib como se muestr. Determine ) l distnci pr l cul w A

Más detalles

Lección 14: Volúmenes de algunos cuer pos

Lección 14: Volúmenes de algunos cuer pos LECCIÓN 14 Lección 14: Volúmenes de algunos cuer pos Concepto de volumen En un cuerpo sólido podemos medir su volumen, lo que, como en el caso de las longitudes y las áreas significa ver cuántas veces

Más detalles

11 Cuerpos geométricos

11 Cuerpos geométricos 89485 _ 0369-0418.qxd 1/9/07 15:06 Página 369 Cuerpos geométricos INTRODUCCIÓN Los poliedros, sus elementos y tipos ya son conocidos por los alumnos del curso anterior. Descubrimos y reconocemos de nuevo

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. PÁGINA 8 REFLEXIONA La grúa debe cargar en el barco los montones de cajas que hay en el muelle. Para contar el número de cajas que hay en el siguiente

Más detalles

EJERCICIOS. ÁREAS Y VOLÚMENES.

EJERCICIOS. ÁREAS Y VOLÚMENES. EJERCICIOS. ÁREAS Y VOLÚMENES. Teorema de Tales 1. Sean los triángulos ABC, AB'C'.Calcula el valor desconocido x. 2. Dos triángulos semejantes tienen una superficie de 20cm 2 y 30cm 2 respectivamente.

Más detalles

Aplicaciones de la Integral

Aplicaciones de la Integral Aplicciones de l Integrl Cálculo 6// Prof. José G. Rodríguez Ahumd de Se f, g dos funciones tl que pr todo vlor en [, ]. Entonces, el áre A entre sus gráfics en el intervlo [, ] es: ÁREA ENTRE DOS CURVAS

Más detalles

Tema 8 Cuerpos en el espacio

Tema 8 Cuerpos en el espacio Tema 8 Cuerpos en el espacio Poliedros La primera distinción que debemos hacer es entre los poliedros, que son cuerpos geométricos limitados por polígonos, y los cuerpos de revolución, donde una forma

Más detalles

I C I L I N D R O. Atotal = 2πr(h + r), donde h es la altura del cilindro y r es radio de la base.

I C I L I N D R O. Atotal = 2πr(h + r), donde h es la altura del cilindro y r es radio de la base. Generatriz: g 2 = r 2 + h 2 Ejemplo: Si r = 5 cm y h = 12 cm, 2 2 2 LICEO TECNICO CLELIA CLAVEL DINATOR SECTOR: MATEMÁTICA DOCENTE: SIXTA POSTIGOMORENO NIVEL: CUARTO MEDIO GUÍA DE UNIDAD Nº : AREAS Y VOLÚMENES

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

Geometría en 3D. Problemas del capítulo. 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos?

Geometría en 3D. Problemas del capítulo. 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos? Geometría en 3D. Problemas del capítulo 1. Cuáles son las diferencias entre prismas y pirámides, y entre cilindros y conos? 2. Qué es volumen y cómo lo encontramos? 3. Cómo se relacionan los volúmenes

Más detalles

Trigonometría y problemas métricos

Trigonometría y problemas métricos Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.

Más detalles

SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA.

SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA. CUADERNILLO DE GEOMETRIA I.- SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA. 1.- SON LOS TRIÁNGULOS QUE TIENEN TODOS LOS ÁNGULOS IGUALES. A) EQUILÁTERO B) ACUTÁNGULO C) ISÓSCELES D) ESCALENO E) RECTÁNGULO

Más detalles

UNIDAD X - GEOMETRIA. Ejercitación

UNIDAD X - GEOMETRIA. Ejercitación UNIDAD X - GEOMETRIA Programa Analítico Segmentos. Operaciones con segmentos. Ángulos. Clasificación de los ángulos: Complementarios, suplementarios, adyacentes, alternos-internos, opuestos por el vértice.

Más detalles

Colegio Universitario Boston. Geometría

Colegio Universitario Boston. Geometría 34 Conceptos ásicos Triángulo: Se define como la figura geométrica plana, cerrada de tres lados. Triángulo equilátero: Es el triángulo que tiene sus tres lados iguales y sus tres ángulos internos iguales,

Más detalles

PROBLEMAS DE SEMEJANZA

PROBLEMAS DE SEMEJANZA PROBLEMAS DE SEMEJANZA 1. En una fotografía, María y Fernando miden 2,5 cm y 2,7 cm, respectivamente; en la realidad, María tiene una altura de 167,5 cm. A qué escala está hecha la foto? Qué altura tiene

Más detalles

La geometría de los sólidos

La geometría de los sólidos LECCIÓN CONDENSADA 10.1 La geometría de los sólidos En esta lección Conocerás los poliedros, que incluyen a los prismas y las pirámides Conocerás los sólidos con superficies curvas, que incluyen a las

Más detalles

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de

Más detalles

9Soluciones a las actividades de cada epígrafe PÁGINA 186

9Soluciones a las actividades de cada epígrafe PÁGINA 186 9Soluciones a las actividades de cada epígrafe PÁGINA 186 Pág. 1 En la Casa de la Cultura se ha montado una exposición fotográfica. En ella se recogen modernos edificios en los que los poliedros y los

Más detalles

GUÍA MATEMÁTICAS TERCER GRADO

GUÍA MATEMÁTICAS TERCER GRADO GUÍA MATEMÁTICAS TERCER GRADO I.- CONTESTA LO QUE SE SOLICITA EN CADA CUESTIÓN, JUSTIFICANDO TU RESPUESTA CON LA RESPECTIVA ARGUMENTACIÓN U OPERACIONES REALIZADAS. 1. Resuelve los siguientes productos

Más detalles

8. Si Â, Ê e Î son los ángulos de un triángulo, completa en tu cuaderno la siguiente tabla:

8. Si Â, Ê e Î son los ángulos de un triángulo, completa en tu cuaderno la siguiente tabla: 5. Clasifica según sus lados los siguientes triángulos: a) Equilátero. b) Escaleno. c) Isósceles. 6. Clasifica según sus ángulos los siguientes triángulos: a) Acutángulo. b) Obtusángulo. c) Rectángulo.

Más detalles

UNIDAD 6 La semejanza y sus aplicaciones

UNIDAD 6 La semejanza y sus aplicaciones UNIDD 6 La semejanza y sus aplicaciones 7. yuda a la resolución de problemas: Pág. 1 de 4 1 Una maceta tiene forma de tronco de pirámide cuadrangular regular con las dimensiones que se indican en la figura.

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS DE REDONDOS Poliedros. o Elementos de un poliedro y desarrollo plano. Prismas. o Elementos y tipos de prismas. Pirámides. o Elementos y tipos de

Más detalles

DIVERSIFICACIÓN CURRICULAR

DIVERSIFICACIÓN CURRICULAR ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un

Más detalles